
M. Bubak et al. (Eds.): ICCS 2004, LNCS 3038, pp. 1008–1012, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Open Standard Based Visualization of Complex Internet
Computing Systems

Seung S. Yang and Javed I. Khan

Media and Communications and Network Research Laboratory
Department of Computer Science

Kent State University
syang@cs.kent.edu, javed@kent.edu

Abstract. The emerging distributed internet computing paradigms envision
involvement of large conglomeration of dynamic and internet-wide distributed
computing resources. Visualization is an indispensable tool to confront the
challenge of managing such complex systems. We present a monitor messaging
framework for visualizing the lifecycle of a multiparty decentralized process.
This design can be used as a blueprint for an open standard based visualization
protocol for emerging internet computing systems.

1 Introduction

The Internet and particularly the Web is increasingly becoming a computation centric
network. Emerging initiatives, ranging from scientific grids to application services
networks, increasingly view network as an integrated platform for joint computing
and communication rather than one only for communication. Research in topics such
as composable services, active and programmable networking, etc. are pushing this
envelop. In last four years, we have developed and experimented with a number of
Ad-hoc active Internet Service Systems (made-to-order channel 1, transcoder channel
5, active prefetch-proxy, etc). Our experience with complex netcentric composable
systems indicates that monitoring and management of complex distributed system is
critical for enabling growth of complex distributed computing. In this paper we
discuss a monitoring framework that we have successfully used in several of our
systems Ad hoc Internet Service Systems (AISS). This infrastructure propagates the
status information and control commands via multi-level decentralized agents and can
be used to generate unified views of the overall operation of the services.

2 Design Considerations

Though traditional networking research has ignored visualization, but very recently
there has been few pioneering works in the area of Grid visualization. Tierney et. al.
[2] suggested an agent based monitoring system in Grid Environment. They use a
direct connection between producer and consumer to reduce communication traffic.
Waheed et. al [4] developed an monitoring infrastructure to share monitored data

Open Standard Based Visualization of Complex Internet Computing Systems 1009

using common APIs. Another layer based visualization system was suggested by
Bonnassieux et. al. [3]. They offer a flexible presentation layer for displaying
monitoring data from a huge and heterogeneous environment. The framework we
propose is particularly suitable for monitoring the lifecycle of loosely coupled and
scalable complex multiparty active systems. Besides fulfilling the basic responsibility
of process event reporting the design of our visualization framework offers the
following distinguishing features. It allows sub-system to maintain its own status and
control messages within it. A sub-system can further report its status and control
messages to its upper system. Furthermore it supports several reporting modes to
allow performance tuning. The time, type and content of messages all are decided
initially by the system designer and can be overridden by the system operator or
administrator at run time. A privileged user can freely controls and monitors the
system status using a flexibly configurable multi-view visualization system from any
authorized terminal.

3 Ad hoc Internet Service System Mode

3.1 Visualization of Control and Status Architecture

ABONE 6 is an operational network and provides an Internet wide network of routing
as well as processing capable nodes. The software structure of ABONE node involves
a native Node Operating System (NOS) and Execution Environments (EEs), which
acts like a remote shell and provides a programming framework to ABONE
applications. The ANETD is one of the developed EEs and allows users to obtain
secured and controlled access to the ABONE resources. The AISS uses the ANENTD
as its run time base infrastructure. However, the AISS is independent from the
ANETD. AISS runs on our Virtual Switching Machine (VSM) EE which runs via
ANETD. The Kent VSM can deploy and lunch authorized system components to
build a service. [5]

Fig. 1 described the symbolic representation of visualization system architecture.
The monitoring components of AISS are run on Kent VSMs. They are deployed and
executed on Kent VSM as a part of a service construction. A Status Monitor (SM)
processes status message of a sub-system. A SM stores status message structure
descriptions and delivers or saves status messages of the sub-system. A Control
Monitor (CM) handles control messages. A CM is added in a sub-system when the
sub-system supports a control mechanism from outside of the system. Initiation and
execution of a monitor is coordinated by sub-system management software.

3.2 Dynamic Message Binding and Interpretation

Based on the AISS design considerations, the visualization system should support 1)
dynamic interpretation of the system status messages, 2) seamless navigation through
layer abstraction and visualization of the given layer of a system, 3) uniform method
of visualization at all levels. The meaning of a status message is represented in a well
formed status structure description language and is gathered by a status monitoring

1010 S.S. Yang and J.I. Khan

User Interface

Status Monitor

Control Parser

Control Monitor

Status flow Control flow Message description flowStatus flow Control flow Message description flow

System
ComponentSystem

ComponentSystem
Component

System
ComponentSystem

ComponentSystem
Component

System
ComponentSystem

ComponentSystem
Component

storage

System
ComponentSystem

ComponentSystem
Component

Status Monitor

Status Monitor

System
ComponentSystem

ComponentSystem
Component

Status Monitor

Status Monitor

Status Monitor
storage

Control Monitor

Message Parser

Status Monitor

Fig. 1. Visualization System Architecture

system. When a new system component is developed, the descriptions of its status
message structures and the descriptions of its state diagram are supplied together with
the component. A status monitoring system and a visualization system dynamically
binds and interprets the meaning of a status message with the given description.

The Visualizer integrates with a code server based hierarchical code server-based
service deployment framework. Each system can have isomorphic sub-systems and/or
code modules. Each time a system is installed (i.e. all of its sub-systems are launched)
a hypothetical state-monitor is assumed to be concurrently instantiated. A set of
messages are generated towards this state-monitor in sub-system’s leader module. A
visualization system can use a subset of the messages to present various perspectives
on the system. The key challenge here is that these messages should carry enough
information to identify it self with respect to the various perspective frameworks
within which an active service operates along with the actual status information.
Below we provide a try-partite identifier system. This message system encodes the
fields in its messages (i) system identifier, (ii) subsystem module identifier, (iii)
system state identifier, (iv) state execution count (v) system status, (vi) service
instance identifier, (vii) service subsystem instance identifier, (viii) service instance
status, (ix) service location instance identifier, (x) platform identifier (xi) platform
status. The primary state identifier set i-iii is assigned by the programmer who has
coded the active modules. This identifier set has to be hierarchically unique within a
specific version of a specific software. The identifier set vi-vii are to be assigned are
to be assigned by the active service administration system (such as EEs/ ANETDs)
while installing and initializing instances of the service at each instantiating of loaded
modules. Again, these identifier set has to be hierarchically unique within the service
administration domain. The last identifier x is to be supplied by the active node
owner. These are assigned when a node joins an active network domain. The status
information iv and v is computed by the code modules at run time and thus its value is
designed by the programmer. The service instance status information viii, if any, is
passed on to the monitor messaging agents by the service administration local agent

Open Standard Based Visualization of Complex Internet Computing Systems 1011

(such as node EE). The status information xi, if any, is set by the local node
administrator during the period the service is running. The monitor messaging system
collects and composes the messages prior to generating the messages. Messages can
contain control flags to control the mode of reporting and even to filter the content to
tune performance. The system allows three reporting modes (i) REAL-TIME, (ii)
BATCH, (iii) TRACE-ONLY. In real-time mode the monitor messages are generated
and sent when the code executes through the state points. In BATCH-ONLY mode
the messages are generated at real-time but forwarded periodically in batch. The
period is decided by a PERIOD field. The mode feature only modifies the time of
sending the monitor messages but do not affect their content. Three flags are further
used to negotiate filtering the three status fields in the messages. In every message
sent by the monitor messaging agent the flags are set according to the current value of
these flags. A set of control messages can be potentially sent in reverse direction to
request change in these flags (and the PERIOD field).

(b)

<!ELEMENT STAT_MSG (SYS_ID, SUBSYS_MOD_ID,
SYS_STAT_ID, STAT_EXE_CNT, SYS_STAT,
SVC_INST_ID, SVC_SUB_INST_ID, SVC_INST_STAT?,
SVC_LOC_INST_ID, PFM_ID, PFM_STAT?,
RPT_MODE?, PERIOD?) >

<!ELEMENT SYS_ID (MSG_ST16) >
<!ELEMENT SUBSYS_MOD_ID (MSG_ST16) >
<!ELEMENT SYS_STAT_ID (MSG_ST16) >
<!ELEMENT STAT_EXE_CNT (MSG_ST4) >
<!ELEMENT SYS_STAT (MSG_ST4) >
<!ELEMENT SVC_INST_ID (MSG_ST16) >
<!ELEMENT SVC_SUB_INST_ID (MSG_ST16) >
<!ELEMENT SVC_INST_STAT (MSG_ST4) >
<!ELEMENT SVC_LOC_INST_ID (MSG_ST16) >
<!ELEMENT PFM_ID (MSG_ST16) >
<!ELEMENT PFM_STAT (MSG_ST4) >
<!ELEMENT RPT_MODE (REALTIME|BATCH|TRACE) >
<!ELEMENT PERIOD (#PCDATA) >
<!ELEMENT MSG_ST16 (HD_ID16, HD_DESC16) >
<!ELEMENT MSG_ST4 (HD_ID4, HD_DESC12) >
<!ELEMENT HD_ID16 (#PCDATA) >

<!ATTLIST HD_ID16 size CDATA #FIXED “16”>
<!ELEMENT HD_DESC16 (#PCDATA) >

<!ATTLIST HD_DESC16 size CDATA #FIXED “16”>
<!ELEMENT HD_ID4 (#PCDATA) >

<!ATTLIST HD_ID4 size CDATA #FIXED “4”>
<!ELEMENT HD_DESC12 (#PCDATA) >

<!ATTLIST HD_DESC12 size CDATA #FIXED “12”>

(a)100 ALT_CHANNEL

10 ALT_FORWARDER

5 print

1000 print_cnt

3 RUN 005

Alternate Routing Channel SVC 004

Fowarder 7 ESTABLISHED

6 node6

5000 KENT AN #001

10 FULL_SERVICE 1 REALTIME

(a)

0 16 31

(b)

<!ELEMENT STAT_MSG (SYS_ID, SUBSYS_MOD_ID,
SYS_STAT_ID, STAT_EXE_CNT, SYS_STAT,
SVC_INST_ID, SVC_SUB_INST_ID, SVC_INST_STAT?,
SVC_LOC_INST_ID, PFM_ID, PFM_STAT?,
RPT_MODE?, PERIOD?) >

<!ELEMENT SYS_ID (MSG_ST16) >
<!ELEMENT SUBSYS_MOD_ID (MSG_ST16) >
<!ELEMENT SYS_STAT_ID (MSG_ST16) >
<!ELEMENT STAT_EXE_CNT (MSG_ST4) >
<!ELEMENT SYS_STAT (MSG_ST4) >
<!ELEMENT SVC_INST_ID (MSG_ST16) >
<!ELEMENT SVC_SUB_INST_ID (MSG_ST16) >
<!ELEMENT SVC_INST_STAT (MSG_ST4) >
<!ELEMENT SVC_LOC_INST_ID (MSG_ST16) >
<!ELEMENT PFM_ID (MSG_ST16) >
<!ELEMENT PFM_STAT (MSG_ST4) >
<!ELEMENT RPT_MODE (REALTIME|BATCH|TRACE) >
<!ELEMENT PERIOD (#PCDATA) >
<!ELEMENT MSG_ST16 (HD_ID16, HD_DESC16) >
<!ELEMENT MSG_ST4 (HD_ID4, HD_DESC12) >
<!ELEMENT HD_ID16 (#PCDATA) >

<!ATTLIST HD_ID16 size CDATA #FIXED “16”>
<!ELEMENT HD_DESC16 (#PCDATA) >

<!ATTLIST HD_DESC16 size CDATA #FIXED “16”>
<!ELEMENT HD_ID4 (#PCDATA) >

<!ATTLIST HD_ID4 size CDATA #FIXED “4”>
<!ELEMENT HD_DESC12 (#PCDATA) >

<!ATTLIST HD_DESC12 size CDATA #FIXED “12”>

(a)100 ALT_CHANNEL

10 ALT_FORWARDER

5 print

1000 print_cnt

3 RUN 005

Alternate Routing Channel SVC 004

Fowarder 7 ESTABLISHED

6 node6

5000 KENT AN #001

10 FULL_SERVICE 1 REALTIME

(a)100 ALT_CHANNEL

10 ALT_FORWARDER

5 print

1000 print_cnt

3 RUN 005

Alternate Routing Channel SVC 004

Fowarder 7 ESTABLISHED

6 node6

5000 KENT AN #001

10 FULL_SERVICE 1 REALTIME

(a)

0 16 31

Fig. 2. A Status Message Structure and a Status Message

4 Conclusion

The suggested visualization system for Ad hoc Internet Service System gives intuitive
status report and simple control using decentralized reporting for a multi-component
multi-location internet service. Just like other IP based messaging (such as ICMP or
TCP signaling, etc.) this monitor messaging should be wrapped with an authentication
protocol. This overall design can be used as a blueprint for an open standard based
visualization protocol for emerging internet computing systems. This work has been
funded by the DARPA Grant F30602-99-1-0515 under its Active Network initiative.

1012 S.S. Yang and J.I. Khan

References

1. Javed I. Khan, & S. S. Yang, Made-To-Order Custom Channels for Netcentric
Applications over Active Network, Proc. Of the Conf. On Internet and Multimedia
Systems and Applications, IMSA 2000, Nov 2000, Las Vegas, pp22-26.

2. B. Tierney, R. Aydt, D. Gunter, W. Smith, V. Taylor, R. Wolski, M. Swany, A Grid
Monitoring Service Architecture, Global Grid Forum Performance Working Group, 2001

3. Bonnassieux F., Harakaly R., Primet P.: MapCenter: an Open GRID Status Visualization
Tool, proceedings of ISCA 15th Int. Conf. on parallel and distributed computing systems,
Louisville, Kentucky, USA, September 2002.

4. A. Waheed, W. Smith, J. George, J. Yan, An Infrastructure for Monitoring and
Management in Computational Grids.

5. Seung S. Yang and Javed I. Khan, Delay and Jitter Minimization in Active Diffusion
Computing, Int. Symp. on Applications and the Internet, Jan. 27-31 2003, Orlando,
Florida.

6. Steve Berson, Bob Braden, Steve Dawson. Evolution of an Active Networks Testbed,
Proceedings of the DARPA Active Networks Conference and Exposition 2002, pp. 446-
465, San Francisco, CA, 29-30 May 2002.

	Introduction
	Design Considerations
	Ad hoc Internet Service System Mode
	Visualization of Control and Status Architecture
	Dynamic Message Binding and Interpretation

	Conclusion

