
The Vectorized and Parallelized Solving of
Markovian Models for Optical Networks

Beata Bylina and Jaros�law Bylina

Department of Computer Science, Marie Curie-Sk�lodowska University
Pl. M. Curie-Sk�lodowskiej 1, 20-031 Lublin, Poland

{beatas, jmbylina}@hektor.umcs.lublin.pl

Abstract. The article presents two approaches to the WZ factoriza-
tion – specific ones for solving Markov chains – and the results of their
vectorization and parallelization.

1 Introduction

The probabilistic methods – especially Markov models – are the most useful ones
to describe queueing models. A homogeneous continuous-time Markov chain can
be described with one singular matrix Q = (qij)j=1,...,n

i=1,...,n called the transition rate

matrix given by qij = lim∆t→0
pij(∆t)

∆t for i �= j and by qii = − ∑
j �=i qij .

We are to find x = πT – the vector of the stationary probabilities πi that the
system is in the state i at the time t – from:

QT x = 0, x ≥ 0, eT x = 1, where e = (1, 1, . . . , 1)T . (1)

2 The WZ Factorization

The WZ factorization is described in [3]. A = WZ, where (for an even n)
W = (wij)j=1,...,n

i=1,...,n is shaped like a butterfly (wij = 0 for i < j < n − i + 1 and
for n − i − 1 < j < i, wii = 1) and Z = (zij)j=1,...,n

i=1,...,n is shaped like a transposed
butterfly (wij = 0 for j < i < n−j and for n−j < i < j). After the factorization
we can solve two linear systems: Wc = b and Zx = c instead of one Ax = b.

The sequential algorithm for solving the linear system with the WZ factor-
ization is presented on the figure 1. On the figure 2 we present its vectorized
counterpart (from [1]).

3 Replacing an Equation (RWZ)

The most intuitive approach to solving a homogenous linear system (1) is to
replace an arbitrary equation of that system with the normalization equation
eT x = 1. Let Q̃p be the matrix Q with the pth column replaced with the vector
e. Our modified system can be written Q̃T

p x = ep, where ep = (δip)i=1,...,n.

M. Bubak et al. (Eds.): ICCS 2004, LNCS 3037, pp. 578–581, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

The Vectorized and Parallelized Solving of Markovian Models 579

% elimination loop – steps of reduction from A to Z:
for k = 0 : m
k2 = n-k-1;
det = A(k,k)*A(k2,k2)-A(k2,k)*A(k,k2);

% finding elements of W
for i = k+1 : k2-1
wk1 = (A(k2,k)*A(i,k2)-A(k2,k2)*A(i,k))/det;
wk2 = (A(k,k2)*A(i,k)-A(k,k)*A(i,k2))/det;

% updating A
for j = k+1 : k2-1
A(i,j) = A(i,j)+wk1*A(k,j)+wk2*A(k2,j);

% updating b
b(i) = b(i)+wk1*b(k)+wk2*b(k2);

% finding x
for j = m : 0
% solving a 2 × 2 linear system
j2 = n-j-1;
det = A(j,j)*A(j2,j2)-A(j2,j)*A(j,j2);
x(j) = (b(j)*A(j2,j2)-b(j2)*A(j,j2))/det;
x(j2) = (b(j2)*A(j,j)-b(j)*A(j2,j))/det;

% updating b
for i = j-1 : 0
i2 = n-i-1
b(i) = b(i)-x(j)*A(i,j)-x(j2)*A(i,j2);
b(i2) = b(i2)-x(j)*A(i2,j)-x(j2)*A(i2,j2);

Fig. 1. The sequential algorithm for the WZ factorization

% elimination loop – steps of reduction from A to Z:
for k = 0 : m
k2 = n-k-1;
det = A(k,k)*A(k2,k2)-A(k2,k)*A(k,k2);
for i = k+1 : k2-1

% finding elements of W
wk1 = (A(k2,k)*A(i,k2)-A(k2,k2)*A(i,k))/det;
wk2 = (A(k,k2)*A(i,k)-A(k,k)*A(i,k2))/det;

% updating A
A(i,k+1:k2-1) = A(i,k+1:k2-1)+wk1*A(k,k+1:k2-1)+wk2*A(k2,k+1:k2-1);

% updating b
b(i) = b(i)+wk1*b(k)+wk2*b(k2);

% finding x
for j = m : 0
% solving a 2 × 2 linear system – as on figure 1
% updating the upper and the lower part of b
b(0:j-1) = b(0:j-1)-x(j)*A(0:j-1,j)-x(j2)*A(0:j-1,j2);
b(n-j:n-1) = b(n-j:n-1)-x(j)*A(n-j:n-1,j)-x(j2)*A(n-j:n-1,j2);

Fig. 2. The vectorized algorithm for the WZ factorization

580 B. Bylina and J. Bylina

Let Q̃T
p = W̃Z̃. Setting Z̃x = y in the system W̃Z̃x = ep we get W̃y = ep

from which it is obvious that y = ep. So now we are to solve the system Z̃x = ep.
This approach is likely to yield a less accurate result than the next one

(section 4). When we compute xp and xq they will be contaminated with the
round-off errors from all of the previous elimination steps. Moreover, this will
propagate throughout the next backsubstitution steps.

4 Removing an Equation (DWZ)

Another approach is to remove an equation. We know that the rank of Q is
(n − 1) – that is one of the equations can be written as a linear combinantion
of other equations. If we drop an equation we get a linear system of (n − 1)
equations with n unknowns (and the normalization equation).

In this approach we divide (after [4]) our matrix in blocks QT =
[
B d
cT f

]

where B is a nonsingular matrix of the size (n − 1), c and d are (n − 1)-element
vectors and f is a real number.

Let us assign xn = 1, now xT = (x̂T , 1) and our equation (1) gives the
equatoins: Bx̂ + d = 0 and cT x̂ + f = 0.

Now we can solve the linear system without the last equation, that is only
Bx̂ = −d. We solve it using the WZ factorization – the matrix B is factorized:
B = WZ and the equations Wy = −d and Zx̂ = y are solved. Now we must
normalize the solution vector xT = (x̂T , 1).

Of course, whichever equation can be dropped, not only the last.

5 The Example, the Implementation, and the
Experiments

A queuing model of an optical network edge node is presented in [2]. Information
(electronical) packages arrive in a buffer (of an optical switch) of capacity of
N = 250 blocks. The packages are of different sizes (sizes are integer, from one
block up to 20 blocks). When the buffor is filled, the bigger (optical) package is
formed and sent. The buffer is then emptied. We don’t want to divide information
from one electronical package between two optical packages so when an arriving
package is too big to fit into the buffer we send an uncompleted optical package
and package just received starts a new optical package. An uncompleted optical
package is also sent when a given timeout is over. Arriving packages stream
has a Poisson distribution and the probability that the received packages have
i (i = 1, . . . , 20) blocks is pi = 0.05. In our model the timeout is approximated
with an Erlang distribution consisting of 10 phases of exponential distribution
because we want to preserve a Markovian form of this model.

In our experiments the transition rates matrix (Q) was not very big (only
2491 states) so we decided to store it in a traditional, two-dimensional array

The Vectorized and Parallelized Solving of Markovian Models 581

with a lot of zeroes. This storing scheme is rather space consuming, but is the
best when we have enough space and the computation time matters.

The algorithms RWZ and DWZ were implemented for the single precision
numbers with the use of the language C. The programs were compiled with the
icc (Intel C Compiler). We denoted the algorithms RWZ and DWZ improved
with the vectorized algorithm presented in the figure 2 by VRWZ and VDWZ,
respectively. The algorithms VRWZ and VDWZ were implemented with the
use of the BLAS1 functions from the mkl (Intel’s Mathematics Kernel Library).
All the programs were tested on a Pentium III 733 MHz machine.

Table 1. The performance and the residual for the tested algorithms

algorithm ||QT x||2 time A [s] time B [s]
DWZ 3.84383e–07 239.98 228.65

VDWZ 5.69805e–07 9.84 231.82
RWZ 1.91620e–06 232.96 229.08

VRWZ 1.93863e–06 15.47 220.02

All the described algorithms were tested as not parallelized ones and as paral-
lelized (with the use of the OpenMP standard) algorithms – but the paralleliza-
tion did not give the significiant improvement in performance (no more than
5%), so in the table 1 we present the residual (here: ||QT x||2) and performance
(as time A) of the not parallelized ones only.

To better understand such a big improvement in performance (with the use
of BLAS1 only) we made some tests with the same algorithms but with other
matrices. Namely we prepared some random matrices with all non-zero elements.
The performance for such dense matrices (time B in table 1) for not vector-
ized algorithms was similar to performance for our sparse (54782 non-zeroes for
24912 = 6205081 elements) matrix. However, for vectorized ones the performance
for the sparse matrix was much better than the performance for the dense ones
– because of the special treatment of huge number of zeroes by the mkl and the
processor.

References

1. Bylina, B.: Solving lineaar systems with vectorized WZ factorization. Annales
UMCS Informatica 1 (2003) 5–13

2. Domańska, J., Czachórski, T.: Model formowania pakietów w wȩźle brzegowym sieci
optycznej. Studia Informatica 2A(53) (2003) 51–62 (in Polish)

3. Evans, D.J., Hatzopoulos, M.: The parallel solution of linear system. Int. J. Comp.
Math. 7 (1979) 227–238

4. Stewart, W.: Introduction to the Numerical Solution of Markov Chains. Princeton
University Press, Chichester, West Sussex (1994)

	Introduction
	The WZ Factorization
	Replacing an Equation (RWZ)
	Removing an Equation (DWZ)
	The Example, the Implementation, and the Experiments

