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Abstract. The complex evolving network is constructed from the seis-
mic data taken in southern California, and its topological properties are
studied. It is shown that the network associated with earthquakes is scale
free. The value of the degrees of separation, i.e., the characteristic path
length, is found to be small, between 2 and 3. The clustering coefficient
is also calculated and is seen to be about 10 times larger than that in the
case of the completely random network. These discoveries should play
an important role in modeling earthquake phenomenon.

1 Introduction

Earthquake phenomenon has been attracting much attention from the viewpoint
of science of complexity. [1]-[5]. Though seismicity has diverse physical aspects,
some known empirical laws are remarkably simple. The Omori law for the tempo-
ral pattern of aftershocks [6] and the Gutenberg-Richter law for the relationship
between frequency and magnitude [7] are celebrated classical examples. These
are the power laws and represent the scale-free natures of seismicity.

In recent papers [8], [9], we have studied spatio-temporal complexity of seis-
micities in southern California and Japan based on nonextensive statistical me-
chanics [10]-[15], which is considered to be a consistent and unified framework
for the statistical description of complex systems. We have found that both the
spatial distance [8] and time interval [9] between two successive earthquakes are
described extremely well by the so-called q-exponential distribution (see below)
which maximizes the Tsallis entropy [10], [15] under appropriate constraints.

On the other hand, we have also discovered the nonextensive-statistical-
mechanical element in the Internet time series of the packet round-trip time mea-
sured by performing the Ping experiment [16]-[19]. We have found that statistics
of the sparseness time [16] obeys the q-exponential distribution. The sparseness
time is the quantity analogous to the time interval between earthquakes. Thus,
seismicity and the Internet exhibit a similar dynamical behavior. In addition,
we have also found that the Omori and Gutenberg-Richter laws also hold for
“Internetquakes” corresponding to the heavily congested states of the Internet
[17]-[19]. This striking similarity suggests the existence of a deep root common in
seismicity and the Internet. In this respect, the scale-free structure of topology
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of the Internet [20] is of central interest, and accordingly we are naturally led to
examining a possible network structure underlying earthquake phenomenon.

Here, we propose the definition of the earthquake network and analyze its
topological properties. Using the seismic data taken in southern California, we
calculate the distribution of connectivities, the degree of separation (i.e., the
characteristic path length), and the clustering coefficient of the earthquake net-
work. We shall show that the distribution of connectivities decays as a power
law, indicating that the earthquake network is scale free [21]-[24]. The degree
of separation is found to take a small value between 2 and 3, exhibiting the
small-world structure of the network [25]. We shall also show that the cluster-
ing coefficient is about 10 times larger than that in the case of the completely
random network, implying the complex hierarchical structure [22], [23], [25].

The present paper is organized as follows. In Sect. 2, we explain how to con-
struct the earthquake network from the seismic data. In Sect. 3, we discuss the
scale-free nature of the earthquake network constructed from the data taken in
southern California. An interpretation is given to the emergence of the scale-free
nature in connection with the geological feature of aftershocks. In Sect. 4, we dis-
cuss the small-world and hierarchical properties. Sect. 5 is devoted to conclusion.

2 Earthquake Network

Our proposal for constructing the earthquake network is as follows. A geograph-
ical area under consideration is divided into a lot of small cubic cells. A cell is
regarded as a vertex when earthquakes with any values of magnitude occurred
therein. Two successive events define an edge between two vertices. In this way,
the complex fault-fault interaction is replaced by this edge. If two successive
earthquakes occur in the same cell, they form a loop. This procedure allows us
to map the seismic data to an evolving network. This construction contains a
unique parameter, which is the cell size. Since there are no a priori operational
rules to determine the cell size, it is essential to examine the dependencies of the
network properties on this parameter. Once the cell size is fixed, the earthquake
network is unambiguously defined by the seismic data [26], [27]. The earthquake
network contains a few special vertices associated with mainshocks. Careful anal-
ysis of the seismic data shows that aftershocks associated with a mainshock tend
to return to the locus of the mainshock geographically and consequently a stronger
mainshock tends to have the larger values of connectivities contributed by more
aftershocks. Accordingly, the concept of preferential attachment [21]-[24] is real-
ized by the existence of “hubs”, the role of which is played by the mainshocks.
This is schematically depicted in Fig. 1, in which the vertices, A and B, may
be identified with the cells containing the mainshocks. This observation leads
to the reasoning that the earthquake network may be scale-free and possess the
small-world structure. In what follows, we shall show that it is indeed the case.
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Fig. 1. A schematic description of the earthquake network. The vertices represent
the cells in which earthquake occured and the edges replace the complex fault-fault
interaction. A and B are the cells containing mainshocks and have large connectivities.

3 Scale-Free Nature of Earthquake Network

A key concept in the Barabási-Albert scale-free networks is the rule of preferen-
tial attachment. According to this rule, a newly created vertex is connected to
the vertex vi with connectivity ki with probability

Π(ki) =
ki + 1

∑
j(kj + 1)

. (1)

In [24], Albert and Barabási have discussed an exactly solvable model of an
evolving random graph and have derived the analytic expression for the dis-
tribution of connectivities, P (k), in the continuum limit. This solution is the
Zipf-Mandelbrot-type distribution [28]

P (k) ∼ (k + k0)−γ (2)

with γ > 1 and k0 > 0, which clearly decays as a power law. In the worked
examples [22], the exponent γ ranges between 1.05 and 3.4.

It should be noted that, with identifications q = 1 + 1/γ and κ = (q −
1)/k0, P (k) in Eq. (2) is reexpressed in terms of the q-exponential function
as P (k) ∼ eq(−k/κ), where eq(x) = (1 + (1 − q)x)1/(1−q)

+ with the notation
(a)+ ≡ max{0, a}. This implies that the Albert-Barabási solution optimizes the
Tsallis entropy [10], [15], Sq[P ] = (1−q)−1(

∫
dkP q(k)−1), under the appropriate

constraints on the normalization of P (k) and the average number of edges in the
continuum limit. Relevance of Tsallis nonextensive statistical mechanics [10]-[15]
to a complex networks has recently been a noticed also in [29].

We have constructed the earthquake networks in the area of southern Califor-
nia by introducing two cell sizes, 10 km×10 km×10 km and 5 km×5 km×5 km.
(We have examine these two cases, since as already mentioned there are no
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Fig. 2. The log-log plots of the distributions of connectivities. All quantities are dimen-
sionless. The dots represent the observed data and the solid lines are drawn by using Eq.
(2). (a) The cell size 10 km×10 km×10 km, γ = 1.33 (±0.03), and k0 = 1.70 (±0.02).
(b) The cell size 5 km × 5 km × 5 km, γ = 1.61 (±0.03), and k0 = 2.04 (±0.02).

a priori operational rules to fix the cell size.) We have analyzed the earth-
quake catalog made available by the Southern California Earthquake Data Cen-
ter (http://www.scecdc.scec.org/catalogs.html) covering the region 29◦15.25′N−
38◦49.02′N latitude and 113◦09.00′W − 122◦23.55′W longitude with the max-
imal depth (of the foci of the observed earthquakes) 57.88 km in the period
between 00:25:8.58 on January 1, 1984 and 15:23:54.73 on December 31, 2002.
(We have taken this period since the data in 1983 are partially missing for a
few months.) In Fig. 2, we present the plots of the distributions of connectiv-
ities. One appreciates that the data is well fitted by Eq.(2), and therefore the
earthquake networks possess the scale-free nature. This may be interpreted as
follows. The Gutenberg-Richter law, on the one hand, tells us that frequency of
earthquakes with large values of moment decays as a power law. On the other
hand, as already mentioned, aftershocks associated with a mainshock tend to
be connected to the vertex of the mainshock, realizing preferential attachment.
These imply that the scale-free nature of the distribution of connectivities may
have its origin in the Gutenberg-Richter law.

We would also like to report the following further two findings regarding time
evolution of the earthquake network. (i) As shown in Fig. 3, the factor, k0, ap-
pearing in Eq. (2) is found to change in time, in contrast to the Albert-Barabási
solution given in [24]. Monotonic increase of the value of k0 is clearly observed
there. (ii) The value of the exponent, γ, is ascertained to remain constant in time
according to evolution of the earthquake network.

Concerning (i) above, we notice the following two points regarding consis-
tency of time evolution with the principle of maximum Tsallis entropy. Firstly,
the time-dependent problems have repeatedly been investigated within the max-
imum entropy principle in the literature. It is known that the maximum entropy
principle is not limited to characterizing the equilibrium states in thermodynam-
ics but can be used in much wider contexts of information theory and statistics.
Secondly, as can be seen in Fig. 3, the rate of change of k0 in the present case is
less than 0.1 per a year, and therefore its time scale is much longer than that of
microscopic evolution (typically about 20000 events per a year).

Closing this section, we stress the following point. We have also analyzed the
data taken in Japan and have found same trends in the earthquake network [26].
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Fig. 3. Change of the value of k0 according to evolution of the earthquake network.
Here, the cell size employed is 5 km× 5 km× 5 km. The value of the exponent remains
constant, γ = 1.61.

4 Small-World Property of Earthquake Network

The scale-free nature of the earthquake network implies that the network pos-
sesses the small-world and hierarchical structures. We discuss these properties
in this section.

In Fig. 4, we present the degrees of separation, i.e., the characteristic path
length, between an arbitrary pair of two vertices. Here, we examine the variation
of the cell size from 5 km×5 km×5 km to 10 km×10 km×10 km by every 1 km.
The values of the degree of separation have been calculated by random sampling
of 60 pairs of vertices. The degrees tend to slightly decrease with respect to the
cell size, as it should do. The values are typically in-between 2 and 3, very small,
showing the small-world nature of the earthquake network.

Next we study the clustering coefficient, C, proposed by Watts and Strogatz
[25]. The scale-free nature of the distribution of connectivities implies that the
value of C is much larger than that in the case of the completely random network
whose distribution of connectivities is Poissonian [21],[22],[30]. To evaluate C, it
is essential to notice that loops attached to a single vertex should be removed and
multiple edges between two vertices have to be identified with a single edge. For
example, consider three vertices, v1, v2, and v3. Suppose that they are originally
connected as v1 → v2 → v1 → v2 → v2 → v3. This should be identified with
v1 → v2 → v3 now.

The clustering coefficient is defined as follows. Let the vi be the vertex which
has ki − 1 neighboring vertices. At most, ki(ki − 1)/2 edges can exist between
them. Calculate ci ≡ (number of edges of vi and its neighbors)/[ki(ki − 1)/2].
Then, the clustering coefficient is given by

C =
1
N

N∑

i=1

ci, (3)

where N denotes the total number of vertices. In the case of the completely
random network, this quantity is known to be expressed as follows [22], [23], [25]:
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Fig. 4. The degrees of separation for various cell sizes. The values are 2.87 (±0.47) for
5 km × 5 km × 5 km (N = 3434), 2.80 (±0.51) for 6 km × 6 km × 6 km (N = 2731),
2.58 (±0.56) for 7 km × 7 km × 7 km (N = 2165), 2.63 (±0.49) for 8 km × 8 km ×
8 km (N = 1827), 2.65 (±0.58) for 9 km × 9 km × 9 km (N = 1582), and 2.53 (±0.54)
for 10 km × 10 km × 10 km (N = 1344), where N denotes the number of the vertices.
The error bounds are given by the standard deviations for 60 pairs of vertices chosen
at random.

C = Crandom =
< k >

N
� 1, (4)

where < k > is the average connectivity. The point is that a complex network
has the clustering coefficient which is much larger than Crandom [25].

We have analyzed two subintervals of the seismic data in southern California
mentioned before: (I) between 01:50:15.81 on January 30, 1992 and 05:48:10.93
on February 2, 1992, with 63 events, and (II) between 11:57:34.10 on June 28,
1992 and 20:48:22.61 on June 28, 1992, with 176 events. Seismicity in the period
(I) is moderate, in contrast to the active period (II). The initial time of the period
(II) is adjusted to be the event of the mainshock with M7.3 (34◦12.01′N latitude,
116◦26.20′W longitude, and 0.97 km in depth), followed by a lot of aftershocks.
This is why the period (II) is much shorter than (I). The cell size is taken to be
10 km × 10 km × 10 km for (I) and (II). Both of the corresponding earthquake
networks have 50 vertices. The results are: (I) Cactual = 0.680 (Crandom = 0.046),
(II) Cactual = 0.653 (Crandom = 0.093). Therefore, we conclude that compared
to the completely random network, the clustering coefficient is about 10 times
larger, highlighting the hierarchical property of the earthquake network.

Finally, we mention that employing the method of random sampling is due to
the limitation of our computational power for combinatorial problems. However,
through extensive tests, we confidently believe that the results reported here are
correct ones.
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5 Conclusion

We have constructed the complex evolving network for earthquakes in the area of
southern California and have studied its topological properties. We have found
that the earthquake networks have the scale-free nature in their distributions
of connectivities and, thus, have presented a novel feature of seismicity as a
complex critical phenomenon. We have presented an interpretation of this scale-
free nature in conformity with the Gutenberg-Richter law. Then, we have studied
the small-world and hierarchical properties of the earthquake network. We have
shown that the degrees of separation between two vertices as the vertices take a
small value between 2 and 3. We have also calculated the clustering coefficient
and have found that its actual value is about 10 times larger than that in the
case of the completely random network.

We believe that these new discoveries may play an important role in modeling
earthquake phenomenon [31], [32] and shed light on an aspect of seismology from
a novel viewpoints.
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