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Abstract. We study the cycles generated by the chip firing game asso-
ciated with n-cube orientations. We consider a particular class of parti-
tions of vertices of n-cubes called left cyclic partitions that induce parallel
periodic evolutions. Using this combinatorical model, we show that cy-
cles generated by parallel evolutions are of even lengths from 2 to 2n

on Hn (n ≥ 1), and of odd lengths different from 3 and ranging from
1 to 2n−1−1 on Hn (n ≥ 4). However, the question weather there exist
parallel evolutions with period greater that 2n remains opened.

1 Introduction

A state in the parallel chip firing game played on a directed graph G = (X, A)
is a mapping x : V → N which can be viewed as a distribution of chips onto the
vertices of G. In a transition of the game, a state x is transformed into a new state
by activating all nodes with more chips that its out-neighbors. The evolution is
ultimately periodic because the total number of chips remains constant. More
precisely, if xt, t ≥ 0, denotes the state of the system at time t, then there exists
an integer q called transient length and another integer p called period or cycle
length such that

xt+p = xt for t ≥ q, and xt+p′ �= xt for p′ < p. (1)

In this paper, we investigate the dynamics generated by the chip firing game
associated with n-cube orientations and we provide a model to study possible
periods generated in this particular case.

2 Recurrent Construction of Parallel Cycles

Definition 1. A partition S0 ∪ S1 ∪ ... ∪ Sk−1 of the vertices of an n-cube is
called a left cyclic partition if the two following statements hold.
• For all i from 0 to k−1, every vertex of Si has a neighbor in Si−1, where

index operations are performed modulo k.
• For all i from 0 to k−1, there is no edge between two vertices of Si.
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The model of left cyclic partition clearly gives a characteristic of parallel evolu-
tions with unique firing within a cycle. In this paper, we investigate on possible
configurations. We first present the construction of left cyclic partitions of even
lengths.

Lemma 1. An n-cube admits left cyclic partitions of all even lengths from 2 to
2n.

Proof. Let Hn = (V, E) be an n-cube an let p be an even integer between 2 and
2n. It is well known that, since p is even, there is a cycle [x0, x1, ..., xp−1, x0] of
length p in Hn. Now, for every vertex u, let Γ (u) denote the set of all neighbors
of u in Hn. This notation is naturally extended to a set of vertices. A left cyclic
partition of order p is obtained as follows.

For i = 0, ..., p− 1 do
Si ← {xi}

endfor
S = V − {x0, x1, ...xp−1}
while (S �= ∅) do
For i← 0 to p− 1 do

Si+1 ← Si+1 ∪ (Γ (Si) ∩ S)
S ← S − (Γ (Si) ∩ S)

endfor
endwhile

It is obvious that S0, ..., Sp−1 is a partition of V and that every vertex in Si

has at least one neighbor in Si−1. So we just need to show that two vertices of
the same subset Si cannot be neighbors. Let a and b be two vertices of Si.
• There is a path from a to x0 of length �1 such that �1 = i mod p,
• There is a path from b to x0 of length �2 such that �2 = i mod p,

Since p is even, it follows that �1 = �2 mod 2. Hence, if a and b were neighbors,
there would exist a cyclic path of odd length �1 + �2 + 1 joining a and b in Hn,
which is not possible since Hn is a bipartite graph. This shows that two vertices
of the same subset cannot be neighbors.

We now turn to the construction of left cyclic partitions of odd lengths.

Lemma 2. If S0, S1, S2 is a left cyclic partition of Hn, n ≥ 2, then every vertex
of Si has at least two neighbors in Si−1 for i = 0, 1, 2.

Proof. Because of symmetry considerations, we can assume that i = 2. So let x
be a vertex of S2. From the definition of left cyclic partitions,
• x has a neighbor x⊕ ej in S1, where ⊕ is the xor operator and ej is a

vector of the canonical basis.
• similarly, x⊕ ej has a neighbor x⊕ ej ⊕ ek in S0.

Now consider the vertex x⊕ ek.
• It is a neighbor of x, hence it does not belong to S2.
• It is a neighbor of x⊕ ej ⊕ ek, hence it does not belong to S0.

It then follows that x ⊕ ek belongs to S1, hence x admits two neighbors x ⊕ ej

and x⊕ ek which are both in S1.
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Lemma 3. If Hn, n ≥ 3 admits a left cyclic partition of order 3, then Hn−1
admits a left cyclic partition of order 3.

Proof. Obvious.

Proposition 1. n-cubes do not admit left cyclic partitions of order 3.

Proof. From lemma 2, if a hypercube H admits a left-cyclic partition of order
3, then |H| ≥ 6, which is not the case for H2. By application of lemma 3, we
deduce that no n-cube, n ≥ 3 admits a left cyclic partition of order 3.

Proposition 2. If S0, ..., Sp−1 is a left cyclic partition of odd order p of Hn,
then p ≤ 2n−1 − 1.

Proof. We just have to show that in such a case, |Si| ≥ 2 for i = 0, ..., p − 1.
Indeed, starting from a vertex ap−1 ∈ Sp−1, we construct a chain [ap−1,ap−2,...
, a0, bp−1, bp−2, ..., b0] such that ai, bi ∈ Si for i = 0, ..., p−1. It is clear that
ai �= bi, i = 0, ..., p− 1, otherwise we would have displayed a closed path of odd
length in Hn which is not possible.

Lemma 4. If Hn admits a left cyclic partition of order p, then Hn+1 admits
left cyclic partition of order p.

Proof. If S0, ..., Sp−1 is a left cyclic partition of order p in Hn, then 1Si ∪
0Si−1, i = 0, ..., p− 1 is a also left cyclic partition of order p in Hn+1.

Lemma 5. If Hn admits a left cyclic partition of odd order p, p ≥ 5 then Hn+1
admits a left cyclic partition of order 2p − 1. Moreover, if p ≥ 7, then Hn+1
admits a left cyclic partition of order 2p− 3.

Proof. Let S0, S1, ..., Sp−1 be a left cyclic partition of odd order p.
• Case p ≥ 5

The following sequence is a left cyclic partition of order 2p−1 in Hn+1.
0S0, 1S0 ∪ 0S1, 1S1, 1S2, 0S2, 0S3, 1S3 ..., 1S2i, 0S2i, 0S2i+1, 1S2i+1,..., 1Sp−3,
0Sp−3, 0Sp−2, 1Sp−2, 1Sp−1, 0Sp−1.
• Case p ≥ 7

A left cyclic partition of order 2p−3 in Hn+1 is obtained from the left cyclic
partition exhibited in the case p ≥ 5 by replacing the subsequence 1S2, 0S2, 0S3,
1S3, 1S4, 0S4, 0S5, 1S5 by 1S2, 0S2 ∪ 1S3, 0S3, 0S4, 1S4 ∪ 0S5, 1S5.

Lemma 6. H4 admits left cyclic partitions of orders 5 and 7.

Proof.
• A left cyclic partition of order 5 in H4 is the following :
{0000, 1101}, {0001, 1100, 0010, 1111}, {0110, 1011}, {0100, 0111, 1001, 1010},
{0011, 0101, 1000, 1110}.
• A left cyclic partition of order 7 in H4 is the following :
{0000, 1101}, {0001, 1100}, {0011, 1110}, {0010, 1111}, {0110, 1011},
{0100, 0111, 1001, 1010}, {0101, 1000}.
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Lemma 7. Hn, n ≥ 4, admits a left cyclic partition of order 2n−1 − 1.

Proof. Consider the sequence {ui; 0 ≤ i ≤ 2n−1−1}, defined by ui = bin(i) ⊕
bin(i/2), where bin(x) is the n-position binary representation of the integer x,
and symbol / denotes integer division. It can be easilly checked that this sequence
corresponds to a hamiltonian cycle in Hn−1. Now, let us denote vi = ui⊕1⊕2n−2

(i.e. vi is obtained from ui by changing the first and last bits) and N = 2n. It is
also easy to check that {vi; 0 ≤ i ≤ 2n−1−1} is a hamiltonian cycle of Hn−1.Now,
observe that 0ui⊕ 1vi = 2n−1⊕ (ui⊕ vi) = 2n−1⊕ 1⊕ 2n−2. Hence, 0ui and 1vi

are not neighbors in the hypercube Hn . On the other hand, uN−4 = 100...010,
uN−2 = 10...01, uN−1 = 10...0 and v0 = u0 ⊕ 1 ⊕ 2n−2 = 10...01 = uN−2.
Hence, 0uN−4, 0uN−1, 0uN−2, 1v0 is a chain of Hn. Moreover, vN−4 = 0...011,
vN−2 = 0...0 = u0 and vN−1 = 0...01 = u1. Hence 1vN−4, 1vN−1, 1vN−2, 0u0
is a chain of Hn. Hence, by considering the two chains and the two previ-
ous hamiltonian cycles, we see that the partition {0u0, 1v0}, {0uN−4, 1vN−4},
{0uN−3, 0uN−1, 1vN−3, 1vN−1}, {0uN−2, 1vN−2} is a left cyclic partition.

Proposition 3. Hn, n ≥ 4, admits left cyclic partitions of all odd orders from
5 to 2n−1 − 1.

Proof. We proceed by induction. For n = 4 the result follows from lemma 6.
Assuming that the result holds for n ≥ 4, let us consider an (n+1)-cube together
with an odd integer p ∈ [5, 2n − 1].
• Case 1 : 5 ≤ p ≤ 2n−1−1. The result follows from the induction hypothesis

and lemma 4.
• Case 2 : 2n−1−1 < p < 2n−1. There is an odd integer q, 7 < q < 2n−1−1,

such that p = 2q − 1 or p = 2q − 3. The result follows from the induction
hypothesis and lemma 5.
• Case 3 : p = 2n − 1. The result follows from lemma 7.

Theorem 1. The cycles generated by the parallel chip firing game associated
with n-cube orientations, n ≥ 4, are of even lengths from 2 to 2n, and of odd
lengths different from 3 and ranging from 1 to 2n−1−1.

3 Conclusion

In this paper, we have given, in the particular case of parallel evolutions, a range
of possible periods which can be generated by the chip firing game associated
with n-cube orientations. The question of the existence of cycles with length
greater than 2n remains to be clarified. We suggest, for the case of n-cubes, to
consider a recurrent approach based on the sub-evolutions induced in every face
of the n-cube by a block sequential evolution.
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