Parallel Chip Firing Game Associated with n-cube Edges Orientations

René Ndoundam ${ }^{1}$, Claude Tadonki ${ }^{2}$, and Maurice Tchuente ${ }^{1}$
${ }^{1}$ University of Yaoundé I, Faculty of Science, Department of Computer Science, P.O. Box. 812 Yaoundé, Cameroon
${ }^{2}$ University of Geneva, Centre Universitaire Informatique, Departement of Theoretical Computer Science 24, rue Général Dufour, 1211 Genève 4 - Switzerland
ndoundam@uycdc.uninet.cm, claude.tadonki@cui.unige.ch

Abstract

We study the cycles generated by the chip firing game associated with n-cube orientations. We consider a particular class of partitions of vertices of n-cubes called left cyclic partitions that induce parallel periodic evolutions. Using this combinatorical model, we show that cycles generated by parallel evolutions are of even lengths from 2 to 2^{n} on $H_{n}(n \geq 1)$, and of odd lengths different from 3 and ranging from 1 to $2^{n-1}-1$ on $H_{n}(n \geq 4)$. However, the question weather there exist parallel evolutions with period greater that 2^{n} remains opened.

1 Introduction

A state in the parallel chip firing game played on a directed graph $G=(X, A)$ is a mapping $x: V \rightarrow N$ which can be viewed as a distribution of chips onto the vertices of G. In a transition of the game, a state x is transformed into a new state by activating all nodes with more chips that its out-neighbors. The evolution is ultimately periodic because the total number of chips remains constant. More precisely, if $x^{t}, t \geq 0$, denotes the state of the system at time t, then there exists an integer q called transient length and another integer p called period or cycle length such that

$$
\begin{equation*}
x^{t+p}=x^{t} \text { for } t \geq q, \text { and } x^{t+p^{\prime}} \neq x^{t} \text { for } p^{\prime}<p . \tag{1}
\end{equation*}
$$

In this paper, we investigate the dynamics generated by the chip firing game associated with n-cube orientations and we provide a model to study possible periods generated in this particular case.

2 Recurrent Construction of Parallel Cycles

Definition 1. A partition $S_{0} \cup S_{1} \cup \ldots \cup S_{k-1}$ of the vertices of an n-cube is called a left cyclic partition if the two following statements hold.

- For all i from 0 to $k-1$, every vertex of S_{i} has a neighbor in S_{i-1}, where index operations are performed modulo k.
- For all i from 0 to $k-1$, there is no edge between two vertices of S_{i}.

The model of left cyclic partition clearly gives a characteristic of parallel evolutions with unique firing within a cycle. In this paper, we investigate on possible configurations. We first present the construction of left cyclic partitions of even lengths.

Lemma 1. An n-cube admits left cyclic partitions of all even lengths from 2 to 2^{n}.

Proof. Let $H_{n}=(V, E)$ be an n-cube an let p be an even integer between 2 and 2^{n}. It is well known that, since p is even, there is a cycle $\left[x_{0}, x_{1}, \ldots, x_{p-1}, x_{0}\right]$ of length p in H_{n}. Now, for every vertex u, let $\Gamma(u)$ denote the set of all neighbors of u in H_{n}. This notation is naturally extended to a set of vertices. A left cyclic partition of order p is obtained as follows.

```
For \(i=0, \ldots, p-1\) do
    \(S_{i} \leftarrow\left\{x_{i}\right\}\)
endfor
\(S=V-\left\{x_{0}, x_{1}, \ldots x_{p-1}\right\}\)
while \((S \neq \emptyset)\) do
    For \(i \leftarrow 0\) to \(p-1\) do
        \(S_{i+1} \leftarrow S_{i+1} \cup\left(\Gamma\left(S_{i}\right) \cap S\right)\)
        \(S \leftarrow S-\left(\Gamma\left(S_{i}\right) \cap S\right)\)
        endfor
endwhile
```

It is obvious that S_{0}, \ldots, S_{p-1} is a partition of V and that every vertex in S_{i} has at least one neighbor in S_{i-1}. So we just need to show that two vertices of the same subset S_{i} cannot be neighbors. Let a and b be two vertices of S_{i}.

- There is a path from a to x_{0} of length ℓ_{1} such that $\ell_{1}=i \bmod p$,
- There is a path from b to x_{0} of length ℓ_{2} such that $\ell_{2}=i \bmod p$, Since p is even, it follows that $\ell_{1}=\ell_{2} \bmod 2$. Hence, if a and b were neighbors, there would exist a cyclic path of odd length $\ell_{1}+\ell_{2}+1$ joining a and b in H_{n}, which is not possible since H_{n} is a bipartite graph. This shows that two vertices of the same subset cannot be neighbors.

We now turn to the construction of left cyclic partitions of odd lengths.
Lemma 2. If S_{0}, S_{1}, S_{2} is a left cyclic partition of $H_{n}, n \geq 2$, then every vertex of S_{i} has at least two neighbors in S_{i-1} for $i=0,1,2$.

Proof. Because of symmetry considerations, we can assume that $i=2$. So let x be a vertex of S_{2}. From the definition of left cyclic partitions,

- x has a neighbor $x \oplus e_{j}$ in S_{1}, where \oplus is the XOR operator and e_{j} is a vector of the canonical basis.
- similarly, $x \oplus e_{j}$ has a neighbor $x \oplus e_{j} \oplus e_{k}$ in S_{0}.

Now consider the vertex $x \oplus e_{k}$.

- It is a neighbor of x, hence it does not belong to S_{2}.
- It is a neighbor of $x \oplus e_{j} \oplus e_{k}$, hence it does not belong to S_{0}.

It then follows that $x \oplus e_{k}$ belongs to S_{1}, hence x admits two neighbors $x \oplus e_{j}$ and $x \oplus e_{k}$ which are both in S_{1}.

Lemma 3. If $H_{n}, n \geq 3$ admits a left cyclic partition of order 3 , then H_{n-1} admits a left cyclic partition of order 3.

Proof. Obvious.
Proposition 1. n-cubes do not admit left cyclic partitions of order 3.
Proof. From lemma 2, if a hypercube H admits a left-cyclic partition of order 3, then $|H| \geq 6$, which is not the case for H_{2}. By application of lemma 3, we deduce that no n-cube, $n \geq 3$ admits a left cyclic partition of order 3 .

Proposition 2. If S_{0}, \ldots, S_{p-1} is a left cyclic partition of odd order p of H_{n}, then $p \leq 2^{n-1}-1$.

Proof. We just have to show that in such a case, $\left|S_{i}\right| \geq 2$ for $i=0, \ldots, p-1$. Indeed, starting from a vertex $a_{p-1} \in S_{p-1}$, we construct a chain $\left[a_{p-1}, a_{p-2}, \ldots\right.$, $\left.a_{0}, b_{p-1}, b_{p-2}, \ldots, b_{0}\right]$ such that $a_{i}, b_{i} \in S_{i}$ for $i=0, \ldots, p-1$. It is clear that $a_{i} \neq b_{i}, i=0, \ldots, p-1$, otherwise we would have displayed a closed path of odd length in H_{n} which is not possible.

Lemma 4. If H_{n} admits a left cyclic partition of order p, then H_{n+1} admits left cyclic partition of order p.

Proof. If S_{0}, \ldots, S_{p-1} is a left cyclic partition of order p in H_{n}, then $1 S_{i} \cup$ $0 S_{i-1}, i=0, \ldots, p-1$ is a also left cyclic partition of order p in H_{n+1}.

Lemma 5. If H_{n} admits a left cyclic partition of odd order $p, p \geq 5$ then H_{n+1} admits a left cyclic partition of order $2 p-1$. Moreover, if $p \geq 7$, then H_{n+1} admits a left cyclic partition of order $2 p-3$.

Proof. Let $S_{0}, S_{1}, \ldots, S_{p-1}$ be a left cyclic partition of odd order p.

- Case $p \geq 5$

The following sequence is a left cyclic partition of order $2 p-1$ in H_{n+1}.
$0 S_{0}, 1 S_{0} \cup 0 S_{1}, 1 S_{1}, 1 S_{2}, 0 S_{2}, 0 S_{3}, 1 S_{3} \ldots, 1 S_{2 i}, 0 S_{2 i}, 0 S_{2 i+1}, 1 S_{2 i+1}, \ldots, 1 S_{p-3}$, $0 S_{p-3}, 0 S_{p-2}, 1 S_{p-2}, 1 S_{p-1}, 0 S_{p-1}$.

- Case $p \geq 7$

A left cyclic partition of order $2 p-3$ in H_{n+1} is obtained from the left cyclic partition exhibited in the case $p \geq 5$ by replacing the subsequence $1 S_{2}, 0 S_{2}, 0 S_{3}$, $1 S_{3}, 1 S_{4}, 0 S_{4}, 0 S_{5}, 1 S_{5}$ by $1 S_{2}, 0 S_{2} \cup 1 S_{3}, 0 S_{3}, 0 S_{4}, 1 S_{4} \cup 0 S_{5}, 1 S_{5}$.

Lemma 6. H_{4} admits left cyclic partitions of orders 5 and 7.
Proof.

- A left cyclic partition of order 5 in H_{4} is the following :
$\{0000,1101\},\{0001,1100,0010,1111\},\{0110,1011\},\{0100,0111,1001,1010\}$, $\{0011,0101,1000,1110\}$.
- A left cyclic partition of order 7 in H_{4} is the following :
$\{0000,1101\},\{0001,1100\},\{0011,1110\},\{0010,1111\},\{0110,1011\}$, $\{0100,0111,1001,1010\},\{0101,1000\}$.

Lemma 7. $H_{n}, n \geq 4$, admits a left cyclic partition of order $2^{n-1}-1$.
Proof. Consider the sequence $\left\{u_{i} ; 0 \leq i \leq 2^{n-1}-1\right\}$, defined by $u_{i}=\operatorname{bin}(i) \oplus$ $\operatorname{bin}(i / 2)$, where $\operatorname{bin}(x)$ is the n-position binary representation of the integer x, and symbol / denotes integer division. It can be easilly checked that this sequence corresponds to a hamiltonian cycle in H_{n-1}. Now, let us denote $v_{i}=u_{i} \oplus 1 \oplus 2^{n-2}$ (i.e. v_{i} is obtained from u_{i} by changing the first and last bits) and $N=2^{n}$. It is also easy to check that $\left\{v_{i} ; 0 \leq i \leq 2^{n-1}-1\right\}$ is a hamiltonian cycle of H_{n-1}. Now, observe that $0 u_{i} \oplus 1 v_{i}=2^{n-1} \oplus\left(u_{i} \oplus v_{i}\right)=2^{n-1} \oplus 1 \oplus 2^{n-2}$. Hence, $0 u_{i}$ and $1 v_{i}$ are not neighbors in the hypercube H_{n}. On the other hand, $u_{N-4}=100 \ldots 010$, $u_{N-2}=10 \ldots 01, u_{N-1}=10 \ldots 0$ and $v_{0}=u_{0} \oplus 1 \oplus 2^{n-2}=10 \ldots 01=u_{N-2}$. Hence, $0 u_{N-4}, 0 u_{N-1}, 0 u_{N-2}, 1 v_{0}$ is a chain of H_{n}. Moreover, $v_{N-4}=0 \ldots 011$, $v_{N-2}=0 \ldots 0=u_{0}$ and $v_{N-1}=0 \ldots 01=u_{1}$. Hence $1 v_{N-4}, 1 v_{N-1}, 1 v_{N-2}, 0 u_{0}$ is a chain of H_{n}. Hence, by considering the two chains and the two previous hamiltonian cycles, we see that the partition $\left\{0 u_{0}, 1 v_{0}\right\},\left\{0 u_{N-4}, 1 v_{N-4}\right\}$, $\left\{0 u_{N-3}, 0 u_{N-1}, 1 v_{N-3}, 1 v_{N-1}\right\},\left\{0 u_{N-2}, 1 v_{N-2}\right\}$ is a left cyclic partition.

Proposition 3. $H_{n}, n \geq 4$, admits left cyclic partitions of all odd orders from 5 to $2^{n-1}-1$.

Proof. We proceed by induction. For $n=4$ the result follows from lemma 6 .
Assuming that the result holds for $n \geq 4$, let us consider an ($n+1$)-cube together with an odd integer $p \in\left[5,2^{n}-1\right]$.

- Case $1: 5 \leq p \leq 2^{n-1}-1$. The result follows from the induction hypothesis and lemma 4 .
- Case 2 : $2^{n-1}-1<p<2^{n}-1$. There is an odd integer $q, 7<q<2^{n-1}-1$, such that $p=2 q-1$ or $p=2 q-3$. The result follows from the induction hypothesis and lemma 5
- Case $3: p=2^{n}-1$. The result follows from lemma 7

Theorem 1. The cycles generated by the parallel chip firing game associated with n-cube orientations, $n \geq 4$, are of even lengths from 2 to 2^{n}, and of odd lengths different from 3 and ranging from 1 to $2^{n-1}-1$.

3 Conclusion

In this paper, we have given, in the particular case of parallel evolutions, a range of possible periods which can be generated by the chip firing game associated with n-cube orientations. The question of the existence of cycles with length greater than 2^{n} remains to be clarified. We suggest, for the case of n-cubes, to consider a recurrent approach based on the sub-evolutions induced in every face of the n-cube by a block sequential evolution.

References

1. M. A. Kiwi, R. Ndoundam, M. Tchuente and E. Goles No polynomial bound for the period of the parallel chip firing game on graphs, Theoretical Computer Science, 136, pp. 527-532, 1994.
