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Abstract. We track the evolutionary history of the Internet at the au-
tonomous systems (ASes) level and provide the evidence that it can be
described in the framework of the multiplicative stochastic process. It is
found that the fluctuations arising in the process of diversifying connec-
tions of each node play an essential role in forming the status quo of the
Internet. Extracting relevant parameters for the growth dynamics of the
Internet topology, we are able to predict the connectivity (degree) expo-
nent γ of the Internet AS map successfully. We also introduce a quantity
called the load as the capacity of node needed for handling the commu-
nication traffic and study its distribution over the Internet across years.
The load distribution follows a power law with the exponent δ ≈ 2.0 and
the load at the hub scales with the network size as �h ∼ N1.8.

1 Introduction

During recent years, the Internet has become one of the most influential media in
our daily life, going beyond in its role as the basic infrastructure in the technolog-
ical world. Explosive growth in the number of users and hence the amount of traf-
fic poses a number of problems which are not only important in practice for, e.g.,
maintaining it free from any undesired congestion and malfunctioning, but also
of theoretical interests as an interdisciplinary topic [1]. Such interests, also stim-
ulated by other disciplines like biology, sociology, and statistical physics, have
blossomed into a broader framework of network science [2,3,4]. The Internet is a
primary example of complex networks. It consists of a large number of very het-
erogeneous units interconnected with various connection bandwidths, however,
it is neither regular nor completely random. In their landmark paper, Faloutsos
et al. [5] showed that the Internet at the autonomous systems (ASes) level is a
scale-free (SF) network [6], meaning that it follows a power-law distribution

pd(k) ∼ k−γ (1)

in node degree k, the number of connections a node has. The degree exponent γ
of the AS map is subsequently measured by a number of groups to be γ ≈ 2.1.

Emergence of such power-law degree distribution calls for explanation and
understanding of the basic mechanism underlying the growth of the Internet.
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Once revealed, it can be used to predict what the Internet will be like in the
future, as well as how it has evolved into the present shape. In the first part
of the paper, we will address this issue, showing that it can be described by
a simple physical model, the multiplicative stochastic process. By extracting
relevant parameters for the stochastic process from the time history of the AS
map deposited in the Oregon route views project, we can predict the degree
exponent of the Internet accurately.

The Internet is not a quiet object. Data packets are sent and received over
it constantly, causing momentary local congestion from time to time. To avoid
such undesired congestion, the capacity, or the bandwidth, of the routers should
be as large as it can handle the traffic. In the second part of the paper, we
will introduce a rough measure of such capacity, called the load and denoted
as �. The distribution of the load reflects the high level of heterogeneity of the
Internet: It also follows a power law,

pl(�) ∼ �−δ, (2)

with the load exponent δ. We will discuss the implication of the power-law
behavior of the load distribution.

2 Internet Evolution as a Multiplicative Stochastic
Process

The mechanism of the emergence of SF network is mostly captured by the
Barabási-Albert (BA) model [7] which assumes the linear growth in numbers of
nodes and links in time and the preferential attachment (PA) in establishing links
from a new node to other previously existing ones. The PA means that the prob-
ability Πi(t) that a node i will receive a link from the new node created at time
t is linearly proportional to its present degree ki(t), i.e., Πi(t) = ki(t)/

∑
j kj(t).

The empirical evidence of the PA in the Internet has been reported [8,9]. As we
will see, however, the assumption that the numbers of nodes and links increase
linearly in time does not apply to the real situation of the Internet. Rather,
the numbers of nodes and links increase exponentially but with different rates.
Furthermore, the interconnections between nodes are being updated continually
in the Internet, which was not incorporated in the original BA model.

Huberman and Adamic (HA) [10] proposed another scenario for SF networks.
They argued that the fluctuation effect arising in the process of connecting and
disconnecting links between nodes is an essential feature to describe the dynamics
of the Internet topology correctly. In their model, the total number of nodes N(t)
increases exponentially with time as

N(t) = N(0) exp(αt). (3)

Next, they assumed that the degree ki at a node i evolves through the multi-
plicative stochastic process,

ki(t + 1) = ki(t)[1 + ζi(t + 1)], (4)
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where ζi(t) is the growth rate of the degree ki at time t, which fluctuates
from time to time. Thus, one may divide the growth rate ζi(t) into two parts,
ζi(t) = g0,i + ξi(t), where g0,i is the mean value over time, and ξi(t) the rest
part, representing fluctuations over time. ξi(t) is assumed to be a white noise
satisfying 〈ξi(t)〉 = 0 and 〈ξi(t)ξj(t′)〉 = σ2

0,iδt,t′δi,j , where σ2
0,i is the variance.

Here 〈· · ·〉 is the sample average and δa,b is the Kronecker delta symbol. For later
convenience, we denote the logarithm of the growth factor as Gi(t) ≡ ln[1+ζi(t)].
Then a simple application of the central limit theorem ensures that the probabil-
ity distribution of ki(t)/ki(t0), t0 being a reference time, follows the log-normal
distribution for sufficiently large t. To get the degree distribution, one needs to
collect all contributions from different ages τi, growth rates g0,i, standard devi-
ations σ0,i and initial degree ki(t0). HA further assumed that ζi are identically
distributed so that g0,i = g0 and σ0,i = σ0 for all i. Then the conditional prob-
ability for degree, Pd(k, τ | k0), that ki(t0 + τ) = k, given ki(t0) = k0 is given by

Pd(k, τ | k0) =
1

k
√

2πσ2
effτ

exp

{

− (ln (k/k0) − geffτ)2

2σ2
effτ

}

, (5)

where geff ≡ 〈Gi(t)〉 and σ2
eff ≡ 〈

(Gi(t) − 〈Gi(t)〉)2
〉
. geff and σ2

eff are related to
g0 and σ2

0 as geff ≈ g0 − σ2
0/2 and σ2

eff ≈ σ2
0 , respectively [11]. Since the density

of nodes with age τ is proportional to ρ(τ) ∼ exp(−ατ), the degree distribution
collected over all ages becomes pd(k) =

∫
dτρ(τ)Pd(k, τ | k0) ∼ k−γ , where the

degree exponent γ is given in terms of the growth parameters as

γ = 1 − geff

σ2
eff

+

√
g2
eff + 2ασ2

eff

σ2
eff

. (6)

In the next section, we will measure such parameters from the real evolutionary
history of the Internet AS map and check if the HA scenario holds.

3 Growth Dynamics of Internet

A number of projects exist aiming to map the world-wide topology of the Inter-
net. One such is the Route Views project initiated at the university of Oregon
[12], the data of which are also archived at the National Laboratory of Applied
Network Research (NLANR) [13]. Among the daily data from November 1997
to January 2000, we sample one AS map a month, with the total period of 26
months, and analyze them for various quantities. First we measure the growth
rate of the number of ASes α. We also measure directly the growth rate of the
number of links β, which can be crosschecked for consistency later. In Fig. 1,
we show the total number of ASes N(t) and the total number of links L(t) as a
function of time t. The straight line in log-linear plot means N(t) and L(t) in-
deed grows exponentially. The growth rates are determined to be α ≈ 0.029 and
β ≈ 0.034. We also find that the newly appeared AS would connect to only one
or two existing ASes so that the average number of links the new AS establishes
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Fig. 1. The time evolution of the number of ASes N(t) (a), the number of links between
ASes L(t) (b), and the degree of the hub kh(t) (c). Note that the ordinates in the figures
are in logarithmic scale, indicating the exponential increase of corresponding quantities.
The fitted line has a slope 0.029 in (a), 0.034 in (b), and 0.043 (0.030) for the dotted
(dashed) one in (c).

is knew ≈ 1.35. Fig. 1(c) shows the growth of the degree of the hub, the node
with the largest degree. It shows a change of growth rate around t ≈ 14.

The measurement of g0 and σ0 is nontrivial due to the presence of large
fluctuations. To this end, we measure the degree growth rate of a node i, Gi(t),
defined earlier as Gi(t) ≡ ln[1 + ζi(t)] = ln[ki(t)/ki(t − 1)]. To keep Gi(t) well-
defined for all t, we consider only the nodes existing for the entire time range
0 ≤ t ≤ 26, the set composed of which is denoted by S hereafter. By the existence
of a node we mean that its degree is nonzero, since we cannot identify an AS with
no connection. For each i (i ∈ S), let gi = 〈Gi(t)〉t and σ2

i =
〈
(Gi(t) − gi)2

〉
t
,

where 〈· · ·〉t means the temporal average over the period 16 < t ≤ 26 (T = 10).
If the HA scenario holds, the histogram of {gi} for all nodes would follow the
Gaussian distribution with the mean geff and the variance σ2

eff/T . We show such
histogram in Fig. 2, the fit of which to the Gaussian gives the mean g as 0.016
and the standard deviation σg as 0.04. The measured values of {σ2

i } give the
mean value σ2 ≈ 0.017.

It is most likely that g and σ2 would have a distribution over nodes. As
HA assumed, however, we try to approximate the growth process by a single
process whose effective mean growth rate and standard deviation are geff and σeff ,
respectively. Then the Eq. (5) should hold for all i and all t with a suitable choice
of those parameters. For this purpose, we consider the distribution P [ki(t)/ki(t0)]
in terms of the scaled variables x and y defined as

x ≡ ln[ki(t)/ki(t0)] − gd(t − t0)√
2σ2

d(t − t0)
, (7)

and
y ≡ P [ki(t)/ki(t0)][ki(t)/ki(t0)]

√
2πσ2

d(t − t0), (8)

where we set t0 = 0 and gd and σd are parameters to be chosen. From Eq. (5),
with suitably chosen parameters gd and σd, the distribution for different time
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Fig. 2. The normalized histogram of gi (a) and σ2
i (b). In (a), the data is fitted with

a Gaussian with the mean 0.016 and the standard deviation 0.04. In (b), the data is
fitted with an exponential decay exp(−x/xc) with the characteristic scale xc ≈ 0.02.
The measured value of the average is σ2 ≈ 0.017.
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Fig. 3. Plot of P [ki(t)/ki(t0)] versus ki(t)/ki(t0) for different times t > 16 in terms of
the scaled variables y and x defined in Eqs. (7) and (8). Larger deviations for large x
are due to t being finite and are caused by the rare statistics.

t would collapse onto a single curve, ln y = −x2. We show such data in Fig. 3.
The best collapse can be accomplished by choosing the parameters gd = 0.016
and σd = 0.14, which should be identified with geff and σeff , respectively. The
effective growth parameters found in this way are in accordance with the ones
estimated before as g = 0.016 and σ2 = 0.017. As noted earlier, the consistency
of estimated parameters can be checked as, for example, it should satisfy β =
max(α, geff + σ2

eff), for which we have β = 0.034 and geff + σ2
eff = 0.035, being

reasonably consistent with each other. Thus we conclude the parameters geff =
0.016 and σeff = 0.14 can be regarded as the effective parameters of the degree
growth dynamics of the Internet AS map as a single process. Applying those
values together with α = 0.029 found earlier into Eq. (6), we found γ ≈ 2.1,
which is in excellent agreement with the directly measured ones.
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4 Load Distribution of Internet

To a large extent, the Internet is the medium of communication. The continuous
communication between hosts generates certain amount of data traffic. To make
the best use of it, we have to avoid congestions, from which we suffer possible
delays and the loss of information. What’s worse, one doesn’t know when and
how much a host will generate the traffic. Absent is the central regulation in the
Internet, hence each node should do its best for its own ends. To give a measure
of such activity, we define the load �i as the amount of capacity or bandwidth
that a node i can handle in unit time [14]. Not knowing the level of traffic, one
assumes that every node sends a unit packet to everyone else in unit time. One
further assumes that the packets are transfered from the source to the target only
along the shortest paths between them, and divided evenly upon encountering
any branching point. To be precise, let �s→t

i be the amount of packet sent from
s (source) to t (target) that passes through the node i. Then the load of a node
i, �i, is the accumulated sum of �s→t

i for all s and t,

�i =
∑

s �=t

�s→t
i . (9)

In other words, the load of a node i gives us the information how much the
capacity of the node should be in order to maintain the whole network in a
free-flow state. To calculate load on each node, we use the modified breath-first
search algorithm introduced by Newman [15] and independently by Brandes [16],
which can evaluate {�i} in time of order O(N2) for sparse binary graphs.

For a number of SF networks in nature and society, the load distribution
is also found to follow a power law, Eq. (2) [17]. The Internet AS map is
no exception and the load exponent δ of the power law is estimated to be
approximately δ ≈ 2.0 [17,18]. The power-law load distribution means that a
few ASes should handle an extraordinarily large amount of load while most
others should do only a little.

The load of a node is highly correlated with its degree. The Pearson corre-
lation coefficient between the two quantities is as high as 0.98. This suggests a
scaling relation between the load and the degree of a node as

� ∼ kη (10)

and the scaling exponent η is estimated as η = 1.06 ± 0.03 for January 2000 AS
map (Fig. 4a). In fact, the exponent η depends on γ and δ as η = (γ−1)/(δ−1) ≈
1.1, which is consistent with the direct measurement.

The time evolution of the load at each AS is also of interest. Practically,
how the load scales with the total number of AS (the size of the AS map) is
an important information for the network management. In Fig. 4b, we show
�i(t) versus N(t) for 5 ASes with the highest rank in degree, i.e., 5 ASes that
have largest degrees at t = 0. The data of {�i(t)} shows large fluctuations in
time. Interestingly, the fluctuation is moderate for the hub, implying that the
connections of the hub is rather stable. The load at the hub is found to scale
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Fig. 4. (a) The scatter plot of the load versus the degree of each node for the AS map
as of January 2000. The slope of the dashed line is 1.06, drawn for the eye. (b) Time
evolution of the load versus N(t) at the ASes of degree-rank 1 (◦), 2 (�), 3 (�), 4 (�),
and 5 (×). The dashed line for larger N has slope 1.8, drawn for the eye.

with N(t), �h(t) ∼ N(t)µ, but the scaling shows a crossover from µ ≈ 2.4 to
µ ≈ 1.8 around t ≈ 14, as it did for the degree.

5 Summary

We have studied the temporal evolution of the Internet AS map and showed
that it can be described in the framework of multiplicative stochastic process
for the degree growth dynamics. We measured the values of relevant parameters
from the history of the AS map. With those values, the AS number growth rate
α = 0.029, the effective degree growth rate geff = 0.019, and its effective standard
deviation σeff = 0.14, we were able to predict the degree exponent γ as γ ≈ 2.1,
which is in excellent agreement with the previously reported empirical values
γmeasured = 2.1 ∼ 2.2. Although it successfully accounts for the emergence of the
scale-free characteristics of the Internet, the present description is by no means
complete. More elaborated modeling [19,20,21] would improve our understanding
of the evolutionary and organizational principle of the Internet and the research
in this direction is highly called for.

In the second part of the paper, we introduced a quantity called the load. It
can be thought of as the amount of traffic that a node should handle to keep
the whole network away from the unwelcome congestion and maintain free-flow
state, giving a measure of desired capacity of the nodes. The load distribution
also follows a power law. The load and the degree of an AS are highly correlated
with each other. The analysis of the temporal change of the load reveals that
the load at the hub scales with the system size as N1.8. Finally, we note that the
contents of this article is in part overlapped with our previous studies published
in [14,17,19].



Evolution of the Internet Map and Load Distribution 1045

References

1. Pastor-Satorras, R., Vespignani, A.: Evolution and Structure of the Internet. Cam-
bridge University Press, Cambridge (2004)

2. Albert, R., Barabási, A.-L: Statistical mechanics of complex networks. Rev. Mod.
Phys. 74 (2002) 47–97

3. Dorogovtsev, S. N., Mendes, J. F. F.: Evolution of Networks. Oxford University
Press, Oxford (2003)

4. Newman, M. E. J.: The structure and function of complex networks. SIAM Rev.
45 (2003) 167–256

5. Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships in the In-
ternet topology. Comput. Commun. Rev. 29 (1999) 251–262

6. Barabási, A.-L., Albert, R., Jeong, H.: Mean-field theory for scale-free random
networks. Physica A 272 (1999) 173–187

7. Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286
(1999) 509–512

8. Pastor-Satorras, R., Vázquez, A., Vespignani, A.: Dynamical and correlation prop-
erties of the Internet. Phys. Rev. Lett. 87 (2001) 258701
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