
Parallel Solution of Cascaded ODE Systems
Applied to 13C-Labeling Experiments

Katharina Nöh and Wolfgang Wiechert

University of Siegen
Paul-Bonatz-Str. 9-11, D-57068 Siegen, Germany

{noeh,wiechert}@simtec.mb.uni-siegen.de
http://www.simtec.mb.uni-siegen.de

Abstract. In the rapidly growing field of computational methods within
the discipline of Metabolic Engineering, the simulation of instationary
13C labeling experiments is a new research focus. The underlying mathe-
matical model is a high-dimensional cascaded system of differential equa-
tions and must be exploited to obtain efficient simulation algorithms.
Additionally the sensitivity matrices of the system have to be computed
as efficient as possible. For this purpose several ways for parallel imple-
mentation are introduced, compared and discussed.

1 Cascaded Systems

In this contribution high-dimensional cascaded ODE systems are considered
which have the general form

iẏ = f
(0y,1y, . . . ,i−1y,p

)
, i = 1(1)m

with initial values iy (t0) = iy0 and parameters p. Herein the upper left index
of the vectors iy specifies the stage of the cascade. To demonstrate the general
methods developed in this paper a class of biotechnological examples is taken
that arise in the framework of Metabolic Flux Analysis (MFA) [1-3].
In case of metabolic stationarity (constant metabolic fluxes v and pool sizes X)
the detailed dynamics of an isotopically instationary 13C labeling experiment is
described by a so called cumomer vector x [4] and has the cascaded form

diag(iX) · iẋ = iA(v) · ix + ib(v, xinp;0x, 1x, . . . ,i−1x), i = 1(1)m (1)

with 0x = 1 and for some given initial values ix (0) = ix0 and known input label-
ing xinp [3]. Here iẋ depends linearly on ix but nonlinearly on 0x,1x, . . . ,i−1x.
The equation 0x = 1 is a conservation law which is exactly fulfilled. In [3] it is
shown that for a reasonable metabolic network under weak conditions (v,X > 0)
the non-singularity of 1A is equivalent to the global stability of the complete cas-
caded system (1). In the context of MFA the ODE (1) can have a very high
dimension and moreover it constitutes an inverse problem for the fluxes v. Ac-
cordingly, the cascade (1) has to be solved repeatedly in the course of a parame-
ter fitting procedure for flux determination. An efficient and aligned ODE solver
thus is desirable because a standard “black-box” solver will cause tremendous
computational costs.

M. Bubak et al. (Eds.): ICCS 2004, LNCS 3037, pp. 594–597, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



Parallel Solution of Cascaded ODE Systems 595

Sensitivity Equations: Because the biological system and its measurements
are usually rather noisy a detailed statistical analysis for parameter fits is always
required. For that purpose the time dependent sensitivity matrices have to be
computed by another cascaded system

d

dt

∂iy
∂p

=
i−1∑

k=1

∂f
∂ky

· ∂ky
∂p

+
∂f
∂p

,
∂iy
∂p

(t0) = 0, i = 1(1)m. (2)

These systems take the main part of computational time and the way how the
sensitivity matrices are computed has a large impact on the overall performance
of the method. Each column of the matrices ∂iy/∂p corresponds to one param-
eter. Consequently, (2) has a high dimension of dim y · dim p. It is well known
that the sensitivity ODEs (2) in principle have the same form as the systems
ODE (1) and hence have the same numerical stability characteristics.

Example Systems: As a typical example in MFA the amino acid producer C.
glutamicum may serve. Simulating an experiment with this bacterium with (1)
results in 5608 equations with 11 stages. The C. glutamicum network has a total
of 244 parameters and so (1)+(2) has the overall dimension 1,368,352. In this
contribution one important part of the network is taken as an example: the so
called PPP network of cumomer dimension 522 with 214 parameters.

2 Implementations of the Cascaded Systems

Several ways for implementation are proposed in this section. In the first
instance the cascade (1) is considered.

Implementation (‘s’): For a first (serial) simulation the solution of (1) is
implemented on a single processor system (AMD Athlon 1800+). The explicit
high order Runge-Kutta method DOPRI8 [5] with embedded step size control
and an accurate dense output is chosen. If the system is regarded to be stiff the
ODE solver is changed to a linear singly diagonally implicit method of order 4.
One simulation run of (1) is carried out until the stationary state of the system
is reached. DOPRI8 needs 10.43 s without and 16.59 s with an inner stage
interpolation. An absolute accuracy of 10−4 resp. 10−7 is reached which both
satisfies the accuracy requirements.
Now the sensitivity system (2) is added. There are two main methods to perform
a sensitivity analysis numerically. On the one hand the sensitivity matrices of an
ODE can be deployed analytically by integrating the variational equation (2),
where the complex derivative matrices are given explicitly. On the other hand the
derivatives of the solution in stage i can be computed by a standard differential
quotient (DQ). This has some well known obstacles: The discretization error
must be very small to meet the desired sensitivity accuracy within a given error
tolerance. Furthermore there is no accuracy control of the sensitivities. However,
this approach is very simple to implement.



596 K. Nöh and W. Wiechert

The so arising computational effort is very high and it should be shortened
by using multiple processors. All programs are tested on a cluster / SPMD
architecture with 10 dual processor PCs (1.5 GB main memory each, 1000
MBps Ethernet interface). This contribution will concentrate on parallelism
across the problem [6] because this approach seems to be the most promising one.

Functional Parallelism (‘p’): The most apparent type of functional paral-
lelism is pipelining: give each processor its own unique task and allow the data
to “flow” through the pipeline in only one direction. As one processor finishes
its calculation, it passes the solution along to the next processor and receives
another solution from the previous processor.
Clearly, this is a “natural” parallelism for both the simulation problem (1)
and the sensitivity equations (2). Each processor calculates one stage and the
time shifts between the stages are variable. A rather good speedup is expected,
because the last stage should theoretically have completed only a short time
after the first stage.

Trivial Parallelism (‘t’): This method does not involve parallelizing the code
at all, rather the sequential code is run on a number of processors in parallel,
with each processor having its own variant of the problem. The processors are
working independently and there is no communication between the processes –
except for the very end.
This method fits perfectly to the requirements of a sensitivity analysis using
differential quotients as numerical approximation. Each processor gets a slightly
varied parameter set and makes a simulation run. At the end all results are
collected and the sensitivity matrices are given by a standard differential
equation formula (DQ).

Decomposition of Sensitivity Matrices (‘d’): Instead of dividing tasks
between processors, each processor works on its own section of a dataset of
parameters. This parameter set is initially divided between the processors, the
calculations are carried out using the data, and the results are collected at the
end of the computational process. Thereby the data can be easily distributed in
such a way that the processor load is well balanced.
This seems to be the favorite method for the variational differential equation
system (2) provided the solution vector x from (1) is given. It can be imple-
mented by solving the cascade (1) additionally on each processor. Again no
communication overhead is needed until the very end.

3 First Results

Each of these methods exploits a special feature of the systems to solve and can
be combined with others. The following table shows the computational time for
reasonable combinations of the parallel approaches. For comparability the ODE
solver here is restricted to a constant step size sequence (1000 steps).



Parallel Solution of Cascaded ODE Systems 597

eqns.
(solution, sensitivity) method

(s,s) (s,t) (s,d) (p,p) (p,t) (p,d)
(1, 2) 1021.51s – 205.82s 534.88s – 1

(1, DQ) 1591.87s 279.86s – – 381.98s –
1: The implementation is currently under work.

The trivial parallelism method ’t’ gives a good speedup because it is not limited
by a permanent communication overhead. This is also the case for the decom-
position method ’d’ even though the cascade (1) has to be computed multiple
times. Generally, the expected time ranges are achieved for both methods.
Unlikely, this does not apply for the functional parallelism ’p’. Under precise con-
sideration this method has three main limits: First of all there are idle processors
at the beginning and the end of the computation. A more serious limit is the
problem of load balancing. The stages have not the same dimensions and these
differences are amplified by the sensitivities. So the processors are in general not
load balanced and this will cause a bottleneck in the pipeline. To overcome this
problem an additional level of parallel tasks has to be introduced in future ver-
sions of the code. The third limitation is given by the network communication
since the whole solution must flow through all processors.

4 Conclusions and Outlook

After the special cascaded structure of the mathematical model of a CLE is in-
troduced, possible sequential and parallel approaches are figured out. Already a
moderately sized metabolic network shows that a sequential implementation is
too slow for a repeated call by a parameter fitting procedure. Generally speak-
ing only these parallel approaches are competitive which run without too much
network communication because all benefits gained by multiple processors are
discarded through it. It would also be interesting to test the scalability of the
methods on clusters with more knots and to confirm the results for more ex-
tended networks like C. glutamicum.

References

1. Van Winden, W.: 13C-Labelling Technique for Metabolic Network and Flux Anal-
ysis. PhD. Thesis, Delft University of Technology, 2002.

2. El Massoudi M., Drysch, A., Spelthahn, J., de Graaf, A.A., Takors, R.: Production
Process Monitoring by Serial Mapping of Microbial Carbon Flux Distributions Using
a Novel Sensor Reactor Approach. Metab. Eng. 5 (2003), pp. 86–95.

3. Wiechert, W., Wurzel, M.: Metabolic isotopomer labeling systems. Part I: Global
dynamic behavior. Math. Biosciences 169 (2001), pp. 173–205.

4. Wiechert, W.: 13C Metabolic Flux Analysis. Metab. Eng. 3 (2001), pp. 195–206.
5. Hairer, E., Nørsett, S.P., Wanner G.: Solving ordinary differential equations I + II.

2nd ed., Springer, 2000 resp. 1996.
6. Burrage, K.: Parallel and Sequential Methods for Ordinary Differential Equations.

Oxford Science Publications, Clarendon Press, 1995.


	Cascaded Systems
	Implementations of the Cascaded Systems
	First Results
	Conclusions and Outlook



