
A Single Thread Discrete Event Simulation
Toolkit for Java: STSimJ

Wenguang Chen, Dingxing Wang, and Weimin Zheng

Tsinghua University, Beijing 100084, China

Abstract. Discrete event simulation is widely used in simulating com-
plex systems. SimJava [6]is a popular java toolkit for discrete event sim-
ulation. However, SimJava employs multiple threads for the simulation
process. The disadvantage of the multi-threaded approach is that the
result of the simulation is not repeatable, because of the uncertainty
introduced by multi-threads. In this paper, we propose a single thread
discrete event simulation toolkit for Java, whose result is always repeat-
able.

1 Introduction

Discrete event simulation is one of the key method to validate and evaluate
computer and telecom systems.

SIMULA[1] is a language designed for simulation. Hase++[4,3] is a simulation
library for C++ which provides discrete process based simulation similar to
SIMULA’s class and libraries. In order to enable web browser based simulation,
Java is also used for simulation. SimJava[6] is a popular java toolkit for discrete
event simulation.

However, both Hase++ and SimJava used multiple threads or processes for
the simulation process. The disadvantage of the multi-threaded approach is that
the result of the simulation is not repeatable, because of the uncertainty intro-
duced by multi-threads.

There’re also other single thread simulation package, such as SMPL[5]. But
SMPL is written in C difficult to be extended.

In this paper, we propose a single thread discrete event simulation toolkit
for Java(STSimJ), which would always produce the same output for the same
input.

2 STSimJ Overview

2.1 STSimJ Concepts

In this section, we illustrate some concepts used in STSimJ for system modelling..

– Entity: The concept of entity in STSimJ is similar to the entity in SimJava.
A system consists of several entities.

M. Bubak et al. (Eds.): ICCS 2004, LNCS 3038, pp. 1131–1137, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

1132 W. Chen, D. Wang, and W. Zheng

– State: At any given time, each entity must be in a certain state. The entity
may have several possible states, and may change from one state to the other
because of incoming events or internal logic.

– Transition: An entity may change its state from one to another. This process
is called ”Transition”.

– Event: Events are the main reasons for entities to change their states. Events
can be fired by either the entity itself or other entities.

2.2 STSimJ Java Library Overview

In STSimJ, there are mainly 6 classes in its library:

– STSEvent: A class for holding a generic event. Programmers can inherit this
class to define their own event classes.

– STSEventList: A helper class to maintain the event queue of each entity.
– STSTransition: A class to record the information related to state transition.
– STSEntityState: It contains a method named eventHandler(), which is

supposed to be overridden by real state classes to describe the entities be-
havior on the state.

– STSEntity: It contains member variables and methods for a generic en-
tity, which include state management, transition management etc. The
initialize() method of class STSEntity is supposed to be overridden by
real entity classes to describe the events, states and transition information
of the entity.

– STSSystem: It controls all entities, maintains and advances the simulation
time.

In the next section, we are going to describe the usage of these classes in detail.

3 How to Simulate a System with STSimJ

In this section, we describe how to simulate a system with STSimJ.

3.1 Modelling the System with State Chart

Let’s demonstrate the process with a simple example:
A system contains a sender and a receiver. The sender would send a mes-

sage to the receiver, then waits for the receiver’s response. After getting the
response, it holds for 10 seconds and send a message to the receiver again. If
it has sent 100 messages, it will exit.

The receiver is in idle state initially, after receiving a message from the
sender, it holds itself for 1.234 seconds, then send a response message to the
sender. If it received 100 messages, it will exit.

It’s easy to draw the state chart[2] of the system. The Fig. 1 shows the state
chart of the system. There are 2 entities in the system: sender and receiver.
Each entity has 3 states: idle, send and receive. And there are 3 kinds of state
transition illustrated in Fig. 1:

A Single Thread Discrete Event Simulation Toolkit for Java: STSimJ 1133

Send

receive

/ response event

/ Hold 10s

idle

receive

/ receive event

send

/ receive event and hold 1.234s

idle

/ 100 messages received

/ 100 messages sent

ReceiverSender

Fig. 1. State chart of the sender/receiver system

– From SENDER_SEND to SENDER_IDLE
This is a immediate state transition, which does not involve any external
events and time delay. The sender would enter SEND IDLE states right
after it sends out the message to the receiver. We call this kind of transition
ITAA(Immediate Transition After Action).

– From SENDER_IDLE to SENDER_RECEIVE
This is a blocked state transition. The transition would not happen until the
sender received a message from the receiver. We call this kind of transition
TBBE(Transition Blocked By Event).

– From SENDER_RECEIVE to SENDER_SEND
This is a delayed state transition. The entity is held for the specified pe-
riod and would not process any event. When the period passes, the entity
would transit to the target state. We call this kind of transition DT(Delayed
Transition).

3.2 Define the Behavior of Entities

Subclassing STSEntity to Define Entity Behavior
In order to define the behavior of a entity, we need to subclass the STSEntity
and define states, events and transition by overriding its method initialize().
The definition of class Sender is as following:

1134 W. Chen, D. Wang, and W. Zheng

public class Sender extends STSEntity{
public Sender(String name) {
super(name);

}

public void intialize() {
//1. Define states
STSEntityState senderIDLE =

new STSEntityState(this, "SENDER_IDLE");
STSEntityState senderSEND =

new STSEntityState(this, "SENDER_SEND");
STSEntityState senderRECEIVE =

new STSEntityState(this, "SENDER_RECEIVE");
addState(senderIDLE);
addState(senderSEND);
addState(senderRECEIVE);

//2. Add state transition table to entities
STSEvent messageEvent =

new STSEvent(0.0, "MESSAGE", null, null);
addStateTransition(senderIDLE, senderRECEIVE, messageEvent);
addHoldStateTransition(senderRECEIVE, senderSEND, 10.0);

//3. Set initial state
setInitialState(senderSEND);

}
}

The state definition is a simple step and does not need to be explained more.
However, the definition of events and state transition is a little more tricky.

The class STSEntity have two methods to describe the state transition:

– addStateTransition()
This method is used to specify the transition of TBBE type. In this
sample, the statement addStateTransition(senderIDLE,senderRECEIVE,
messageEvent) describes this transition:if the current state is senderIDLE,
then it will wait for a MESSAGE event and change the entity state to
senderRECEIVE.

– addHoldStateTransition()
This method is used to specify the transition of DT type. In this sample, the
statement addHoldStateTransition(senderRECEIVE,senderSEND, 10.0)
describes this transition:if the current state is senderRECEIVE, then hold
10.0 seconds and enter the state senderSEND.

For the state transition type ITAA, we did not specify it here. Instead, it is
specified in the eventHanlder() of state SENDER_SEND. See the next section.

A Single Thread Discrete Event Simulation Toolkit for Java: STSimJ 1135

Subclassing STSEntityState to Define State Event Handler
If the entity should perform some operations other than jump to another state or
waiting for a event in a state, the operations should be specified in the simulation
code. In this case, we should subclass STSEntityState and override its method
eventHandler(). Besides, the transition of type ITAA should also be specified
in the eventHandler() method.

public class StateSenderSend extends STSEntityState {
int msgCnt = 0;
public StateSenderSend(STSEntity ofEntity, String stateName) {
super(ofEntity, stateName);

}
public void eventHandler(ISTSEvent event) {
if (msgCnt ++ >= 100) {
entity.setCurrentState("EXIT", null);
return;

}
STSEvent evt = new STSEvent(STSSystem.getGlobalTime(),

"MESSAGE", entity.getName(), "hello");
STSSystem.sendEvent("receiver", 0.5, evt);
entity.setCurrentState("SENDER_IDLE", null);

}
}

In this example, the operation performed is to send a MESSAGE event to the
entity receiver by using the method STSSystem.sendEvent() . And the entity
sender enter the state SENDER_IDLE right after the sendEvent() by calling
STSEntity’s method setCurrentState().

3.3 Put It All Together to Simulate!

Now we have defined the entities and their behavior. It’s time to get them
together:

public class SampleSimulation {
public static void main(String[] args) {
STSSystem.initialize();

// Add sender entity into system
STSEntity sender = new STSEntity("sender");
STSEntity receiver = new STSEntity("receiver");
STSSystem.add(sender);
STSSystem.add(receiver);

// Start to simulate
STSSystem.run();

}
}

1136 W. Chen, D. Wang, and W. Zheng

Simply create and add them to the class STSSystem, it is ready to go. The
STSSystem.run() is a static method of the class STSSystem that would start
the simulation.

4 The Single Thread Simulation Kernel

The main feature of STSimJ is that it just use a single thread simulation ker-
nel. All the situations that would require blocking, i.e. waiting for a event to
arrive and holding the system for a period etc., are defined as state transition in
STSimJ, and thus there’s no need to block any simulation code in STSimJ. The
simulation kernel is like following:

public class STSSsytem {
...
public static void run() {
...
// Simulate
boolean hasEvents = true;
globalTime = advanceToNextEventTime();
while (hasEvents && globalTime < terminateTime) {
hasEvents = false;
for (int i = 0; i < entityList.size(); i++) {
STSEntity entity = (STSEntity) entityList.elementAt(i);
hasEvents |= entity.run();

}
}

}
}

The method advanceToNextEventTime() find the next event time from the
current event lists of all entities. globalTime is the global clock that can be
read by all entities. The STSEntity::run() method would handle the event
occurred at the time and/or transit states.

It should be noted that all entity.run()s are executed one by one and
there’s no chance for them to execute simultaneously.

5 Conclusion and Future Work

In this paper, we proposed a single thread discrete event simulation toolkit for
Java:STSimJ. To use STSimJ, one can use the state chart to describe the system
to be simulated, then map the state chart to STSimJ code. We have illustrated
that with the frameworks and libraries provided by STSimJ, it is quite easy to
construct the simulation code.

In STSimJ, there’s no blocked thread in the simulation code. All simulation
is done with synchronous call to entity method and event handler method. So

A Single Thread Discrete Event Simulation Toolkit for Java: STSimJ 1137

the whole simulation is completed within the single thread. Thus, it avoids the
uncertainty of multi-thread simulation and is always repeatable.

In the future, we will integrate more features into STSimJ, which include
statistics library and GUI libraries.

References

1. Birtwhistle, G.M., Dahl, O-J. Myhrhaug B. and Nygaard K.,Simula Begin, Aca-
demic Press, 1973

2. Fowler M. and Scott K., UML Distilled: A Brief Guide to the Standard Object
Modeling Language(2nded), Addison Wesley Longman, 2000

3. Howell, F.W. Hase++:a discrete event simulation library for C++.
http://www.dcs.ed.ac.uk/home/fwh/hase++/hase++.html

4. Ibbett, R.N.,Heywood,P.E. and Howell,F.W., ”Hase : a flexible toolset for computer
architects.” The Computer Journal, 2000

5. MacDougall M.H. Simulating computer systems:techniques and tools. The MIT
Press, 1987

6. McNab, R. and Howell, F.W. Using Java for Discrete Event Simulation, Proceed-
ings of Twelfth UK Computer and Telecommunications Performance Engineering
Workshop (UKPEW),Edinburgh, 219-228,1996 38(10):755-764.

	Introduction
	STSimJ Overview
	STSimJ Concepts
	STSimJ Java Library Overview

	How to Simulate a System with STSimJ
	Modelling the System with State Chart
	Define the Behavior of Entities
	Put It All Together to Simulate!

	The Single Thread Simulation Kernel
	Conclusion and Future Work

