
M. Bubak et al. (Eds.): ICCS 2004, LNCS 3038, pp. 986–995, 2004.
© Springer-Verlag Berlin Heidelberg 2004

An Incremental Editor for Dynamic
Hierarchical Drawing of Trees

David Workman1, Margaret Bernard2, and Steven Pothoven3

1 University of Central Florida, School of EE and Computer Science
workman@cs.ucf.edu

2 The University of the West Indies, Dept. Math. & Computer science
mbernard@fsa.uwi.tt

3 IBM Corporation, Orlando, Florida

Abstract. We present an incremental tree editor based on algorithms for
manipulating shape functions. The tree layout is hierarchical, left-to-right.
Nodes of variable size and shape are supported. The paper presents algorithms
for basic tree editing operations, including cut and paste. The layout algorithm
for positioning child-subtrees rooted at a given parent is incrementally
recomputed with each edit operation; it attempts to conserve the total display
area allocated to child-subtrees while preserving the user’s mental map. The
runtime and space efficiency is good as a result of exploiting a specially
designed Shape abstraction for encoding and manipulating the geometric
boundaries of subtrees as monotonic step functions to determine their best
placement. All tree operations, including loading, saving trees to files, and
incremental cut and paste, are worst case O(N) in time, but typically cut and
paste are O(log(N)2), where N is the number of nodes.

1 Introduction

Effective techniques for displaying static graphs are well established but in many
applications the data are dynamic and require special visualization techniques.
Applications arise when the data are dynamically generated or where there is need to
interact with and edit the drawing. Dynamic techniques are also used for displaying
large graphs where the entire graph cannot fit on the screen. In this paper, we present
an incremental tree editor, DW-tree, for dynamic hierarchical display of trees. Graphs
that are trees are found in many applications including Software Engineering and
Program Design, which is the genesis of this Dynamic Workbench DW-tree software
[5, 1, 4]. DW-tree is an interactive editor; it allows users to interact with the drawing,
changing nodes and subtrees. In redrawing the tree after user changes, the system
reuses global layout information and only localized subtree data need to be updated.
A full complement of incremental editing operations is supported, including changing
node shape and size as well as cutting and pasting subtrees. The editor has the
capability of loading (saving) a tree from (to) an external file. The tree editor uses
Shape vectors for defining the boundary of tree or subtree objects. Incremental tree
editing operations are based on algorithms for manipulating Shape vectors. The tree
layout is hierarchical, left-to-right (horizontal). The DW-tree drawing algorithms

An Incremental Editor for Dynamic Hierarchical Drawing of Trees 987

attempt to conserve the total display area allocated to child-subtrees (area efficient)
without appreciably distracting the user’s mental continuity upon re-display. For a
tree of size N nodes, the runtime efficiency is O(N) for load and save operations to an
external file. For cut and paste operations at depth d, under reasonable assumptions,
the runtime is O(d2), with d = log(N).

The remainder of the paper is organized as follows. First (Section 2), we present
the principles for tree layout using the Shape abstraction. In section 3, we present key
principles and algorithms that form the basis for the incremental editor operations and
in Section 4 we discuss related work; we close with some concluding remarks in
section 5.

2 Tree Layout Principles

In this section we present the layout design principles and definitions that provide the
conceptual foundation and framework for the remainder of the paper. The display area
of the editor defines a 2D coordinate system as depicted in Figure 1. Coordinate
values along both axes are multiples of the width (fduW) and height (fduH) of the
Fundamental Display Unit (FDU), the smallest unit of display space allocated in the
horizontal and vertical directions, respectively.

Nodes can be of any size, but are assumed to occupy a display region bounded by a
rectangle having width and height that are multiples of fduW and fduH, respectively.
The absolute display coordinates of a node are associated with the upper left corner of
its bounding rectangle. Trees are oriented left-to-right as shown in Figure 1, where the
Parent node and its First Child always have the same vertical displacement. All
children with the same parent node have the same relative horizontal displacement,

Fig. 1. Display Coordinate System,Tree Layout, and Bounding Shape Functions

988 D. Workman, M. Bernard, and S. Pothoven

Fig. 2. Screen Image of DWtree Editor

Hspc. If (x,y) denotes the FDU coordinates of a parent node, and the parent node has
width (Pwidth) and height (Pheight), then the coordinates of child node, k, will
always be (x + Pwidth + Hspc, y + ∆k), where for 1 ≤ k ≤ Nchildren, ∆1 = 0, and for k
> 1, ∆k ≥ ∆(k-1) + Cheight(k-1) + Vspc. Vspc is the minimum vertical separation
between children. The actual vertical separation between children of the same parent
is defined by our layout algorithms to conserve display area and will be presented in a
later section entitled, Tree Operations. H denotes the vertical displacement of all
children (H = ∆Nchildren + CheightNchildren).

Edges are represented as polygonal lines in which the segments are either
horizontal or vertical (orthogonal standard). An edge from parent to first child is a
horizontal line. Edges from parent to other children have exactly two bends and
consist of horizontal-vertical-horizontal segments. The edges from a parent to all its
children overlap to form a ‘trunk’. To allow space for edge drawings, each node is
allocated an additional Hspc to its right in the horizontal direction. The rectangular
region of width Hspc and height H, located at coordinates (x + Pwidth, y), is used by
the parent node to draw the edges to all its children. An example of a trees drawn by
the DW-tree editor is illustrated by Figure 2.

An Incremental Editor for Dynamic Hierarchical Drawing of Trees 989

2.1 Shape Functions

Shape functions are objects that define the outline of a tree or subtree. Figure 1
illustrates the concept for some tree, T. The solid upper line outlines the upper shape
(UT) of T, the solid lower line outlines the lower shape (LT) of T. The subtree rooted at
a given node has relative coordinates (0, 0) and corresponds to the coordinates of its
root node. Every such subtree, T, has a bounding rectangle of width WT and height
HT; in Figure 1, WT = 20 and HT = 12. The width of a subtree always takes into
account the horizontal spacing (Hspc) associated with the node(s) having maximum
extent in the X direction.

The upper shape function, UT, is a step function of its independent variable, x. We
represent UT as a vector of pairs: UT = < (δx1, y1), … (δxn, yn) >, where δxk ≥ 1
denotes the length of the kth step, 1 ≤ k ≤ n, and y1 = 0. yk gives the value of the
function in the kth step (interval). Along the X-axis the kth step defines a half-open

interval [xk-1, xk) where ∑
=

==
k

j
jxx

1
k0 xand 0 δ . The width of T then becomes

WT = xn – the right extreme of the last step interval of UT. Finally, we define
steps(UT) ={x0, x1,…, xn}, the set of interval end-points defined by UT, and
dom(UT) = [x0, WT], the closed interval defined by the extreme X-coordinates of the
minimal bounding rectangle for T.

The lower shape function, LT, is defined in an analogous way with the roles of x
and y reversed. That is, we represent LT as a step function with y as the independent
variable. Specifically, for some m ≥ 1, LT = < (x1, δy1), … (xm, δym) >. Along the

Y-axis the kth step defines a half-open interval [yk-1, yk) where 0 0y = and

k
1

y
k

j
j

yδ
=

=∑ . Thus the height of T becomes HT = ym – the right extreme of the

last step interval of LT. And, we define steps(LT) = { y0, y1, …, ym}, the set of
interval end-points defined by LT, and dom(LT)=[y0, HT], the closed interval defined
by the extreme Y-coordinates of the minimal bounding rectangle for T.

Because of our layout conventions, the key step in our layout algorithm requires
computing the vertical separation of adjacent siblings in a given subtree. Since the
lower shape function and upper shape function are based on different independent
variables, we must convert the lower shape function to an equivalent step function
with x as the independent variable. We let ΛT denote the lower shape function of T
where x is the independent variable. ΛT = < (δx1, y1), … (δxm, ym) >, where δxk =
(xk+1 – xk) and yk are computed from LT as defined above. However, because xm+1
is not defined in LT we compute δxm = (WT – xm). As we will show later, it will
always be the case that WT > xm, where xm is always taken from the last step
interval of LT.

2.2 The Shape Algebra

Incremental tree editing operations are based on algorithms for manipulating shape
functions. As the basis for these algorithms, we introduce a simple algebra for

990 D. Workman, M. Bernard, and S. Pothoven

manipulating shape functions. Each will be defined for upper shape functions –
analogous definitions apply to lower shape functions (LT and ΛT).

UShape(dx ,y) = an upper step function = <(dx, y)>. Similarly, LShape(x, dy) =
<(x, dy)>. UShape and LShape are distinct function types.

Min(R,S) = Z, where R,S and Z are UShape functions. Assume that dom(R) ⊆ dom(S).
Then dom(Z) = dom(S) and steps(Z) = steps(R) ∪ steps(S) for each x∈ steps(Z),
Z(x) = min(R(x),S(x)), if x ∈ dom(R) ∩ dom(S); Z(x) = S(x), if x ∈ dom(S) – dom(R).

Diff(R,S) = Z, where R,S and Z are UShape functions. Then dom(Z) = dom(R) ∩
dom(S) and steps(Z) = (steps(R) ∪ steps(S)) ∩ dom(Z). Finally, for each x∈ steps(Z),
Z(x) = R(x)-S(x).

ScalarAdd(c, R) = ScalarAdd(R,c) = Z, where R and Z are UShape functions and c is
a scalar constant. Z(x) = R(x)+c, for all x∈ dom(Z) = dom(R). In effect, the scalar c
is added to the y-component (dependent variable) of each step in a UShape, and
added to the x-component of each step in an LShape. Note: steps(Z) = steps(R).

Cat(R,S) = Z, where R, S and Z are UShape functions. steps(Z) = { x | x∈ steps(R)
or x = x’+WR, for x’∈ steps(S) } – {WR | y-value of the last step of R = y-value of the
first step of S}, and dom(Z) = [0, WR+WS]; Z(x) = R(x), if x ∈ dom(R); Z(x) = S(x’),
if x = x’+ WR, where x’∈ dom(S).

MaxElt(R) = C, where R is an UShape function. C = Max{ R(x) | x∈ dom(R)} =
Max{ R(x) | x∈ steps(R)}. For Min(R,S) the runtime is O(|R|+|S|), where |R| denotes
the number of steps in R (analogously of S). For ScalarAdd(R), MaxElt(R) the
runtime is O(|R|). For Cat(R, S) the runtime can be O(1) if linked structures are used
to represent shape functions.

3 Tree Operations

Some of the most basic operations on trees are:

(Op-1) Create and edit a selected node.
(Op-2) Cut and paste a subtree.
(Op-3) Read (write) a tree from (to) an external file.
(Op-4) Select a node in a tree.

(Op 1). Creating/editing a node involves defining/changing the size of the bounding
rectangle enclosing the node’s display image. This means (re-)computing the shape
functions for the node and then propagating these changes throughout the rest of the
tree in which the node is embedded. As this is a special case of cutting/pasting a
subtree, we describe how shape functions are defined for a single node and defer the
rest of the discussion to the subtree cutting/pasting operation, Op-2. If R is a free-
standing node with width (R.width) and height (R.height), then: UR = UShape
(R.width + Hspc, 0) and LR = LShape(0, R.height). This is an O(1) operation.

An Incremental Editor for Dynamic Hierarchical Drawing of Trees 991

(Op-2). Cutting/Pasting a node. Let S and T be fully defined free-standing trees. We
consider the operation of pasting S into T at some position. The position in T is a
node previously identified through a select operation (Op-4). Let P denote the
selected node in T and let R = root(S) denote the root of the tree S. The paste
operation requires a parameter that defines the new relationship P is to have with
respect to R in the composite tree, that is: R can be an upper/lower sibling of P
(assuming P ≠ root(T)); R can be the (new)(only) first/last child of P. We describe the
case where R is to become a new lower sibling of P. The other variations differ only
in minor details. Figure 3 illustrates the trees S and T before and after the paste
operation, respectively. The relevant shape functions are presented in the
accompanying table. There are three key sub-algorithms incorporated in the
algorithmfor a complete Cut or Paste operation.

Algorithm 1 (Change Propagation): If P is the parent of some node (child subtree)
whose shape changes, then the shape functions for P (for the subtree rooted at P) must
be recomputed (See Algorithms 2 and 3). No additional change is necessary to the
shape functions of any other child of P. Once the shape functions for P have been
recomputed, then this algorithm is repeated at the parent of P, etc., terminating only
when the root of the tree is reached. The worst case running time is O(N), where N is
the number of nodes in a tree. The worst case would occur with trees where every
node has a single child. However, if we assume a randomly chosen tree with N nodes,
then the tree will tend to be balanced – each node has approximately the same number
of children, say b. Thus Change Propagation will require O(dp) running time, where d
denotes the depth in the tree where the first change occurs (d ≈ logb(N)) and p
denotes the worst case running time at each level on a path to the root. The running
time at each level is essentially the running time of Algorithm 2 and 3 combined.

Fig. 3. Subtree Paste Operation

992 D. Workman, M. Bernard, and S. Pothoven

Tree
(Figure 3)

Upper Shape (U) Lower Shape
(L)

Lower Shape
(Λ)

T before paste <(10, 0), (3,3)> < (0,2), (4,7) > < (4,2), (9,7) >
S before paste <(12, 0)> < (0,2), (7, 4) > < (7,2), (5,4) >
T after paste <(10, 0), (3,3), (3, 7)> < (0,2), (4, 10),

(11, 1) >
< (4,2), (7, 10),

(5, 1) >

Algorithm 2 (Child Placement): The algorithm for (re-)positioning the child
subtrees of a given root or parent node when a new child subtree is added, removed,
or changed can be characterized as building a forest of trees relative to some given
origin point – the forest origin. Figure 4 illustrates a Forest, F, with origin (XF, YF)
and an arbitrary (child) subtree Ck with origin (Xk, Yk). The normal shape functions
for Ck have their origin relative to the origin of Ck. These functions are depicted as
Uk and Lk. The first step is to extend the shape functions for Ck so that they are

relative to the origin of the Forest. This can be done by defining F
kU =

ScalarAdd(Cat(UShape(Xk-XF,0),Uk), Yk – YF) and F
kL = Cat(LShape(0,Yk–YF),

ScalarAdd(Lk, Xk-XF)). The extended shape functions, F
kU and F

kL , are computed

by composing Cat() and ScalarAdd() in different orders but have the same form with
the roles of X and Y reversed. This symmetry in form of the operations used to
compute the upper and lower shape functions is one of the benefits of using the same
basic representation for these functions, but with the roles of X and Y reversed. The

running time for computing F
kU and F

kL is O(| F
kU |) and O(| F

kL |), respectively;

that is, the number of steps in each of these functions. By extending the shape
functions for individual trees within a Forest (Figure 4), we are able to define shape
functions, UF and LF, for a Forest, F. The algorithm for constructing UF and LF can
now be given.

(1) Let P be an existing node, the parent of a tree, T, we are about to construct. The
tree that results will be a simple matter of placing P relative to the forest composed of
its child subtrees, C1, C2, …, Cn. If n = 0, then T = P and the shape functions are
computed according to Op-1 above. If n > 0, continue with step (2).

(2) Define the origin of a Forest, F, by (XF, YF) = (XP+WP, YP). Initialize F = F1 =
{C1} to contain the first child subtree, C1, by setting the coordinates of C1 to
coincide with the origin of F. The algorithm proceeds iteratively by adding Ck+1 to

Fk to obtain Fk+1,for 2 ≤ k ≤ n. If we let k
FL and k

FU denote the bounding shape

functions for the Forest, Fk, the Forest obtained after adding k child subtrees, then
1
FL = L1 and 1

FU = U1, the shape functions for C1. The iterative step is (3).

(3) For 2 ≤ k ≤ n do the following:

(3a) Set δ = Vspc + MaxElt(Diff(1−Λk
F ,Uk)), where 1−Λk

F is the UShape function

obtained from 1−k
FL and Uk is the UShape function associated with Ck.

An Incremental Editor for Dynamic Hierarchical Drawing of Trees 993

Fig. 4. Extending Shape Functions to a Forest Origin

(3b) Compute the origin (Xk, Yk) for Ck as follows: (Xk, Yk) = (XF, YF + δ). Add
Ck to the Forest, F; that is, Fk = Fk-1 ∪ { Ck }.

(3c) Compute the new shape functions for Fk as follows: k
FU = Min(1−k

FU , F
kU) and

k
FL = Min(1−k

FL , F
kL), where F

kU and F
kL are the extended shape functions defined

by Ck at its new origin. Specifically recall, F
kU = ScalarAdd(Cat(UShape(Xk-XF,0),

Uk), Yk – YF) and F
kL = Cat(LShape(0,Yk – YF), ScalarAdd(Lk, Xk-XF)). In these

expressions, Xk-XF = 0, and Yk – YF = δ. Thus F
kU reduces to just ScalarAdd(Uk,

δ) and F
kL reduces to Cat(LShape(0,δ), Lk). Since the first step of Lk has a relative

x-coordinate of 0, then the result of the Cat() operations simply increases the δy1
component of the first step by δ. Runtime Note: The running time for (3a) and (3c) is

O(| F
kU | + | F

kL |), thus the running time for (3) does not exceed O(2b*d’) = O(d’),

where d’ is max(max{ | F
kU | | 2 ≤ k ≤ b },max{ | F

kL | | 1 ≤ k ≤ b-1 }), but under our

assumption of a balanced tree, d’ ≈ logb(N). These computations are traced for the
Paste operation illustrated in Figure 3 and are summarized in Table 1 below; Vspc =
1, and (XF, YF) = (4,0) in these computations. Also, C3 is the subtree S in this
scenario.

Cut operations use the same computations with slightly different preliminaries. If a
subtree S, rooted at node R with parent P, is removed from T, then node R is unlinked
from its parent P and its siblings (if any). The computations of Algorithm 2 are then
applied to the remaining children of P. The computation defined Algorithm1 then
propagates the change all the way to the root of the new tree.

994 D. Workman, M. Bernard, and S. Pothoven

Table 1. Computation of Bounding Shape Vectors and Child Placement

k Uk Lk
F
kU F

kL δ k
FU k

FL k
FΛ

1 <(6,0)> <(0,2)> <(6,0)> <(0,2)> <(6,0)> <(0,2)> <(6,2)>

2 <(9,0)> <(0,3)> <(9,3)> <(0,6)> 3 <(6,0),
(3,3)>

<(0,6)> <(9,6)>

3 <(12, 0)> <(0,2),
(7,4)>

<(12, 7)> <(0,9),
(7,4)>

7 <(6,0),
(3,3), (3,7)>

<(0,9),
(7,4)>

<(7,9),
(5,4)>

4 <(5, 0)> <(0,2)> <(5, 10)> <(0,12)> 10 <(6,0),
(3,3), (3,7)>

<(0,12),
(7,1)>

<(7,12),
(5,1)>

Algorithm 3 (Parent Update). Once the Forest of children has been computed as
described in Algorithm 2, the shape functions for the entire subtree rooted at the
Parent, P,must be updated. This implies that each node stores the shape functions for
the node itself and also the subtree rooted at that node. Let T denote the subtree rooted
at P and let F denote the Forest of children of P. Then UT = Cat(UP, UF) and LT =
Min(LP, ScalarAdd(LF, WP)). The running time for Parent Update is O(|LF|) due to
the Min() operation. The Cat() operation is O(1). By the analysis presented above for
Algorithms 1, 2 and 3 it follows that Cut and Paste operations, under a balanced tree
assumption, have a runtime cost of O(logb(N)2).

(Op-3). Reading/Writing a tree to an external file. By storing and incrementally
maintaining the size of a subtree rooted at a given node, it is possible to write a tree to
an external file without having to save the shape functions – when the tree is read
back into memory, the shape functions can be incrementally reconstructed in O(1)
time for each node of the tree. Thus, both write and read operations require O(N)
time.

(Op-4). Selecting a node. The most basic tree operation is selecting a node to use as
the basis for defining the above operations. Using the absolute display coordinates of
a node selected on the screen, a simple recursive descent algorithm is used to locate
the selected node in the tree structure. The algorithm uses a simple check to see if the
selected point falls within the bounding shape functions of a given subtree. The worst
case is O(N), but under a balanced tree assumption, selecting a node requires
O(log(N)) operations.

4 Related Work

Early work on dynamic and incremental drawing of trees was given by Moen [3]. He
provides a layout algorithm for constructing and drawing trees by maintaining subtree
contours stored as bounding polygons. Moen’s algorithm is similar to ours, differing
essentially in two important respects. First, Moen’s contours correspond to our step
functions. However, Moen contours completely circumscribe a subtree, whereas our
step functions bound essentially “half” the subtree; hence, Moen’s contours are
always greater in length than our step functions for a given subtree. Second, Moen’s
layout always positions the parent roughly at the midpoint of the forest of its children.

An Incremental Editor for Dynamic Hierarchical Drawing of Trees 995

Our algorithm always places the parent next to its first child. Examples can be found
where Moen’s policy is more costly in display area than ours, and vice versa. This is
an area requiring further investigation. Overall, the Big-O runtime complexity of the
two approaches is the same under similar assumptions. Our algorithm, however, will
generally run faster by a constant factor due to our parent placement policy and our
more efficient choice of data structure for bounding subtree shapes.

Cohen et al [2] provide dynamic drawing algorithms for several classes of graphs,
including upward drawings of rooted trees. Their tree layout is a layered drawing in
which nodes of the same depth are drawn on the same horizontal line. The bounding
box of a node is the rectangle bounding the node and its subtrees; subtrees are drawn
such that bounding boxes do not overlap giving a drawing area O(n2). In our layout,
the display space is used more efficiently as subtree shapes are defined by step
functions and the child placement algorithm minimizes the vertical separation
between children of the same parent to conserve display space.

5 Conclusion

In this paper, we have presented a new technique for an incremental tree editor based
on algorithms for manipulating shape functions. The boundaries of subtree objects are
defined as monotonic step functions and are manipulated to determine the best
placement of the subtrees. The framework was applied to hierarchical tree drawings
with a horizontal, left-to-right layout. The drawing system supports a full complement
of editing operations, including changing node size and shape and insertion and
deletion of subtrees. In redrawing the tree after user changes, the system reuses global
layout information and only localized subtree data need to be updated. This ensures
that the drawing is stable and incremental changes do not disrupt the user’s sense of
context. The algorithms conserve the total display area allocated to child-subtrees and
their runtime and space efficiency is good with all tree operations being worst case
O(N) in time.The tree editor was described for a very specific layout of hierarchical
trees. Our approach can be generalized to a family of Shaped-based algorithms where
the position of the parent relative to children and relative positions of children to each
other are based on layout parameters.

References

1. Arefi, F., Hughes, C., Workman, D., Automatically Generating Visual Syntax-Directed
Editors, Communications of the ACM, Vol.33, No. 3, 1990.

2. Cohen, R., DiBattista, G., Tamassia, R., Tollis, I., Dynamic Graph Drawings:Trees, Series-
Parallel Digraphs, and Planar ST-Digraphs, SIAM Journal on Computing, Vol.24, No. 5,
970-1001, 1995.

3. Moen, S., Drawing dynamic trees, IEEE Software, Vol. 7, 21-28, 1990
4. Pothoven, S., A Portable Class of Widgets For Grammar-Driven Graph Transformations,

M.Sc. Thesis, University of Central Florida, 1996.
5. D. Workman, GRASP: A Software Development System using D-Charts, Software –

Practice and Experience, Vol. 13, No. 1, pp. 17-32, 1983.

	Introduction
	Tree Layout Principles
	Shape Functions
	The Shape Algebra

	Tree Operations
	Related Work
	Conclusion

