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Abstract. Many methods are proposed in order to parallelize loops with non-
uniform dependence, but most of such approaches perform poorly due to 
irregular and complex dependence constraints. This paper proposes an efficient 
method of tiling and transforming nested loops with non-uniform and flow 
dependences for maximizing parallelism. Our approach is based on the Convex 
Hull theory that has adequate information to handle non-uniform dependences, 
and also based on minimum dependence distance tiling, the unique set oriented 
partitioning, and three region partitioning methods. We will first show how to 
find the incrementing minimum dependence distance. Next, we will propose 
how to tile the iteration space efficiently according to the incrementing 
minimum dependence distance. Finally, we will show how to achieve more 
parallelism by loop interchanging and how to transform it into parallel loops. 
Comparison with some other methods shows more parallelism than other 
existing methods.  

1   Introduction 

Parallel processing is recognized as an important vehicle for the solution of many 
areas of computer applications. Most of the computing time is spent in loops in such 
applications. The existing parallelizing compilers can parallelize most of the loops 
with uniform dependences, but they do not satisfactorily handle loops with non-
uniform dependences. Most of the time, the compiler leaves such loops running 
sequentially. Unfortunately, loops with non-uniform dependences are not so 
uncommon in the real world.  

Several works have been done for loops with non-uniform dependences. All of the 
existing techniques do a good job for some particular types of loops, but show us a 
poor performance on some other types of loops.  

Some techniques, based on Convex Hull theory [7] that has been proven to have 
enough information to handle non-uniform dependences, are the minimum 
dependence distance tiling method [5], [6], the unique set oriented partitioning 
method [4], and the three region partitioning [1], [3].  

This paper will focus on parallelizing perfectly nested loops with non-uniform and 
flow dependences. 

The rest of this paper is organized as follows. Section two describes our loop 
model, and reviews some fundamental concepts in non-uniform and flow dependence 
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loop. Section three presents an improved tiling method for parallelization with nested 
loops with non-uniform and flow dependences. In this section, we show how to find 
the incrementing minimum dependence distances in the iteration space. Then, we 
discuss how to tile the iteration space efficiently according to the incrementing 
minimum dependence distance and how to achieve more parallelism by loop 
interchanging. Section four shows comparison with related works. Finally, we 
conclude in section five with the direction to enhance this work.  

2   Data Dependence Analysis in Non-uniform and Flow 
Dependence Loop 

The loop model considered in this paper is doubly nested loops with linearly coupled 
subscripts and both lower and upper bounds for loop variables should be known at 
compile time. The loop model has the form in Fig. 1. 

do i = l1, u1 
do j = l2, u2 

A(a11i + b11j + c11, a12i + b12j + c12) = ... 
... = A(a21i + b21j + c21, a22i + b22j + c22) 

enddo 
enddo 

Fig. 1. A doubly nested loop model 

The dependence distance function d(i1, j1) in flow dependence loops gives the 
dependence distances di(i1, j1) and dj(i1, j1) in dimensions i and j, respectively. For 
uniform dependence vector sets these distances are constant. But, for the non-uniform 
dependence sets these distances are linear functions of the loop indices. We can write 
these dependence distance functions in a general form as 

d(i1, j1) = (di(i1, j1), dj(i1, j1)) 

di(i1, j1) = p1*i1 + q1*j1 + r1 

dj(i1, j1) = p2*i1 + q2*j1 + r2 

where pi, qi, and ri are real values and i1 and j1 are integer variables of the iteration 
space. 

The properties and theorems for tiling of nested loops with flow dependence can be 
described as follows. 

Theorem 1. If there is only flow dependence in the loop, DCH1 contains flow 
dependence tails and DCH2 contains flow dependence heads. 

Theorem 2. If there is only flow dependence in the loop, then di(x, y) = 0 or dj(x, y) = 
0 does not pass through any DCH. 

If there exists only flow dependence in the loop, then di(x1, y1) = 0 or dj(x1, y1) = 0 
does not pass through any IDCH(Integer Dependence Convex Hull) because the 
IDCH is a subspace of DCH(Dependence Convex Hull) [5].  
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Theorem 3. If there is only flow dependence in the loop, the minimum and maximum 
values of the dependence distance function d(x1, y1) appear on the extreme points. 

Theorem 4. If there is only flow dependence in the loop, the minimum dependence 
distance value dimin is equal or greater than zero. 

From theorem 4, we know that when there is only flow dependence in the loop and 
dimin is zero, djmin is greater than zero. In this case, since dj(x1, y1) = 0 does not pass 
through the IDCH, the minimum value of dj(x1, y1), djmin, occurs at one of the extreme 
points.  

Theorem 5 If there is only flow dependence in the loop, the difference between the 
distance of a dependence and that of the next dependence, dinc, is equal to or greater 
than zero. 

Thus, dinc is equal to to or greater than zero when there is only flow dependence in 
the loop. 

3   Improved Tiling Method 

Cho and Lee [2] present a more general and powerful loop splitting method to 
enhance all parallelism on a single loop. The method uses more information from the 
loop such as increment factors, and the difference between the distance of 
dependence, and that of the next dependence. Cho and Lee [3] derive an efficient 
method for nested loops with simple scripts from enhancing [2]. 

The minimum dependence distance tiling method [6] presents an algorithm to 
convert the extreme points with real coordinates to the extreme points with integer 
coordinates. The method obtains an IDCH from a DCH. It can compute dimin, the 
minimum value of the dependence distance function di(i1, j1) and djmin, the minimum 
value of the dependence distance function dj(i1, j1) from the extreme points of the 
IDCH. The first minimum dependence distances dimin and djmin are used to determine the 
uniform tile size in the iteration space.  

3.1   Tiling Method by the Incrementing Minimum Dependence Distance 

From theorem 5, when p1 > 0 and q1 ≥ 0, we know that the difference between the 
distance of a dependence and that of the next dependence in loop with flow 
dependence, dinc, is equal to or greater than zero.  

For each i1, dimin is incremented as the value of i1 is incremented. So, the second dimin 
is equal to or greater than the first one, and the third one is greater than the second 
one, and so on.  

The improved tiling method for doubly nested loops with non-uniform and flow 
dependence is described as Procedure Tiling_Method, which is the algorithm of 
tiling loop by the incrementing minimum dependence distance as shown in Fig. 2. 

This algorithm computes the incrementing minimum dependence distance, tiles the 
iteration space efficiently according to the incrementing minimum dependence 
distance, and transforms it into parallel loops. 
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Procedure Tiling_Method(i1, j1, l1, l2, u1, u2, di(i1, j1)) 
i1, j1: i and j value for the source of the first minimum 

dependence in the loop computed by the extreme points 
of the IDCH 

l1, l2, u1, u2: the lower and upper bounds of outer loop 
and inner loop, respectively 

di(i1, j1): the dependence distance function of the IDCH  
begin 

Step 1: when the first source point, (i1, j1), is given, 
the first minimum dependence distance dimin and first 
tile size are computed. 

Step 2: Next dimin is computed.  
If (next sink point is greater than bound), Goto Step 

4. 
Step 3: Next tile size is computed, and Goto Step 2. 
Step 4: the original loop is transformed into n 

parallel tiles. 
end Tiling_Method. 

Fig. 2. Algorithm of tiling loop by the incrementing minimum dependence distence  

Example 1 

do i = 1, 50 
do j = 1, 50 

A(3*i+1, 4*i+2*j+1) = . . . 
. . .= A(2*i-4, i+j-4) 

enddo 
enddo 

An example given in Example 1 illustrates the case that there is non-uniform and 
flow dependence. Fig. 3(a) shows CDCH(Complete Dependence Convex Hull) of 
Example 1. As the example, we can obtain the following results using the improved 
tiling method proposed in this section.  
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Fig. 3. (a) CDCH, (b) Tiling by minimum dependence distance in Example 1. 
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From the algorithm to compute a two-dimensional IDCH in [5], we can obtain the 
extreme points such as (1, 1), (1, 22), and (18, 1) as shown in Fig. 3(a). The first 
minimum value of di(i1, j1) occurs at one of the extreme points. The i value for the 
source of the first dependence in the second tile is 4. The i value in the third tile is 10, 
and next values are 19, 31, and 49. Then, we can divide the iteration space by four 
tiles as shown in Fig. 3(b). 

3.2   Loop Tiling Method Using Loop Interchanging 

When there is only flow dependence in the loop, we can tile the iteration space into 
tiles with width = dimin or width = djmin. In case djmin > dimin, we can tile the iteration 
space into tiles with width = djmin.  

In Example 1, because dj(i1, j1) (= 5/2*i + j + 5/2) is greater than di(i1, j1) (= 1/2*i + 
5/2), we can use an changed form of the example that the outer loop i and the inner 
loop j are interchanged as shown in Fig. 4. 

do j = 1, 50 
do i = 1, 50 

A(3*i+1, 4*i+2*j+1) = . . . 
. . .= A(2*i-4, i+j-4) 

enddo 
enddo 

Fig. 4. Another form of Example 1 by loop interchanging. 

If the upper limits of loop i and j are 100 by 100 as an example given in Fig. 4, the 
number of tiles for the original loop is six as shown in Fig. 5(a), and for the 
interchanged loop is five as shown in Fig. 5(b). When djmin > dimin in this loop, we can 
achieve greater parallelism by loop interchanging. 
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Fig. 5. (a) Tiling by the incrementing minimum dependence distance, (b) Tiling by Loop 
Interchanging in Example 1. 
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4   Performance Analysis 

This section discusses the performance analysis of our proposed methods through the 
comparisons with related works theoretically.  

Theoretical speedup for performance analysis can be computed as follows. 
Ignoring the synchronization, scheduling and variable renaming overheads, and 
assuming an unlimited number of processors, each partition can be executed in one 
time step. Hence, the total time of execution is equal to the number of parallel 
regions, Np, plus the number of sequential iterations, Ns. Generally, speedup is 
represented by the ratio of total sequential execution time to the execution time on 
parallel computer system as follows: 

Speedup = (Ni * Nj)/(Np + Ns) 
where Ni, Nj are the size of loop i, j, respectively 

We will compare our proposed methods with the minimum dependence distance 
tiling method and the unique set oriented partitioning method as follows: 

Let's consider the loop shown in Example 1. Fig. 3(a) shows original partitioning 
of Example 1. This example is the case that there is only flow dependence and DCH1 
overlaps DCH2. Applying the unique set oriented partitioning to this loop illustrates 
case 2 of [4]. This method can divide the iteration space into four regions: three 
parallel regions, AREA1, AREA2 and AREA4, and one serial region, AREA3, as 
shown in Fig. 6. The speedup for this method is (100*100)/(3+44) = 212.8. 
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Fig. 6. Regions of the loop partitioned by the unique sets oriented partitioning in Example 1. 

Applying the minimum dependence distance tiling method to this loop illustrates 
case 1 of this technique [5], which is the case that line di(i, j) = 0 does not pass 
through the IDCH. The minimum value of di(i, j), dimin, occurs at the extreme point (1, 
1) and dimin = 3. The space can be tiled with width = 3, thus 34 tiles are obtained. The 
speedup for this method is (100*100)/34 =294. 

Let’s apply our proposed method - the improved tiling method as given in section 
3. This loop is tiled by six areas as shown in Fig. 5(a). The iterations within each area 
can be fully executed in parallel. So, the speedup for this method is (100*100)/6 = 
1666.  
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Applying the loop interchanging method in this example, this loop is tiled by five 
areas as shown in Fig. 6(b). So, the speedup for this method is (100*100)/5 = 2000.  

If the upper bounds of loop i, j are 1000 by 1000, the speedup for the original loop 
is (1000*1000)/11 = 90909, and the speedup for the interchanged loop is 
(1000*1000)/8 = 125000. Because djmin > dimin in this example, we can achieve more 
parallelism by loop interchanging. 

5   Conclusions 

In this paper, we have studied the problem of transforming nested loops with non-
uniform and flow dependences to maximize parallelism.  

When there is only flow dependence in the loop, we propose the improved tiling 
method. The minimum dependence distance tiling method tiles the iteration space by 
the first minimum dependence distance uniformly. Our proposed method, however, 
tiles the iteration space by minimum dependence distance values that are incremented 
as the value of i1 is incremented. Furthermore, when djmin > dimin in the given loop, loop 
parallelism can be improved by loop interchanging. 

In comparison with some previous partitioning methods, the improved tiling 
method gives much better speedup than the minimum dependence distance tiling 
method and the unique set oriented partitioning method in the case that there is only 
flow dependence and DCH1 overlaps DCH2. 

Our future research work is to develop a method for improving parallelization of 
higher dimensional nested loops. 

References 

1. A. A. Zaafrani and M. R. Ito, "Parallel region execution of loops with irregular 
dependences," in Proceedings of the International Conference on Parallel Processing, vol. 
II, (1994) 11-19 

2. C. K. Cho, J. C. Shim, and M. H. Lee, "A loop transformation for maximizing parallelism 
from single loops with non-uniform dependences," in Proceedings of High Performance 
Computing Asia '97, (1997) 696-699 

3. C. K. Cho and M. H. Lee, "A loop parallization method for nested loops with non-uniform 
dependences", in Proceedings of the International Conference on Parallel and Distributed 
Systems, (1997) 314-321 

4. J. Ju and V. Chaudhary, "Unique sets oriented partitioning of nested loops with non-
uniform dependences," in Proceedings of International Conference on Parallel 
Processing, vol. III, (1996) 45-52 

5. S. Punyamurtula and V. Chaudhary, "Minimum dependence distance tiling of nested loops 
with non-uniform dependences," in Proceedings of Symposium on Parallel and Distributed 
Processing, (1994) 74-81 

6. S. Punyamurtula, V. Chaudhary, J. Ju, and S. Roy, "Compile time partitioning of nested 
loop iteration spaces with non-uniform dependences," Journal of Parallel Algorithms and 
Applications, (1996) 

7. T. Tzen and L. Ni, "Dependence uniformization: A loop parallelization technique," IEEE 
Transactions on Parallel and Distributed Systems, vol. 4, no. 5, (1993) 547-558 


	Introduction
	Data Dependence Analysis in Non-uniform and Flow Dependence Loop
	Improved Tiling Method
	Tiling Method by the Incrementing Minimum Dependence Distance
	Loop Tiling Method Using Loop Interchanging

	Performance Analysis
	Conclusions



