
Design and Implementation of GPDS�

Tae-Dong Lee, Seung-Hun Yoo, and Chang-Sung Jeong��

Department of Electronics Engineering Graduate School,Korea University
{lyadlove,friendyu}@snoopy.korea.ac.kr, csjeong@charlie.korea.ac.kr

Abstract. In this paper, we describes the design and implementation
of Grid-based Parallel and Distributed Simulation environment(GPDS).
GPDS not only addresses the problems that it is difficult for parallel and
distributed application to achieve its expected performance, because of
some obstacles such as deficient computing powers, weakness in fault
and security problem, but also supports scalability using Grid technolo-
gies. GPDS supports a 3-tier architecture which consists of clients at
front end, interaction servers at the middle, and a network of comput-
ing resources at back-end including DataBase, which provides three ser-
vices: Automatic Distribution Service, Dynamic Migration Service and
Security Service, designed by UML-based diagrams such like class dia-
gram and interaction diagram. The GPDS has been implemented as Grid
Agent(GA) and Simulation Agent(SA) using C++. The object-oriented
design and implementation of GA and SA in GPDS provides users with
modification, extensibility, flexibility through abstraction, encapsulation
and inheritance.

1 Introduction

Parallel and distributed simulation (PADS) is concerned with issues introduced
by distributing the execution of a discrete event simulation program over multiple
computers. In paper [1], we described the problems with PADS of performance
and deficient computing power, weak in fault and security problem. for solving
these problems, the paper suggested the three services: Automatic Distribution
Service, Dynamic Migration Service, and Security Service. The three services
provide both the supply of computing resources and robustness of the system
which PADS does not provide. The GPDS is composed of two agents, Grid
Agent (GA) and Simulation Agent (SA). The GA has fundamental functions
of resource broker using Globus toolkit[5]. It accomplishes three major services,
which include automatic distribution, dynamic migration, and security. Auto-
matic distribution service makes parallel and distributed system have the strong
extensibility to utilize abundant resources. Also, dynamic migration enables the

� This work has been supported by KOSEF and KIPA-Information Technology Rese-
arch Center, University research program by Ministry of Information & Communi-
cation, and Brain Korea 21 projects in 2004.

�� Corresponding author.

M. Bubak et al. (Eds.): ICCS 2004, LNCS 3038, pp. 873–880, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



874 T.-D. Lee, S.-H. Yoo, and C.-S. Jeong

fault tolerance of whole system as well as the improvement of overall perfor-
mance. The SA provides several modules which assist the PADS to achieve its
objective. It is responsible for communication, monitoring, and dynamic config-
uration for parallel and distributed architecture, and manages available servers
via the communication with the GA. GA and SA enable clients to transparently
perform a large-scale object-oriented simulation by automatically distributing
the relevant simulation objects among the computing resources while support-
ing scalability and fault tolerance by load balancing and dynamic migration
schemes

In this paper, we describe design, implementation and performance evalution
of GPDS. It shows how grid-based parallel and distributed simulation improves
the existing simulation environment. In Sect.2, we illustrate the design of GPDS
including architecture and UML-based diagrams such like class diagram and
interaction diagrams. In the next section, we depict the implementation of GPDS
and experimental results. At last, we conclude in Sect. 4.

2 Design of GPDS

2.1 System Architecture

The system architecture of GPDS is 3-tier architecture based on client-server
model shown in Fig.1(a). Here, the server indicates the broad range which is
enclosed by virtual organization (VO). The hosts within the VO can be servers
of the GPDS. All processes of the server side are transparent to the client.
The client only sees the results from the server side. The client in client tier
delivers an executable and standard input files of required simulation to the
GPDS Manager in Server tier. The GA creates a process to allocate simulations
to remote hosts and the SA. Note that there is a simulation process in the SA.
This simulation process is used to accomplish dynamic migration service. The
SA manages the DBs in Database tier while cooperating with the GA. Each
simulation process within remote hosts and the SA joins to simulation-specific
middleware to execute the PADS. The result of simulation is returned to the
client by the SA.

Client Tier Server Tier Database Tier

GA SA

Simulation-specific Middleware

GPDS Manager

Client Tier Server Tier Database Tier

GA SA

Simulation-specific Middleware

GPDS Manager

Grid
Computing DUROC(GRAM) MDS GridFTP GSI

NVE

Communication Middleware

Parallel and Distributed Simulation

Physical
Layer Resource

GPDS
Manager

SecurityDynamic
Migration

Automatic
Distribution

Grid 
Agent

Simulation
AgentManager

Serverlist Auto-config
Manager

RSL
Maker

DB
Manager

Simulation
Manager

(SLM) (ACM) (RM) (DM) (SM) (SA)

(GA)

Grid
Computing DUROC(GRAM) MDS GridFTP GSI

NVE

Communication Middleware

Parallel and Distributed Simulation

Physical
Layer Resource

GPDS
Manager

SecurityDynamic
Migration

Automatic
Distribution

Grid 
Agent

Simulation
AgentManager

Serverlist Auto-config
Manager

RSL
Maker

DB
Manager

Simulation
Manager

(SLM) (ACM) (RM) (DM) (SM)
Manager
Serverlist Auto-config

Manager
RSL

Maker
DB

Manager
Simulation
Manager

(SLM) (ACM) (RM) (DM) (SM) (SA)

(GA)

Fig. 1. (a) 3-tier architecture of GPDS (b) Layered structure of GPDS



Design and Implementation of GPDS 875

Moreover, the characteristics in the architecture of GPDS can be grasped by
observing its layered structure. The layer structure of GPDS is shown in Fig.1(b).
The GCE(Grid Computing Environment) accomplishes the management of re-
sources. In the GPDS, powerful modules of the Globus toolkit are used on the
GCE. The GCE comprises of four modules: GRAM which allocate and manage
the job in the remote hosts, MDS which provides information services, GridFTP
which is used to access and transfer files, and GSI which enables authentication
via single sign-on using a proxy. The NVE(Networked Virtual Environment) con-
sists of application and middleware to communicate efficiently. In the application
layer, the logic of a simulation is performed through the interaction of entities.
Each application joins to a corresponding middleware. The middleware layer
provides the communication of entities, interest management, data filtering, and
time management required to achieve stable and efficient simulation. In brief,
the GPDS means the NVE over the GCE. The GPDS Manager is an intermedi-
ate layer between NVE and GCE. It is in the charge of a bridge between both
layers. As mentioned earlier, GPDS Manager is composed of Grid Agent and
Simulation Agent. Agent is an identifiable computational entity that automates
some aspect of task performance or decision making to benefit a human entity.

2.2 Class Diagram

Figure 2 shows a class diagram which uses a facade pattern which provides a
unified interface to a set of interfaces in a subsystem. The facade pattern offers
the benefits to shield clients from subsystem components, promote weak cou-
pling between the subsystem and its clients. In Fig. 2, CGPDS is a facade for
GPDS system, CGA for Grid-based classes and CSA for simulation-based classes.
Each applications approach to agent classes through CGPDS. Also, the agents
can be extended through aggregation to CGPDS. This object-oriented architec-
ture provides extensibility of agents. CGA manages and controls the Grid-based
classes, and CSA does simulation-specific classes. The SA includes five classes:
ServerlistManager(CSLM), RSLMaker(CRSLMaker), Auto-configuration Man-
ager(CACM), Simulation Manager(CSM) and DB Manager(CDBM). The CSM
makes the list of resources available in corresponding virtual organization(VO).
The number and performance of available hosts have great effect on the configu-
ration of the PADS. This severlist of available resources is periodically updated

CMDS CGridFTP CRSLMaker

CGSI CSM

CSLM CDBM

CSACGA

CACM

CGPDS

CGRAM

Grid-based classes Simulation-based classes

CMDS CGridFTP CRSLMaker

CGSI CSM

CSLM CDBM

CSACGA

CACM

CGPDS

CGRAM

Grid-based classes Simulation-based classes

Fig. 2. Class diagram of GPDS



876 T.-D. Lee, S.-H. Yoo, and C.-S. Jeong

and referenced. The CRSLMaker dynamically creates a RSL code to meet the
status of simulation and the requirements of the GA. The CACM automatically
makes configuration files to provide information needed to initiate the PADS,
according to the serverlist. The CSM has three missions. First, it establishes a
connection to the client. Second, it periodically received and monitored simula-
tion data from one simulation process within the SA, and delivers them to the
CDBM. Third, the simulation data is returned to the client as simulation results
by CSM. Lastly, the CDBM stores the simulation data of each host periodically.
The stored data is applied to the recovery of the fault.

2.3 Interaction Diagram

Automatic distribution service means that GPDS Manager can automatically
create the PADS by transferring and executing solicitated executable and stan-
dard input files on new host. Dynamic migration strategy means that the com-
puting which has been proceeding on one host can be transferred to and contin-
uously performed on another host. This service is used to achieve two purposes
in GPDS. First goal is the fault tolerance of the whole system, and second is the
improvement of performance. Each service composes of 3 steps.

Interaction Diagram for Automatic Distribution Service. Figure 3(a)
shows the interaction diagram for Automatic Distribution Service. In (1) step,
client connects to GPDS. The CSM of SA establishes a connection with the
client. The client submits the job and sends indispensable files to GPDS. (2)
step accomplishes the preparation for creating remote servers. It consists of four
stages, that is, server list production, configuration, storage, and transmission.
In server list production stage, the CSLM in SA makes out server list which in-
cludes available resources, using the metadata of hosts registered to GIIS through
CMDS. In next stage, the CACM automatically modifies an initial configuration
into several configuration files corresponding to parallel and distributed architec-
ture by considering the number of available hosts and reflecting all information
which is required to initiate remote servers. The CRSLMaker automatically gen-
erates the required RSL codes to use Globus. In the storage stage, the initial
configuration data of each remote server is saved in DB by CDBManager. At
last, the program files and configuration file is sent to remote hosts through
CGridFTP service using CGSI by GA in the transmission stage. In (3) step,
The GA forks one process to execute remote hosts. Through CGRAM service
of Globus, the GA simultaneously activates the simulation process of remote
servers and the SA. At this time, the RSL code which CRSLMaker created is
used to submit simultaneous jobs. The CGRAM provides the barrier that guar-
antees all remote servers start successfully. The GA establishes the flag so that
the process of SA can identify its mission. This process plays a role in delivering
periodic simulation data to SA. These data is stored by CDBManager, transmit-
ted to the client by CSM. Remote servers are initiated by reading each assigned
configuration file, and periodically deliver own computation to the simulation
process of the SA through simulation-specific middleware.



Design and Implementation of GPDS 877

Client

<<GPDS Manager>>

<SA>

<GA>

(1) : Detection
(S1 is falling off!)

(S3 is failed!)

(2) : Serverlist

(1) Detection

(2) Preparation

(3) Execution
Sim Sim Sim Sim

S2 S3 S5S1

Simulation-specific Middleware

DB

(2) : RSL code

(2) : Transmission
(3) : Execution

Simulation
data

Data

Sim

S4

failed!falling off.. (2) :
Kill

(2) :
Kill

(2) : Ongoing data
search

(2) : Ongoing
data

(2) : Auto-config

(a) (b)

(2) Preparation

Client

<<GPDS Manager>>

<SA>

<GA>

CSM

(1) : Request
(credential,

program files)

(2) : Serverlist

CDM
Manager

CACM

CR니
Maker

(1) Request

(3) ExecutionSim Sim Sim Sim
.....

Remote
Host

Remote
Host

Remote
Host

Remote
Host

Simulation-specific Middleware

DB
(2) : Auto-config

(2) : RSL code

(2) : Config
storage

(2) : Transmission
authentication

credential

(3) : Execution

(3) : Join

(3) : Simulation
data

(3) : Data

(3) : Result

CSLM

CSA

CGSI

CGRAM CGridFTP

CMDS

CGRAM CGridFTP

CSA

CDM
Manager

CSM
CSLM

CR니
Maker

CACM

CMDS

Client

<<GPDS Manager>>

<SA>

<GA>

(1) : Detection
(S1 is falling off!)

(S3 is failed!)

(2) : Serverlist

(1) Detection

(2) Preparation

(3) Execution
Sim Sim Sim Sim

S2 S3 S5S1

Simulation-specific Middleware

DB

(2) : RSL code

(2) : Transmission
(3) : Execution

Simulation
data

Data

Sim

S4

failed!falling off.. (2) :
Kill

(2) :
Kill

(2) : Ongoing data
search

(2) : Ongoing
data

(2) : Auto-config

(a) (b)

(2) Preparation

Client

<<GPDS Manager>>

<SA>

<GA>

CSM

(1) : Request
(credential,

program files)

(2) : Serverlist

CDM
Manager

CACM

CR니
Maker

(1) Request

(3) ExecutionSim Sim Sim Sim
.....

Remote
Host

Remote
Host

Remote
Host

Remote
Host

Simulation-specific Middleware

DB
(2) : Auto-config

(2) : RSL code

(2) : Config
storage

(2) : Transmission
authentication

credential

(3) : Execution

(3) : Join

(3) : Simulation
data

(3) : Data

(3) : Result

CSLM

CSA

CGSI

CGRAM CGridFTP

CMDS

CGRAM CGridFTP

CSA

CDM
Manager

CSM
CSLM

CR니
Maker

CACM

CMDS

Fig. 3. Interaction diagram for (a)Automatic Distribution Service (b) Dynamic Migra-
tion Service

Interaction Diagram for Dynamic Migration Service. Figure 3(b) shows
the interaction diagram for Dynamic Migration Service. In first step, The CSM
of SA employs the timeout mechanism to detect the fault of remote servers. In
Fig. 2(b), S1, S2, and S3 are remote hosts on the execution step of automatic
distribution service. The CSM perceives the fault of S3 because GA regularly
retrieves the current status of servers who are the members of GIIS through
the metadata of CMDS. By analyzing this information, the GA can look up
the better resource or recognize the degradation of current slave servers. We
assume that the performance of S1 is falling off and S5 is founded as better
server in Fig. 2(b). In second step, the CGPDS needs to prepare the creation
of new remote server. The CSM retrieves ongoing data of the target server in
DB through CDBManager, which manages the simulation data per remote host.
Following mechanisms are the same as the storage and transmission stages of
the preparation step in automatic distribution strategy. In Fig. 2(b), after the
CSM searches for the ongoing data of S1 or S3, configuration file is made out
using this data by the Auto-configuration Manager and transmitted to S5 or S4
through the GridFTP service by GA. The third step is same as the third step
of Automatic Distribution Service.

3 Implementation of GPDS

For an experiment of the GPDS system, we implemented parallel and distributed
war game simulation where distributed forces are operated by movement, detec-
tion, and close combat. The HLA/RTI is used as simulation-specific middleware
to provide stable communication and interoperability. High Level Architecture
(HLA) was developed by the Defense Modeling and Simulation Office (DMSO)



878 T.-D. Lee, S.-H. Yoo, and C.-S. Jeong

to provide a common architecture that facilitates simulation interoperability and
reusability across all classes of simulations [8]. HLA has been adopted as IEEE
standard 1516 in September 2000. The Runtime Infrastructure (RTI) is a collec-
tion of software that provides commonly required services to simulation systems
using HLA. The information about forces is supplied in the configuration file,
and distributed by the GPDS Manager. The GPDS uses the RTI NGv1.3 [8] and
Globus v2.4. Client is constructed on windows based system, while servers are
based on Linux. Our implementation is accomplished on 4 PCs as clients, and
10 clusters(5 : Pentium IV 1.7GHz, 5 : Pentium III 1.0GHz Dual) and one 486
computer as servers on a VO. Our experiments are accomplished to confirm key
services of the GPDS.

(a) Automatic Distribution Service

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9

Number of forces (*100)

Si
m

ul
at

io
n 

tim
e 

(m
in

ut
es

)
PADS

GPDS

(b) Dynamic Migration Service

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10

Time ( *10 minutes)

R
ec

ei
ve

d 
pa

ck
et

(M
B

yt
es

)

PADS

GPDS

Fig. 4. Experimental results : (a) Simulation time according to the Increase of forces,
(b)Accumulated received packets updated by 600 forces per 30 second

First experiment is for the automatic distribution service. We organizes a
PADS which has five servers(we assume that 486 computer is included as server,
because of the limitation in local condition), and the GPDS which has a VO of
11 servers(10 clusters and 486 PC). Then, we estimated the complete time of
simulation as the number of forces increases. As we expect, the resource selection
of the GPDS did not choose the 486 computer. In Fig.4(a),the GPDS is superior
to the PADS as the scale of simulation is increasing,although the time consump-
tion of initialization have an effect on the state of small forces. The GPDS can
utilize abundant computing power and adapt for various environment,as well as
provide convenient user interface.

To verify the dynamic migration service, we comprised second experiment. In
this test,we measured accumulated received packets updated by 600 forces per 30
second. One packet has the size of 100 bytes. In 70 minutes, we intentionally made
a failure on one server. DB Manager stores the information related to federation



Design and Implementation of GPDS 879

federate1 federate2 federate3 federate4

join

* Timer
Loop this routine
periodically

DBMigrated
federate

publish/
subscribe

updateAttribute

TimeAdvanceRequest

reflectAttribute

send STOP message

receive ACK

Store information

resign

join

Request information

Restore information

updateAttribute

send START message

federate1 federate2 federate3 federate4

join

* Timer
Loop this routine
periodically

DBMigrated
federate

publish/
subscribe

updateAttribute

TimeAdvanceRequest

reflectAttribute

send STOP message

receive ACK

Store information

resign

join

Request information

Restore information

updateAttribute

send START message

Fig. 5. Sequence diagram for second experiment

like LBTS and object information periodically, and then the application resigns
from the federation. The application sends the stop message to federates before
resignation. GA gathers the information of MDS and SA sends the application
to a selected host. The application sends the restart message to all federates and
receives the data stored before failure. As shown Fig.4(b), the GPDS can fulfill
its mission after the failure, while the PADS is halted. Fig.5 shows the sequence
diagram for second experiment.

4 Conclusion and Future Work

The paper has described the design and implementation of GPDS. GPDS not
only addresses the problems that it is difficult for parallel and distributed ap-
plication to achieve its expected performance, because of some obstacles such
as deficient computing powers, weakness in fault and security problem, but also
supports scalability using Grid technologies. GPDS supports a 3-tier architec-
ture which consists of clients at front end, interaction servers at the middle, and
a network of computing resources at back-end including DataBase, which pro-
vides three services: Automatic Distribution Service, Dynamic Migration Service
and Security Service, describing the design by UML-based class diagram and in-
teraction diagrams. Grid and simulation agents in the interaction server enable
client to transparently perform a large-scale object-oriented simulation by au-
tomatically distributing the relevant simulation objects among the computing
resources while supporting scalability and fault tolerance by load balancing and
dynamic migration schemes.



880 T.-D. Lee, S.-H. Yoo, and C.-S. Jeong

As for future work, GT2.4 are being replaced by GT3 which is implemented
by Java, and GPDS must be changed based on GT3 using Java. We will develop
web-based GPDS in future using Java. Also, in the paper we did not describe
HLA-specific issues concerning the design of migration service for HLA compo-
nents. We have developed RTI [9] according to HLA interface specification and
are developing RTI implementation (RTI-G) using Grid components. We will
submit the RTI-G related works, and then we will describe the HLA-specific
issues in detail.

References

1. C.H. Kim, T.D. Lee, C.S. Jeong, “Grid-based Parallel and Distributed Simulation
Environment” 7th international conference PaCT2003 Nizhni Novogorod Russia,
Proceedings LNCS pp. 503–508, September 2003

2. www.globus.org
3. I. Foster, C. Kesselman, G. Tsudik, S. Tuecke, “A Security Architecture for Com-

putational Grids,” Proc. 5th ACM Conference on Computer and Communications
Security Conference, pp. 83–92, 1998.

4. I. Foster, C. Kesselman, S. Tuecke, “The Anatomy of the Grid: Enabling Scalable
Virtual Organizations,” International J. Supercomputer Applications, 15(3), 2001.

5. I. Foster, C. Kesselman, “Globus: A Metacomputing Infrastructure Toolkit,” Intl
J. Supercomputer Applications, 11(2):115–128, 1997.

6. K. Czajkowski, I. Foster, “Grid Information Services for Distributed Resource
Sharing,” Proceedings of the Tenth IEEE International Symposium on High-
Performance Distributed Computing (HPDC-10), IEEE Press, August 2001.

7. J. Dahmann, R.M. Fujimoto, R.M. Weatherly, “The DoD high level architecture:
an update,” Winter Simulation Conference Proceedings of the 30th conference on
Winter simulation Washington, D.C., United States Pages: 797–804, 1998

8. U.S. Department of Defense(DMSO), “High Level Architecture Run-Time Infras-
tructure (RTI) Programmer’s Guide Version 1.3,” http://hla.dmso.mil, 1998.

9. T.D. Lee, C.S. Jeong, “Object-oriented Design of RTI using Design Patterns,” 9th
international conference OOIS2003 Geneva Switzerland Proceedings LNCS 2817
pp. 329–333, 2003


	Introduction
	Design of GPDS
	System Architecture
	Class Diagram
	Interaction Diagram

	Implementation of GPDS
	Conclusion and Future Work



