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Abstract. Stress recognition from facial image sequences is a subject that has 
not received much attention although it is an important problem for a host of 
applications such as security and human-computer interaction. This class of 
problems and the related software are instances of Dynamic Data Driven 
Application Systems (DDDAS). This paper presents a method to detect stress 
from dynamic facial image sequences. The image sequences consist of people 
subjected to various psychological tests that induce high and low stress 
situations. We use a model-based tracking system to obtain the deformations of 
different parts of the face (eyebrows, lips, mouth) in a parameterized form. We 
train a Hidden Markov Model system using these parameters for stressed and 
unstressed situations and use this trained system to do recognition of high and 
low stress situations for an unlabelled video sequence. Hidden Markov Models 
(HMMs) are an effective tool to model the temporal dependence of the facial 
movements. The main contribution of this paper is a novel method of stress 
detection from image sequences of a person’s face.  

1   Introduction 

Stress detection of humans has been a well researched topic in the area of speech 
signal processing [Steeneken, Hansen 99], while very little attention has been paid to 
recognizing stress from faces. Recognizing stress from faces could complement 
speech-based techniques and also help in understanding recognition of emotions. The 
challenges in this domain is that the data from each person are continuous and 
dynamic and each person expresses stress differently. Therefore the recognition of 
stress and the associated development of the necessary software is a DDDAS. In the 
next two sections we illustrate the data collection procedure and the algorithms that 
will be used for training/recognition. 

1.1   Overview of the System 

The data used for our experiments were obtained from a psychological study at the 
University of Pennsylvania. The subjects of the study were put through a battery of 
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tests that induce high and low stress situations. The subjects were videotaped as they 
took the tests. 

A generic model of the face is fitted to the subjects’ face and the tracking system is 
run on the face image sequence with this initial fit of the model in the first frame. The 
tracking system does a statistical cue integration from computer vision primitives 
such as edges, point trackers and optical flow. The face model incorporates some 
parametric deformations that give jaw, eyebrow and basic lip movements. The face 
tracker gives values for these parametric deformations as a result of the tracking. 
These are the parameters we will use to learn the movements that correspond to 
different stress situations. The learning methods will be trained on these parameters 
and the parameters of a sequence from an unknown stress situation are tested against 
the learned system to classify a given sequence as a high or low stress condition.  

1.2   Learning and Recognition 

We will evaluate different learning approaches to train the system for low and high 
stress conditions. The tracking result will give us parameters which account for the 
rigid transformations between the face movements and also deformations of the 
mouth, eyebrow etc. for stress conditions. The recognition will be done using Hidden 
Markov Models (HMMs). HMMs were chosen since they have been used to model 
temporal dependence very effectively in American Sign Language (ASL) recognition. 
Also, we will use the boosting approach to enhance the learning methods and avoid 
overfitting. 

2   Deformable Model Tracking 

2.1   Deformable Models 

The face tracking system uses a face model that deforms according to movement of a 
given subject’s face. So the shape, position and orientation of the model surface can 
change. These changes are controlled by a set of n parameters q. For every point i on 
the surface of the model, there is a function Fi that takes the deformation parameters 
and finds 

( )
ii

p F= q  (1) 

where pi is the position of the point in the world frame [Metaxas 97].  
In addition, computer vision applications, such as deformable model tracking, 

require the first order derivatives, so we restrict Fi to the class of functions for which 
the first order derivative exists everywhere with respect to q. This derivative is the 
Jacobian Ji, where 
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Each column of the Jacobian Ji is the gradient of pi with respect to the parameter ql.  

2.2   Fitting and Tracking 

In principle, there exists a clean and straightforward approach to track deformable 
model parameters across image sequences. Low-level computer vision algorithms 
generate desired 2D displacements on selected points on the model, that is differences 
between where the points are currently according to the deformable model and where 
they should be according to measurements from the image. These displacements, also 
called ‘image forces’, are then converted to n-dimensional displacement fg in the 
parameter space, called the generalized force and used as a force in the first-order 
massless Lagrangian system : 
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.

qq f F ernalg
+=  (3) 

where Finternal (q) is the result of internal forces of the model (i.e. elasticity of the 
model, preset). We integrate this system with the classical Euler integration 
procedure, which eventually yields a fixed point, where fg = 0. This fixed point 
corresponds to the desired new position of the model.  

In order to use the system of (1), we have to accumulate all the 2D image forces 
from the computer vision algorithms into fg. First, we convert each image force fi on a 
point pi into a generalized force fgi in parameter space, which describes the effect that 
single displacement at point pi has on all the parameters. Obtaining a generalized 
force fg then simply consists of summing up all fgi. : 

∑=
i

gig ff  where ∑=
i

i

T
igi ff B  (4) 

and  

i pi ip

∂=
∂
Proj

JB  (5) 

Bi is the projection of the Jacobian Ji from world coordinates to image coordinates via 
the projection matrix Proj at point pi.  

Generating the generalized force this way works fine as long as all the image 
forces come from the same cue (diff. algorithms on the same image). When there are 
multiple cues from multiple vision algorithms, combining the cues becomes a hard 
problem. In order to effectively combine them statistically we will need to know the 



816         D. Metaxas, S. Venkataraman, and C. Vogler 

 

distributions of the individual cues ahead of time, but it is hard to estimate these 
distributions beforehand. 

We choose the framework of affine regions [Goldenstein et al. 2001, 2003] to 
estimate the distributions of the cues within small regions and apply the equivalent of 
the central limit theorem to these affine regions to make a Gaussian approximation. 
Then we use maximum likelihood estimation to get the final generalized force. 

The face model itself was made from a publicly available geometric model of the 
head, available from the University of Washington as part of [Pighin et al.99]. A face 
mask was cut out of this original model and we obtained a static model with 1,100 
nodes and 2000 faces. Then, parameters and associated regions are defined for the 
raising and lowering of eyebrows, for the smiling and stretching of the mouth, for the 
opening of the jaw as well as the rigid transformation parameters for the model frame.  

2.3   Improvements of the Face Model 

In this version of the system we have added asymmetric deformations for the 
eyebrows and the mouth region i.e. the left and right eyebrows, the left and right ends 
of the lips of the mouth are no longer tied together. This is essential since one of the 
major indicators of stress is asymmetric lip and eyebrow movements and the original 
framework did not support that.  

The deformation parameters all put together form about 14 parameters. The 
tracking results from a particular video sequence will give us these 14 parameters for 
the model for each time instance. We perform these tracking experiments on various 
subjects and use the parameters we obtain to train the HMMs. 

 

  

Fig. 1. Left eyebrow movement in the model and right eyebrow movement in the model 

  

Fig. 2. Left and right Risorius movement in the model 
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Fig. 3. Left and right lip stretching in the model 

3   Stress Recognition 

The computational detection of a human undergoing a stress reaction can be broken 
up into two stages. The first stage consists of recognizing the possible individual 
displays of stress response in the human face such as eye movements and blinking, 
various negative facial expressions. The second stage consists of accumulating the 
information collected in the first stage and deciding whether these displays occur 
frequently enough to classify as a stress response. 

From an abstract point of view, the first stage corresponds to the task of detecting 
specific patterns in a time-varying data signal. Depending on the specific task and the 
pattern that we are looking for, the signal often simply consists of the deformable 
model parameter vectors that we estimate during the face tracking process. For 
instance, in order to detect rapid head movements, we are interested in the rigid body 
component of the parameter vector. The orientation, position, and derivatives thereof 
contain all the necessary information for this particular pattern. Likewise, in order to 
detect specific negative facial expressions, we are interested in the nonrigid 
deformation component of the parameter vector, which controls the eyebrow and 
mouth movements, and nearby regions. 

Eye blinking is slightly more complicated to handle, because the deformable model 
does not contain any parameters that control it directly. However, the output of the 
tracking algorithm does contain information on the location of the eyes in the human 
face at any given point in time. The eyes themselves are represented as holes in the 
deformable model, delimited by the region that is formed by a set of nodes. Because 
from the deformable model parameters the position of these nodes can be deduced, it 
is possible to project their positions into image space, and thus find out which region 
in the video frame corresponds to the eyes. We then use a grayscale level averaging 
method on the region in the video frame to determine the degree, to which the eyes 
are opened or closed - uniform grayscale levels indicate that the eyelids are covering 
the irises, whereas more diverse grayscale levels indicate that the irises are visible. 
Just like the model parameters, the degree of openness of the eyes can thus be 
quantified in a few numbers, which is important for the subsequent training of the 
recognition algorithm. 

Detecting stress patterns in a time-varying signal is very similar to other well-
known activity recognition tasks, such as gesture recognition, and sign language 
recognition. For these tasks, hidden Markov models (HMMs) have been shown to be 
highly suitable, for several reasons: First, the HMM recognition algorithm (Viterbi 
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decoding) is able to segment the data signal into its constituent components implicitly, 
so it is not necessary to concern ourselves with the often extremely difficult problem 
of segmenting a data signal explicitly. Second, the state-based nature of HMMs is a 
natural match for the task of recognizing signals over a period of time. Third, the 
statistical nature of HMMs makes them ideal for recognizing tasks that exhibit an 
inherent degree of variation; for example, due to motor limitations, humans generally 
do not perform the same movement twice in exactly the same way, even if they intend 
to. To make HMM-based recognition of potentially stress-related displays work, we 
first train the HMMs on hand-labeled examples of such displays. The labeled 
examples include information on the starting and ending frame of the display, as well 
as the class into which it belongs: a specific type of negative facial expression, rapid 
head movement, eye blinking, and so on. Then, during the recognition phase, the 
HMM algorithm detects from the tracking data which ones of these types of displays 
occur in the video, and when; that is, at which frames. 

4   Hidden Markov Models 

4.1   Background 

Hidden Markov Models (HMMs) have been a very effective tool in capturing 
temporal dependencies in data and fitting them to models. They have been applied 
very effectively to the problem of American Sign Language (ASL) recognition and to 
speech recognition in particular with reasonable commercial success. 

Hidden Markov models are a type of statistical model embedded in a Bayesian 
framework. In their simplest form, an HMM λ consists of a set of N states S1, S2, …SN. 
At regularly spaced discrete time intervals, the system transitions from state Si to Sj 
with probability aij. The probability of the system initially starting in state Si is ∏i. 

Each state Si generates output O ∈Ω, which is distributed according to a probability 
distribution function bi(O) =P{Output is O |System is in Si}. In most recognition 
applications bi(O) is actually a mixture of Gaussian densities. 

In most applications, the HMMs correspond to specific instances of a situation (in 
our case, different high stress situations). Then the recognition problem is reduced to 
find the most likely state sequence through the network. So we would like to find a 
state sequence Q = Q1,….,QT over an output sequence O = O1,…..,OT of T frames, such 
that P(Q,O|λ) is maximized. So we have 
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The Viterbi algorithm computes this state sequence in O(N2T) time, where N is the 
number of states in the HMM network. The Viterbi algorithm implicitly segments the 
observation into parts as it computes the path through the network of HMMs. 

A more detailed introduction and description of algorithms and inference in HMMs 
is described in [Rabiner 89]. 

5   Experiments and Results 

The data for the experiments were collected at the University of Pennsylvania NSBRI 
center. The subjects of the experiment were put through the neurobehavioral test 
battery (NTB), while being videotaped. The NTB tests consist of two sessions. 
Session I : The subjects perform the ‘Stroop word-color inference task (Stroop). This 
requires the subject to filter out meaningful linguistic information whereby subjects 
must respond with the printed color name rather than the ink color name. During the 
task it is difficult to ignore these conflicting cues and automatic expectations that are 
associated with impulse control. The Psychomotor Vigilance Task (PVT) is a simple, 
high-signal-load reaction time test designed to evaluate the ability to sustain attention 
and respond in a timely manner to salient signals [Dinges 85]. The probed recall 
memory (PRM) test controls report bias and evaluates free working memory [Dinges 
93]. Descending subtraction task (DST) requires the subject to perform serial 
subtractions of varying degrees of difficulty. Visual motor task (VMT) requires 
subjects to remember and replicate positions of a continually increasing sequence of 
flashing blocks and Digit symbol substitution task (DSST) assesses cognitive speed 
and accuracy trade-offs.  

Session II : Serial addition subtraction task (SAST) assesses cognitive throughput 
(speed and accuracy trade-offs),. Synthetic workload (SYNW) task is a multi-
cognitive task comprising four tasks completed simultaneously on a split screen, 
including probed memory, visual monitoring and simple auditory reaction time. Meter 
reading task (MRT) is a numerical memory and recall task; Working memory task 
(WMT) requires the subjects to determine whether the target stimulus is the same or 
different from a previously displayed cue stimulus; Logical reasoning task (LRT) 
involves attention resources, decision-making and response selection; Haylings 
sentence completion task (HSC) involves subjects completing a sentence with a single 
word that is either congruous or incongruous with the overall meaning of the 
sentence.  

The Stroop, HSC and DST are verbal tasks, while PVT, PRM, VMT, SAST, 
SYNW, MRT, WMT, LRT and DSST are non-verbal tasks, requiring computer inputs 
as responses.  

Workload demands are initially low, and increase across the performance bout, so 
that in the second half subjects are performing under high workload demand, designed 
to induce high behavioral distress. Periodically throughout the test bout, onscreen 
feedback is provided. During the low workload periods, this feedback is positive. As 
the workload demands increase, the feedback is negative. The feedback is identical 
for all subjects, and is independent of performance levels. Additionally, during the 
high workload portions of the test bout, uncontrolled and unexpected “computer 
failures” occur that are experimenter generated. The obtained video sequences were 
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classified into high and low stress conditions and blind video sequences on which 
testing needs to be done. 

The following figures show examples of high and low stress situations from the 
tests. The images are normalized i.e. the inverse of the rigid transformations inferred 
from the deformable model tracking are applied to the face model to produce a frontal 
face with the image from the video sequence texture mapped onto this model. 

From the sequences that were analyzed, we found that some of the major indicators 
of high stress were eyebrow movements, asymmetric lip deformations and baring of 
teeth. The tracking results from such sequences were used as input to the HMM 
learner. 

The experiments were conducted on 25 datasets in all with approximately one half 
of the data being high stress sequences and the other half low stress sequences.  

We used two ergodic HMMs one for low and one for high stress conditions. The 
feature vector we used for training the HMMs were the face asymmetries (difference 
between the left and right eyebrows, Risorius and lip stretching deformation 
parameters. The training and testing was independent of the subjects who were part of 
the experiment.  

Recognition was performed with different amounts of data splits. A 75% - 25% 
data split between training and test data respectively gave us results where all the 6 
datasets in the test sets were correctly identified as low/high stress conditions. A 50% 
- 50% split between the training and test data sets gave us results where 12 out of the 
13 samples were correctly identified as low/high stress conditions.  

   

Fig. 4. (a) Low stress condition, (b) high stress condition (asymmetric lip deformation), and (c) 
high stress condition (baring of teeth) 

  

Fig. 5. Asymmetry in lips (indicator of high stress) and baring of teeth (indicator of high stress) 
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6   Conclusions 

In this paper we have presented a DDDAS for the recognition of stress from facial 
expressions. Our method is based on the use of deformable models and HMMs that 
can deal with the dynamically varying data and variances in the expression of stress 
among people. 
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