
HLA AGENT: Distributed Simulation of Agent-Based
Systems with HLA

Michael Lees1, Brian Logan1, Ton Oguara2, and Georgios Theodoropoulos2

1 School of Computer Science and IT
University of Nottingham, UK
{mhl,bsl}@cs.nott.ac.uk
2 School of Computer Science
University of Birmingham, UK
{txo,gkt}@cs.bham.ac.uk

Abstract. In this paper we describe hla agent, a tool for the distributed simu-
lation of agent-based systems, which integrates the sim agent agent toolkit and
the High Level Architecture (HLA) simulator interoperability framework. Using
a simple Tileworld scenario as an example, we show how the HLA can be used
to flexibly distribute a sim agent simulation with different agents being simu-
lated on different machines. The distribution is transparent in the sense that the
existing sim agent code runs unmodified and the agents are unaware that other
parts of the simulation are running remotely. We present some preliminary exper-
imental results which illustrate the performance of hla agent on a Linux cluster
running a distributed version of Tileworld and compare this with the original
(non-distributed) sim agent version.

1 Introduction

Simulation has traditionally played an important role in agent research and a wide range
of simulators and testbeds have been developed to support the design and analysis of
agent architectures and systems [1,2,3,4,5,6]. However no one simulator or testbed is, or
can be, appropriate to all agents and environments, and demonstrating that a particular
result holds across a range of agent architectures and environments often requires using
a number of different systems. Moreover, the computational requirements of simulations
of many multi-agent systems far exceed the capabilities of a single computer. Each agent
is typically a complex system in its own right (e.g., with sensing, planning, inference
etc. capabilities), requiring considerable computational resources, and many agents may
be required to investigate the behaviour of the system as a whole or even the behaviour
of a single agent.

In this paper we present an approach to agent simulation which addresses both inter-
operability and scalability issues. We describe hla agent, a tool for the distributed sim-
ulation of agent-based systems, which integrates an existing agent toolkit, sim agent,
and the High Level Architecture (HLA) [7]. Simulations developed using hla agent
are capable of inter-operating with other HLA-compliant simulators and the objects and
agents in the simulation can be flexibly distributed across multiple computers so as to
make best use of available computing resources. The distribution is transparent to the

M. Bubak et al. (Eds.): ICCS 2004, LNCS 3038, pp. 881–888, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

882 M. Lees et al.

user simulation and symmetric in the sense that no additional management federates are
required.

2 An Overview of SIM AGENT

sim agent is an architecture-neutral toolkit originally developed to support the explo-
ration of alternative agent architectures [4,8]1. In sim agent, an agent consists of a
collection of modules, e.g., perception, problem-solving, planning, communication etc.
Groups of modules can execute either sequentially or concurrently and at different rates.
Each module is implemented as a collection of condition-action rules in a high-level
rule-based language. The rules match against data held in the agent’s database, which
holds the agent’s model of its environment, its goal and plans etc. In addition, each agent
also has some public data which is “visible” to other agents.

sim agent can be used both as a sequential, centralised, time-driven simulator for
multi-agent systems, e.g., to simulate software agents in an Internet environment or
physical agents and their environment, and as an agent implementation language, e.g.,
for software agents or the controller for a physical robot.

The toolkit is implemented in Pop-11, an AI programming language similar to Lisp,
but with an Algol-like syntax. It defines two basic classes, sim object and sim agent,
which can be extended (subclassed) to define the objects and agents required for a
particular simulation scenario. The sim object class is the foundation of all sim agent
simulations: it provides slots (fields or instance variables) for the object’s name, internal
database, sensors, and rules together with slots which determine how many processing
cycles each module will be allocated at each timestep and so on. The sim agent class
is a subclass of sim object which provides simple message based communication
primitives.

As an example, we briefly outline the design and implementation of a simple
sim agent simulation, sim tileworld. Tileworld is a well established testbed for
agents [2,9]. It consists of an environment consisting of tiles, holes and obstacles, and
one or more agents whose goal is to score as many points as possible by pushing tiles
to fill in the holes. The environment is dynamic: tiles, holes and obstacles appear and
disappear at rates controlled by the experimenter.

sim tileworld defines three subclasses of the sim agent base class sim object
to represent holes, tiles and obstacles, together with two subclasses of sim agent to
represent the environment and the agents. The subclasses define additional slots to hold
the relevant simulation attributes, e.g., the position of tiles, holes and obstacles, the
types of tiles, the depth of holes, the tiles being carried by the agent etc. By convention,
external data is held in slots, while internal data (such as which hole the agent intends
to fill next) is held in the agent’s database.

The simulation consists of two or more active objects (the environment and the
agent(s)) and a variable number of passive objects (the tiles, holes and obstacles). At
simulation startup, instances of the environment and agent classes are created and passed
to the sim agent scheduler.At each simulation cycle, the environment agent causes tiles,

1 See http://www.cs.bham.ac.uk/∼axs/cog affect/sim agent.html

HLA AGENT: Distributed Simulation of Agent-Based Systems with HLA 883

obstacles and holes to be created and deleted according to user-defined probabilities. The
scheduler then runs the Tileworld agents which perceive the new environment and run
their rules on their internal databases updated with any new sense data. Each agent
chooses an external action to perform at this cycle (e.g., moving to or pushing a tile)
which is queued for execution at the end of the cycle. The cycle then repeats.

3 Distributing a SIM AGENT Simulation with HLA

There are two distinct ways in which sim agent might use the facilities offered by the
HLA. The first, which we call the distribution of sim agent, involves using HLA to
distribute the agents and objects comprising a sim agent simulation across a number of
federates. The second, which we call inter-operation, involves using HLA to integrate
sim agent with other simulators. In this paper we concentrate on the former, namely
distributing an existing sim agent simulation using sim tileworld as an example.
Based on the sim tileworld implementation outlined in section 2, we chose to split the
simulation into n+1 federates, corresponding to n agent federates and the environment
federate respectively.

In the distributed implementation of sim tileworld, the communication between
the agent and environment federates is performed via the objects in the FOM, through the
creation, deletion and updating of attributes.2 The FOM consists of two main subclasses:
Agent and Object, with the Object class having Tiles, Holes and Obstacles as subclasses.
The classes and attributes in the FOM are mapped in a straightforward way onto the
classes and slots used by sim agent. For example, the depth attribute of the Tile class
in the FOM maps to the depth slot of the sim tile class in sim agent.

HLA requires federates to own attribute instances before they can update their value.
In hla agent we use ownership management to manage conflicts between actions
proposed by agents simulated by different federates. For example, two (or more) agents
may try to push the same tile at the same timestep. Once the tile has been moved by
one agent, subsequent moves should become invalid, as the tile is no longer at the
position at which it was initially perceived. If the agents are simulated by the same agent
federate such action conflicts can be handled in the normal way, e.g., we can arrange for
each action to check that its preconditions still hold before performing the update and
otherwise abort the action. However, this is not feasible in a distributed setting, since
external actions are queued by sim agent for execution at the end of the current cycle.
We therefore extend current practice in sim agent and require that attribute updates be
mutually exclusive. Ownership of a mutually exclusive attribute can only transferred at
most once per simulation cycle, and a federate relinquishes ownership of an attribute
only if it has not already been updated at the current cycle. (If multiple attributes are
updated by the same agent action, we require that federates acquire ownership of the
attributes in a fixed order to avoid deadlock.) For example, if two agents running on
different federates try to move a given tile at the same cycle, whichever agent’s action
is processed first will acquire ownership of the tile and succeed, while the other will be
denied ownership and fail.

2 In this example, sim agent’s inter-agent message based communication is not used. Message
passing also handled by the RTI, using interactions.

884 M. Lees et al.

sim agent is a centralised, time-driven system in which the simulation advances in
timesteps or cycles. We therefore synchronise the federation at the beginning of each
cycle, by making all federates both time-regulating and time-constrained. This ensures
that the federates proceed in a timestep fashion, alternating between performing their
external actions and perceiving changes.

4 Extending SIM AGENT

In this section we briefly sketch the extensions necessary to the sim agent toolkit to
allow an existing sim agent simulation to be distributed using the HLA. Together, the
extensions constitute a new library which we call hla agent.

In what follows, we assume that we have an existing sim agent simulation (e.g.,
sim tileworld) that we want to distribute by placing disjoint subsets of the objects
and agents comprising the simulation on different federates. Each federate corresponds
to a single sim agent process and is responsible both for simulating the local objects
forming its own part of the global simulation, and for maintaining proxy objects which
represent objects of interest being simulated by other federates. Each federate may be
initialised with part of the total model or all federates can run the same basic simulation
code and use additional information supplied by the user to determine which objects are
to be simulated locally. For example, in sim tileworld we may wish to simulate the
agent(s) on one federate and the environment on another.

The overall organisation of hla agent is similar to other HLA simulators. Each
sim agent federate requires two ambassadors: an RTI Ambassador which handles calls
to the RTI and a Federate Ambassador that handles callbacks from the RTI. Calls to the
RTI are processed asynchronously in a separate thread. However, for simplicity, we have
chosen to queue callbacks from the RTI to the Federate Ambassador for processing at the
end of each simulation cycle. sim agent has the ability to call external C functions. We
have therefore adopted the reference implementation of the RTI written in C++ developed
by DMSO, and defined C wrappers for the RTI and Federate Ambassador methods
needed for the implementation. We use Pop-11’s simple serialisation mechanism to
handle translation of sim agent data structures to and from the byte strings required by
the RTI. All RTI calls and processing of Federate Ambassador callbacks can therefore
be handled from hla agent as though we have an implementation of the RTI written
in Pop-11.

To distribute a simulation, the user must define the classes and attributes that consti-
tute the Federation Object Model and, for each federate, provide a mapping between the
classes and attributes in the FOM and the sim agent classes and slots to be simulated
on that federate. If the user simulation is partitioned so that each federate only creates
instances of those objects and agents it is responsible for simulating, then no additional
user-level code is required. In the case in which all federates use the same simulation
code, the user must define a procedure which is used to determine whether an object
should be simulated on the current federate. The user therefore has the option of par-
titioning the simulation into appropriate subsets for each federate, thereby minimising
the number of proxy objects created by each federate at simulation startup, or allowing
all federates to create a proxy for all non-local objects in the simulation. For very large

HLA AGENT: Distributed Simulation of Agent-Based Systems with HLA 885

simulations, the latter approach may entail an unacceptable performance penalty, but has
the advantage that distributed and non-distributed simulations can use identical code.

5 Experimental Results

To evaluate the robustness and performance of hla agent we implemented a distributed
version of sim tileworld using hla agent and compared its performance with the
original, non-distributed sim agent version.

The hardware platform used for our experiments is a Linux cluster, comprising 64
2.6 GHz Xeon processors each with 512KB cache (32 dual nodes) interconnected by a
standard 100Mbps fast Ethernet switch. Our test environment is a Tileworld 50 units by
50 units in size with an object creation probability (for tiles, holes and obstacles) of 1.0
and an average object lifetime of 100 cycles. The Tileworld initially contains 100 tiles,
100 holes and 100 obstacles and the number of agents in the Tileworld ranges from 1 to
64. In the current sim tileworld federation, the environment is simulated by a single
federate while the agents are distributed in one or more federates over the nodes of the
cluster3. The results obtained represent averages over 5 runs of 100 sim agent cycles.

We would expect to see speedup from distribution in cases where the CPU load dom-
inates the communication overhead entailed by distribution. We therefore investigated
two scenarios: simple reactive Tileworld agents with minimal CPU requirements and
deliberative Tileworld agents which use an A∗ based planner to plan optimal routes to
tiles and holes in their environment. The planner was modified to incorporate a variable
“deliberation penalty” for each plan generated. In the experiments reported below this
was arbitrarily set at 10ms per plan.

For comparison, Figure 1(a) shows the total elapsed time when executing 1, 2, 4, 8,
16, 32 and 64 reactive and deliberative sim tileworld agents and their environment
on a single cluster node using sim agent and a single hla agent federate. This gives
an indication of the overhead inherent in the hla agent library itself independent
of any communication overhead entailed by distribution. As can be seen, the curves
for sim agent and hla agent are quite similar, with the HLA overhead diminishing
with increasing CPU load. For example, with 64 reactive agents the HLA introduces a
significant overhead. In sim agent, the average elapsed time per cycle is 0.145 seconds
compared to 0.216 seconds with hla agent, giving a total overhead for the HLA of
approximately 54%. For agents which intrinsically require more CPU and/or larger
numbers of agents, the overhead is proportionately smaller. With 64 deliberative agents,
the average elapsed time per cycle is 0.522 seconds with sim agent and 0.524 seconds
with hla agent, giving a total overhead for the HLA of just 0.4%.

We also investigated the effect of distributing the Tileworld agents across varying
numbers of federates. Figure 1(b) shows a breakdown of the total elapsed time for
an agent federate when distributing 64 reactive and deliberative agents over 1, 2, 4, 8
and 16 nodes of the cluster.4 In each case, the environment was simulated by a single
environment federate running on its own cluster node. As expected, the elapsed time

3 For our experiments, only one processor was used in each node.
4 Unfortunately, it was not possible to obtain exclusive access to all the nodes in the cluster for

our experiments.

886 M. Lees et al.

124 8 16 32 64
0

10

20

30

40

50

60

Number of Agents

T
ot

al
 E

la
ps

ed
 T

im
e

(s
ec

s)

SIM_AGENT Reactive
SIM_AGENT Deliberative
HLA_AGENT Reactive
HLA_AGENT Deliberative

(a) Total elapsed times for 1-64
Reactive and Deliberative agents in
sim agent and hla agent (single
federate).

1 2 4 8 16
0

10

20

30

40

50

60

Number of Cluster Nodes

T
ot

al
 E

la
ps

ed
 T

im
e

(s
ec

s)

HLA_AGENT Reactive
HLA_AGENT Deliberative

(b) Total elapsed times for an Agent
Federate (64 Reactive and Deliberative
Agents distributed over 1-16 nodes).

Fig. 1. Elapsed Times

drops with increasing distribution, and with 4 nodes the elapsed time is comparable
to the non-distributed case for the reactive agents.5 For the more computation-bound
deliberative agents a greater speedup is achieved, and with four nodes the elapsed time
is approximately half that of the non-distributed case. However in both the reactive and
deliberative cases, as the number of nodes (and hence the communication overhead)
increases, the gain from each additional node declines. For example, with a single agent
federate we would expect to see at least 128 attribute updates per cycle (since agents
update their x and y positions every cycle). With 16 agent federates, the environment
federate still receives 128 attribute updates per cycle, but in addition each agent federate
receives at least 120 updates from the 60 agents on the other agent federates. As a result,
the number of callbacks processed by the RTI in each cycle grows from 128 with 1 agent
federate to 2048 with 16 agent federates.

In addition, without load balancing, the speedup that can be obtained is limited by
the elapsed time for the slowest federate. An analysis of the the total cycle elapsed times
for the simulation phase of hla agent (i.e., the time required to run the user simulation
plus object registration and deletion, attribute ownership transfer requests and queueing
attribute updates for propagation at the end of the user simulation cycle) shows that with
more than 4 agent federates, the simulation phase time for the environment federate is
greater than that for any single agent federate. Prior to this point, the environment federate
spends part of each cycle waiting for the agent federate(s) to complete their simulation
phase, and after this point agent federates spend part of each cycle waiting for the envi-
ronment federate. With 8 agent federates, the elapsed time of the environment federate
forms a lower bound on the elapsed time for the federation as a whole, and further speedup
can only be obtained by distributing the environment across multiple federates. Without

5 This represents a significant improvement on results reported previously [10], where 16 nodes
were required to obtain speedup with 64 reactive agents. We believe the increase in performance
is largely attributable to a change in the ticking strategy adopted. In the experiments reported
in this paper, we used the no argument version of tick.

HLA AGENT: Distributed Simulation of Agent-Based Systems with HLA 887

the communication overhead of distribution, we would therefore expect the total elapsed
time to reach a minimum between 4 and 8 agent federates and thereafter remain constant.

Although preliminary, our experiments show that, even with relatively lightweight
agents like the Tileworld agents, we can get speedup by distributing agent federates
across multiple cluster nodes. However with increasing distribution the broadcast com-
munication overhead starts to offset the reduction in simulation elapsed time, limiting
the speedup which can be achieved. Together with the lower bound on elapsed time set
by the environment federate, this means that for reactive agents the elapsed time with
16 nodes is actually greater than that for 8 nodes. With 64 deliberative agents, which
intrinsically require greater (though still fairly modest) CPU, we continue to see small
improvements in overall elapsed time up to 16 nodes.

6 Summary

In this paper, we presented hla agent, an HLA-compliant version of the sim agent
agent toolkit. We showed how hla agent can be used to distribute an existing
sim agent simulation with different agents being simulated by different federates and
briefly outlined the changes necessary to the sim agent toolkit to allow integration with
the HLA. The integration of sim agent and HLA is transparent in the sense that an
existing sim agent user simulation runs unmodified, and symmetric in the sense that
no additional management federates are required. In addition, the allocation of agents
to federates can be easily configured to make best use of available computing resources.

Preliminary results from a simple Tileworld simulation show that we can obtain
speedup by distributing agents and federates across multiple nodes in a cluster. While
further work is required to analyse the RTI overhead and characterise the performance of
hla agent with different kinds of agents and environments, it is already clear that the
speedup obtained depends on the initial allocation of agents to federates. If this results
in unbalanced loads, the slowest federate will constrain the overall rate of federation
execution. It should be relatively straightforward to implement a simple form of code
migration to support coarse grain load balancing by swapping the execution of a locally
simulated object with its proxy on another, less heavily loaded, federate. We also plan to
investigate the performance implications of distributing the simulation across multiple
(geographically dispersed) clusters. Together, these extensions will form the first step
towards a GRID-enabled hla agent.

Another area for future work is inter-operation, using HLA to integrate sim agent
with other simulators. This would allow the investigation of different agent architectures
and environments using different simulators in a straightforward way. In a related project,
we are currently developing an HLA-compliant version of the RePast agent simulator
[11], which will form part of a combined hla agent /RePast federation.

Acknowledgements. We would like to thank the members of the Centre for Scientific
Computing at the University of Warwick, and in particular Matt Ismail, for facilitating
access to the Task Farm cluster. This work is part of the PDES-MAS project6 and is
supported by EPSRC research grant No. GR/R45338/01.

6 http://www.cs.bham.ac.uk/research/pdesmas

888 M. Lees et al.

References

1. Durfee, E.H., Montgomery, T.A.: MICE: A flexible testbed for intelligent coordination ex-
periements. In: Proceedings of the Ninth Distributed Artificial Intelligence Workshop. (1989)
25–40

2. Pollack, M.E., Ringuette, M.: Introducing the Tileworld: Experimentally evaluating agent
architectures. In: National Conference on Artificial Intelligence. (1990) 183–189

3. Atkin, S.M., Westbrook, D.L., Cohen, P.R., Jorstad., G.D.: AFS and HAC: Domain general
agent simulation and control. In Baxter, J., Logan, B., eds.: Software Tools for Developing
Agents: Papers from the 1998 Workshop, AAAI Press (1998) 89–96 Technical Report WS–
98–10.

4. Sloman, A., Poli, R.: sim agent: A toolkit for exploring agent designs. In Wooldridge,
M., Mueller, J., Tambe, M., eds.: Intelligent Agents II: Agent Theories Architectures and
Languages (ATAL-95). Springer–Verlag (1996) 392–407

5. Anderson, J.: A generic distributed simulation system for intelligent agent design and evalu-
ation. In Sarjoughian, H.S., Cellier, F.E., Marefat, M.M., Rozenblit, J.W., eds.: Proceedings
of the Tenth Conference on AI, Simulation and Planning, AIS-2000, Society for Computer
Simulation International (2000) 36–44

6. Schattenberg, B., Uhrmacher, A.M.: Planning agents in JAMES. Proceedings of the IEEE
89 (2001) 158–173

7. Kuhl, F., Weatherly, R., Dahmann, J.: Creating Computer Simulation Systems: An Introduc-
tion to the High Level Architecture. Prentice Hall (1999)

8. Sloman, A., Logan, B.: Building cognitively rich agents using the sim agent toolkit. Com-
munications of the ACM 42 (1999) 71–77

9. Ephrati, E., Pollack, M., Ur, S.: Deriving multi-agent coordination through filtering strategies.
In Mellish, C., ed.: Proceedings of the Fourteenth International Joint Conference on Artificial
Intelligence, San Francisco, Morgan Kaufmann (1995) 679–685

10. Lees, M., Logan, B., Oguara, T., Theodoropoulos, G.: Simulating agent-based systems with
HLA: The case of SIM AGENT – Part II. In: Proceedings of the 2003 European Simulation
Interoperability Workshop, European Office of Aerospace R&D, Simulation Interoperability
Standards Organisation and Society for Computer Simulation International (2003)

11. Minson, R., Theodoropoulos, G.: Distributing RePast agent-based simulations with HLA.
In: Proceedings of the 2004 European Simulation Interoperability Workshop, Edinburgh,
Simulation Interoperability Standards Organisation and Society for Computer Simulation
International (2004) (to appear).

	Introduction
	An Overview of SIM AGENT
	Distributing a SIM AGENT Simulation with HLA
	Extending SIM AGENT
	Experimental Results
	Summary

