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Abstract. In this paper we show an analysis of different parallel numer-
ical libraries for solving the linear systems associated to the electron con-
tinuity equation from the 3D simulation of the semiconductor devices.
We use domain decomposition techniques, such as Additive Schwarz,
Multicolor SOR or Schur Complement methods, in order to find the
best method of resolution considering the minimization of the execution
time. The results were obtained in a Beowulf system with Myrinet 2000
network with MPI standard for message–passing communication.

1 Introduction

In this paper an analysis is presented of different parallel numerical libraries
employed in resolution of sparse linear systems in 3D semiconductor device sim-
ulation. The main goal of this analysis is the selection of parameters to minimize
execution time. The sparse matrices employed in our analysis are those resulting
from the discretization of electron continuity equation for HEMT devices. In our
case, these matrices have 29012 rows and 398102 nonzero elements. A similar
study could be performed for any other type of semiconductor devices. Our re-
sults have been obtained in a Beowulf system with Myrinet 2000 network, using
MPI for message–passing communication.

2 Numerical Libraries

The working sets are numerical libraries based on direct methods, SuperLU, and
iterative methods, PSPARSLIB, PETSc and Aztec, analyzing in each case the
parameters with the largest impact on execution time, such as solvers based
on Krylov methods, parallel preconditioners, fill–in processes in Incomplete LU
Factorizations, the Krylov subspace size and the number of processors employed.

2.1 SuperLU

SuperLU[1] is a general purpose library for the direct solution of large, sparse
linear systems. The library performs a LU decomposition with partial pivoting
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Fig. 1. (a) Factorization time for SuperLU library, (b) Comparison between the Addi-
tive Schwarz, Multicolor SOR and Schur Complement methods for PSPARSLIB

and triangular system solves through forward and back substitution. We can
choose between sequential or parallel versions.

Using the distributed memory version, we analyze this library, solving in
parallel a complete LU Factorization. Solving time decreases with the number
of processors employed, which is becoming less marked (Figure 1(a)). For this
type of matrix the use of this library is not very profitable in comparison with
any of the analized libraries based on iterative methods.

2.2 PSPARSLIB

The solvers included in PSPARSLIB[2] are CG, GMRES, FGMRES, DQGM-
RES, BCGSTAB and TFQMR. It uses domain decomposition preconditioners[3],
such as Additive Schwarz, Multicolor SOR and Schur complement methods [4].

Making a solver comparison, we find that GMRES obtain the lowest solving
times. From the available preconditioners, Additive Schwarz is the most appro-
priate, as can be deduced in Fig. 1(b), where a comparison among the precon-
ditioners named above is shown. For the computation of the internal points we
use an incomplete LU Factorization depending on two parameters: the fill value
(2 · fill will be the maximum number of fill–in elements) and a drop tolerance
(fixed to 10e−4). The lowest solving times were obtained for a value of fill = 25.
An example of this can be observed in Fig. 2(a), where the influence of fill value
in solving time is represented for GMRES. The influence of Krylov subspace size
is very small, since variations of 5% in the solving time are found by changing two
magnitude orders in the Krylov subspace size value. With respect to the number
of processors, the tendency shows minimum execution times with 3 processors.
There are several reasons because using 4 processors is not a good choice. Firstly,
communication times between processors become increasingly high when they
are compared to the computational time. This is due to the size of local matrices
which is getting too small. Moreover, reducing the size of matrices involves less
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Fig. 2. Dependence of solving time with the fill value for GMRES solver with Additive
Schwarz preconditioning for: (a) the PSPARSLIB library and (b) the PETSc library

(a) (b)

Fig. 3. (a) Dependence of solving time with the ilut fill parameter for the Aztec library,
(b) Comparison between PSPARSLIB, PETSc and Aztec for the best solving times

number of internal nodes and an increase of interface nodes. This is translated
into a higher cost in both communication and computation times.

2.3 PETSc

PETSc[5] includes several solvers such as CG, GMRES, TCQMR, BCGS and
TFQMR. Some preconditioners included in PETSc are Jacobi, Block Jacobi,
SOR and Additive Schwarz. From all of the solvers, we are only going to study
those common to the ones existing in PSPARSLIB in order to be able to make
a comparative study. For the same reason, we choose the Additive Schwarz pre-
conditioner, solving the internal points through an incomplete LU Factorization
depending on a certain level of fill (level is the column number round the diagonal
in which the fill–in is allowed).

The lowest solving times are found for the GMRES solver, when the levels
of fill are between 10 and 12. With respect to the influence of the number of
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processors employed, we find a decrease of the solving time when we increase
the number of processors, although this tendency is not true for more than 3
processors, as can be observed in Fig. 2(b) relative to the GMRES solver.

2.4 Aztec

Aztec[6] includes a number of Krylov iterative methods such as CG, GMRES,
TFQMR and BCGSTAB. These Krylov methods are used in conjunction with
various preconditioners such as polynomial or domain decomposition methods.

In this library the same solvers of PETSc are studied, using as a precondi-
tioner the domain decomposition method Additive Schwarz, the inner solve being
an incomplete LU factorization depending on the parameter ilut fill (which indi-
cates that the final factorization can contain as most ilut fill times the number of
no zero elements from the original matrix) and a drop tolerance (fixed to zero).

The lowest execution times are found for BCGSTAB solver, the differences
between BCGSTAB solver and the other solvers studied are considerable. The
minimun execution times are achieved using 3 processors, with ilut fill values
between 2 and 4. An example of this can be observed in Fig. 3(a) in which we
represent for the BCGSTAB solver the influence of ilut fill in solving time.
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