
M. Bubak et al. (Eds.): ICCS 2004, LNCS 3038, pp. 1146–1152, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Parallelism for Nested Loops with Non-uniform and Flow
Dependences

Sam-Jin Jeong

Dept. of Information & Communication Engineering, Cheonan University, 115,
Anseo-dong, Cheonan, Chungnam, 330-180, Korea.

sjjeong@cheonan.ac.kr

Abstract. Many methods are proposed in order to parallelize loops with non-
uniform dependence, but most of such approaches perform poorly due to
irregular and complex dependence constraints. This paper proposes an efficient
method of tiling and transforming nested loops with non-uniform and flow
dependences for maximizing parallelism. Our approach is based on the Convex
Hull theory that has adequate information to handle non-uniform dependences,
and also based on minimum dependence distance tiling, the unique set oriented
partitioning, and three region partitioning methods. We will first show how to
find the incrementing minimum dependence distance. Next, we will propose
how to tile the iteration space efficiently according to the incrementing
minimum dependence distance. Finally, we will show how to achieve more
parallelism by loop interchanging and how to transform it into parallel loops.
Comparison with some other methods shows more parallelism than other
existing methods.

1 Introduction

Parallel processing is recognized as an important vehicle for the solution of many
areas of computer applications. Most of the computing time is spent in loops in such
applications. The existing parallelizing compilers can parallelize most of the loops
with uniform dependences, but they do not satisfactorily handle loops with non-
uniform dependences. Most of the time, the compiler leaves such loops running
sequentially. Unfortunately, loops with non-uniform dependences are not so
uncommon in the real world.

Several works have been done for loops with non-uniform dependences. All of the
existing techniques do a good job for some particular types of loops, but show us a
poor performance on some other types of loops.

Some techniques, based on Convex Hull theory [7] that has been proven to have
enough information to handle non-uniform dependences, are the minimum
dependence distance tiling method [5], [6], the unique set oriented partitioning
method [4], and the three region partitioning [1], [3].

This paper will focus on parallelizing perfectly nested loops with non-uniform and
flow dependences.

The rest of this paper is organized as follows. Section two describes our loop
model, and reviews some fundamental concepts in non-uniform and flow dependence

Parallelism for Nested Loops with Non-uniform and Flow Dependences 1147

loop. Section three presents an improved tiling method for parallelization with nested
loops with non-uniform and flow dependences. In this section, we show how to find
the incrementing minimum dependence distances in the iteration space. Then, we
discuss how to tile the iteration space efficiently according to the incrementing
minimum dependence distance and how to achieve more parallelism by loop
interchanging. Section four shows comparison with related works. Finally, we
conclude in section five with the direction to enhance this work.

2 Data Dependence Analysis in Non-uniform and Flow
Dependence Loop

The loop model considered in this paper is doubly nested loops with linearly coupled
subscripts and both lower and upper bounds for loop variables should be known at
compile time. The loop model has the form in Fig. 1.

do i = l1, u1
do j = l2, u2

A(a11i + b11j + c11, a12i + b12j + c12) = ...
... = A(a21i + b21j + c21, a22i + b22j + c22)

enddo
enddo

Fig. 1. A doubly nested loop model

The dependence distance function d(i1, j1) in flow dependence loops gives the
dependence distances di(i1, j1) and dj(i1, j1) in dimensions i and j, respectively. For
uniform dependence vector sets these distances are constant. But, for the non-uniform
dependence sets these distances are linear functions of the loop indices. We can write
these dependence distance functions in a general form as

d(i1, j1) = (di(i1, j1), dj(i1, j1))

di(i1, j1) = p1*i1 + q1*j1 + r1

dj(i1, j1) = p2*i1 + q2*j1 + r2

where pi, qi, and ri are real values and i1 and j1 are integer variables of the iteration
space.

The properties and theorems for tiling of nested loops with flow dependence can be
described as follows.

Theorem 1. If there is only flow dependence in the loop, DCH1 contains flow
dependence tails and DCH2 contains flow dependence heads.

Theorem 2. If there is only flow dependence in the loop, then di(x, y) = 0 or dj(x, y) =
0 does not pass through any DCH.

If there exists only flow dependence in the loop, then di(x1, y1) = 0 or dj(x1, y1) = 0
does not pass through any IDCH(Integer Dependence Convex Hull) because the
IDCH is a subspace of DCH(Dependence Convex Hull) [5].

1148 S.-J. Jeong

Theorem 3. If there is only flow dependence in the loop, the minimum and maximum
values of the dependence distance function d(x1, y1) appear on the extreme points.

Theorem 4. If there is only flow dependence in the loop, the minimum dependence
distance value dimin is equal or greater than zero.

From theorem 4, we know that when there is only flow dependence in the loop and
dimin is zero, djmin is greater than zero. In this case, since dj(x1, y1) = 0 does not pass
through the IDCH, the minimum value of dj(x1, y1), djmin, occurs at one of the extreme
points.

Theorem 5 If there is only flow dependence in the loop, the difference between the
distance of a dependence and that of the next dependence, dinc, is equal to or greater
than zero.

Thus, dinc is equal to to or greater than zero when there is only flow dependence in
the loop.

3 Improved Tiling Method

Cho and Lee [2] present a more general and powerful loop splitting method to
enhance all parallelism on a single loop. The method uses more information from the
loop such as increment factors, and the difference between the distance of
dependence, and that of the next dependence. Cho and Lee [3] derive an efficient
method for nested loops with simple scripts from enhancing [2].

The minimum dependence distance tiling method [6] presents an algorithm to
convert the extreme points with real coordinates to the extreme points with integer
coordinates. The method obtains an IDCH from a DCH. It can compute dimin, the
minimum value of the dependence distance function di(i1, j1) and djmin, the minimum
value of the dependence distance function dj(i1, j1) from the extreme points of the
IDCH. The first minimum dependence distances dimin and djmin are used to determine the
uniform tile size in the iteration space.

3.1 Tiling Method by the Incrementing Minimum Dependence Distance

From theorem 5, when p1 > 0 and q1 ≥ 0, we know that the difference between the
distance of a dependence and that of the next dependence in loop with flow
dependence, dinc, is equal to or greater than zero.

For each i1, dimin is incremented as the value of i1 is incremented. So, the second dimin
is equal to or greater than the first one, and the third one is greater than the second
one, and so on.

The improved tiling method for doubly nested loops with non-uniform and flow
dependence is described as Procedure Tiling_Method, which is the algorithm of
tiling loop by the incrementing minimum dependence distance as shown in Fig. 2.

This algorithm computes the incrementing minimum dependence distance, tiles the
iteration space efficiently according to the incrementing minimum dependence
distance, and transforms it into parallel loops.

Parallelism for Nested Loops with Non-uniform and Flow Dependences 1149

Procedure Tiling_Method(i1, j1, l1, l2, u1, u2, di(i1, j1))
i1, j1: i and j value for the source of the first minimum

dependence in the loop computed by the extreme points
of the IDCH

l1, l2, u1, u2: the lower and upper bounds of outer loop
and inner loop, respectively

di(i1, j1): the dependence distance function of the IDCH
begin

Step 1: when the first source point, (i1, j1), is given,
the first minimum dependence distance dimin and first
tile size are computed.

Step 2: Next dimin is computed.
If (next sink point is greater than bound), Goto Step

4.
Step 3: Next tile size is computed, and Goto Step 2.
Step 4: the original loop is transformed into n

parallel tiles.
end Tiling_Method.

Fig. 2. Algorithm of tiling loop by the incrementing minimum dependence distence

Example 1

do i = 1, 50
do j = 1, 50

A(3*i+1, 4*i+2*j+1) = . . .
. . .= A(2*i-4, i+j-4)

enddo
enddo

An example given in Example 1 illustrates the case that there is non-uniform and
flow dependence. Fig. 3(a) shows CDCH(Complete Dependence Convex Hull) of
Example 1. As the example, we can obtain the following results using the improved
tiling method proposed in this section.

j

i

(a)

DCH1

1

1 18

22

DCH2

j

i

(a)

DCH1

1

1 18

22

DCH2

j

i

(b)

1

1 19

22

50

504 10

j

i

(b)

1

1 19

22

50

504 10

Fig. 3. (a) CDCH, (b) Tiling by minimum dependence distance in Example 1.

1150 S.-J. Jeong

From the algorithm to compute a two-dimensional IDCH in [5], we can obtain the
extreme points such as (1, 1), (1, 22), and (18, 1) as shown in Fig. 3(a). The first
minimum value of di(i1, j1) occurs at one of the extreme points. The i value for the
source of the first dependence in the second tile is 4. The i value in the third tile is 10,
and next values are 19, 31, and 49. Then, we can divide the iteration space by four
tiles as shown in Fig. 3(b).

3.2 Loop Tiling Method Using Loop Interchanging

When there is only flow dependence in the loop, we can tile the iteration space into
tiles with width = dimin or width = djmin. In case djmin > dimin, we can tile the iteration
space into tiles with width = djmin.

In Example 1, because dj(i1, j1) (= 5/2*i + j + 5/2) is greater than di(i1, j1) (= 1/2*i +
5/2), we can use an changed form of the example that the outer loop i and the inner
loop j are interchanged as shown in Fig. 4.

do j = 1, 50
do i = 1, 50

A(3*i+1, 4*i+2*j+1) = . . .
. . .= A(2*i-4, i+j-4)

enddo
enddo

Fig. 4. Another form of Example 1 by loop interchanging.

If the upper limits of loop i and j are 100 by 100 as an example given in Fig. 4, the
number of tiles for the original loop is six as shown in Fig. 5(a), and for the
interchanged loop is five as shown in Fig. 5(b). When djmin > dimin in this loop, we can
achieve greater parallelism by loop interchanging.

j

i

(a)

1

1 19

100

1004 10 4931

 (b)

i

j
1

1 19

100

1007 9143

(b)

i

j
1

1 19

100

1007 9143

Fig. 5. (a) Tiling by the incrementing minimum dependence distance, (b) Tiling by Loop
Interchanging in Example 1.

Parallelism for Nested Loops with Non-uniform and Flow Dependences 1151

4 Performance Analysis

This section discusses the performance analysis of our proposed methods through the
comparisons with related works theoretically.

Theoretical speedup for performance analysis can be computed as follows.
Ignoring the synchronization, scheduling and variable renaming overheads, and
assuming an unlimited number of processors, each partition can be executed in one
time step. Hence, the total time of execution is equal to the number of parallel
regions, Np, plus the number of sequential iterations, Ns. Generally, speedup is
represented by the ratio of total sequential execution time to the execution time on
parallel computer system as follows:

Speedup = (Ni * Nj)/(Np + Ns)
where Ni, Nj are the size of loop i, j, respectively

We will compare our proposed methods with the minimum dependence distance
tiling method and the unique set oriented partitioning method as follows:

Let's consider the loop shown in Example 1. Fig. 3(a) shows original partitioning
of Example 1. This example is the case that there is only flow dependence and DCH1
overlaps DCH2. Applying the unique set oriented partitioning to this loop illustrates
case 2 of [4]. This method can divide the iteration space into four regions: three
parallel regions, AREA1, AREA2 and AREA4, and one serial region, AREA3, as
shown in Fig. 6. The speedup for this method is (100*100)/(3+44) = 212.8.

j

i
1

1 18

22

AREA3

AREA4

AREA2

AREA1

Fig. 6. Regions of the loop partitioned by the unique sets oriented partitioning in Example 1.

Applying the minimum dependence distance tiling method to this loop illustrates
case 1 of this technique [5], which is the case that line di(i, j) = 0 does not pass
through the IDCH. The minimum value of di(i, j), dimin, occurs at the extreme point (1,
1) and dimin = 3. The space can be tiled with width = 3, thus 34 tiles are obtained. The
speedup for this method is (100*100)/34 =294.

Let’s apply our proposed method - the improved tiling method as given in section
3. This loop is tiled by six areas as shown in Fig. 5(a). The iterations within each area
can be fully executed in parallel. So, the speedup for this method is (100*100)/6 =
1666.

1152 S.-J. Jeong

Applying the loop interchanging method in this example, this loop is tiled by five
areas as shown in Fig. 6(b). So, the speedup for this method is (100*100)/5 = 2000.

If the upper bounds of loop i, j are 1000 by 1000, the speedup for the original loop
is (1000*1000)/11 = 90909, and the speedup for the interchanged loop is
(1000*1000)/8 = 125000. Because djmin > dimin in this example, we can achieve more
parallelism by loop interchanging.

5 Conclusions

In this paper, we have studied the problem of transforming nested loops with non-
uniform and flow dependences to maximize parallelism.

When there is only flow dependence in the loop, we propose the improved tiling
method. The minimum dependence distance tiling method tiles the iteration space by
the first minimum dependence distance uniformly. Our proposed method, however,
tiles the iteration space by minimum dependence distance values that are incremented
as the value of i1 is incremented. Furthermore, when djmin > dimin in the given loop, loop
parallelism can be improved by loop interchanging.

In comparison with some previous partitioning methods, the improved tiling
method gives much better speedup than the minimum dependence distance tiling
method and the unique set oriented partitioning method in the case that there is only
flow dependence and DCH1 overlaps DCH2.

Our future research work is to develop a method for improving parallelization of
higher dimensional nested loops.

References

1. A. A. Zaafrani and M. R. Ito, "Parallel region execution of loops with irregular
dependences," in Proceedings of the International Conference on Parallel Processing, vol.
II, (1994) 11-19

2. C. K. Cho, J. C. Shim, and M. H. Lee, "A loop transformation for maximizing parallelism
from single loops with non-uniform dependences," in Proceedings of High Performance
Computing Asia '97, (1997) 696-699

3. C. K. Cho and M. H. Lee, "A loop parallization method for nested loops with non-uniform
dependences", in Proceedings of the International Conference on Parallel and Distributed
Systems, (1997) 314-321

4. J. Ju and V. Chaudhary, "Unique sets oriented partitioning of nested loops with non-
uniform dependences," in Proceedings of International Conference on Parallel
Processing, vol. III, (1996) 45-52

5. S. Punyamurtula and V. Chaudhary, "Minimum dependence distance tiling of nested loops
with non-uniform dependences," in Proceedings of Symposium on Parallel and Distributed
Processing, (1994) 74-81

6. S. Punyamurtula, V. Chaudhary, J. Ju, and S. Roy, "Compile time partitioning of nested
loop iteration spaces with non-uniform dependences," Journal of Parallel Algorithms and
Applications, (1996)

7. T. Tzen and L. Ni, "Dependence uniformization: A loop parallelization technique," IEEE
Transactions on Parallel and Distributed Systems, vol. 4, no. 5, (1993) 547-558

	Introduction
	Data Dependence Analysis in Non-uniform and Flow Dependence Loop
	Improved Tiling Method
	Tiling Method by the Incrementing Minimum Dependence Distance
	Loop Tiling Method Using Loop Interchanging

	Performance Analysis
	Conclusions

