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Abstract. A novel modeling approach for system-level diagnosis of mul-
tiprocessor systems has been introduced in previous publications. In this
approach the diagnostic process is formulated as an optimization prob-
lem. The possible logical relations are identified between the different
pieces of diagnostic information of the system and an optimal consistent
combination of the relations is determined during the solution method.
A part of the information is that, which can be observed at the outputs
of the system. Another part is composed by hypotheses on the states of
units. Relations between these information are described by consequence
rules having probabilities assigned to them. These probabilities express
the uncertainty of test results. The object is to draw back the set of
observed information to a subset of hypotheses on unit states with the
maximum likelihood, i.e. to determine the states of system units on the
basis of the syndrome.

1 Introduction

Diagnostics is one of the major tools for assuring the reliability of complex
systems in information technology. In such systems the test process is often
implemented on system-level: main components are tested, results are collected,
and based on this information the good or faulty state of each system-component
is determined. This classification procedure is known as diagnostic process.

The early approaches employed oversimplified models, but these proved to
be impractical, lately much effort has been put into extending the limitations of
traditional models [1]. However, the presented solutions mostly concentrated on
only one aspect of the problem.

Application of P-graph based modeling to system-level diagnosis [2] can pro-
vide a general framework that supports the solution of several different types of
problems, that previously needed numerous different modeling approaches and
solution algorithms. Furthermore, we have not only integrated existing solution
methods, but proceeding from a more general base we have extended the set of
solvable problems with new ones. The representational power of the model was
illustrated in paper [3].

Another advantage of the P-graph models is that it takes into consideration
more properties of the real system than previous diagnostic models. Therefore
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its diagnostic accuracy is also better. This means that it provides almost good
diagnosis even when half of the processors are faulty [3], which is important for
example in the field of wafer scale testing [4]. These favorable properties of the
approach are achieved by considering the diagnostic system as a structured set
of information called hypotheses with well-defined relations.

In part of the paper the adapted abstract model is presented in order to
be able to reuse or apply it to other fields of diagnostics. The application for
comparison based diagnostics and an example is also discussed.

2 Comparison Based System-Level Diagnostics in
Multiprocessor Systems

System-level diagnosis considers the replaceable units of a system, and does not
deal with the exact location of faults within these units. A system consists of an
interconnected network of independent but cooperating units (typically proces-
sors, the elements of set U). These units can fail, therefore a diagnostic procedure
is performed from time to time to ensure the correct behavior of the whole sys-
tem. According to this the fault state of each unit is considered as either good or
faulty (the domain of the states Dst = {g, f} and the function st(u) determines
the actual state of unit u ∈ U). The collection of the fault states of every unit
in the system is called the fault pattern [6].

A possible way to detect the failures of the units in multiprocessor systems
is the comparison based diagnostics [7]. This is used for instance in the com-
mercially available APEMille supercomputer [8] which was developed in collab-
oration by IEI-CNR of Rome and Pisa, and the DESY Zeuthen in Germany. A
further possible application field of this model is the wafer scale diagnosis [9].

In the comparison based approach the system consists comparators between
pairs of the homogeneous units. Both units perform the same test and the com-
parator compares the bit-sequence result. The set of comparators is denoted by
C and the set of tests is denoted by T ⊂ U × C × U (× denotes the Carte-
sian product of two sets), which has the elements (A,c,B), where units A and
B are neighbors and have comparator c between them for comparing their test-
sequence results. The so-called syndrome contains the results of the comparators,
namely the information that ‘the two units differ’ or ‘the two units operate sim-
ilarly’ denoted by 1 and 0, respectively. Formally, Dtr = {0, 1} is the domain of
the test results and function tr(t) determines the actual test result of test t ∈ T.
The object is to determine the fault pattern on the basis of the syndrome.

If comparators are assumed to be fault free then the test result is always 0 if
both unit is good, it is always 1 if one is good and the other is faulty and it can
be either 0 or 1 if both is faulty. The behavior in the last case can be described
by assigning probabilities to test results, see Table 1 [3].

The diagnostics is more complicated if possible faults of comparators should
also be taken into consideration. The behavior of a faulty comparator can be
described by the parameters pC00, pC01, pC10, pC11, where pCxy is the probability
that a faulty comparator alters the expected test result from x to y (Table 2).
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Table 1. Probabilities of test re-
sults depending on unit states if
fault free comparators are assumed

State State Prob. of testres
of A of B 0 1
good good 1 0
good faulty 0 1
faulty good 0 1
faulty faulty pd0 pd1

Table 2. Behavior of a comparator that can
be faulty

State Probability of altering
of the test result from x to y
comp. 0 → 0 0 → 1 1 → 0 1 → 1
good 1 0 0 1
faulty pC00 pC01 pC10 pC11

3 Basic Terminology and Its Application

In this section basic definitions and notations are presented. A part of it (for
instance the concept of P-graphs, decision mappings and their relation) is taken
directly from the field of PNS problems, introduced by Friedler et al. in [10].
Another part is taken from there with an adapted terminology and with some
modified interpretation (for instance hypotheses instead of materials, logical rela-
tions instead of operating units). The model consists some additional properties,
too (e.g. excluding hypotheses).

3.1 Hypotheses and Their Relations

Hypotheses are said to be a kind of statements or assumptions, that contain some
information about the system, but the truth of which aren’t necessarily known.
Hypotheses can be for instance about the possible states of units or about the
possible outcomes of tests. The probability that hypothesis h becomes true is
determined by the function p(h).

Considering the set H of hypotheses, logical relations between hypotheses
can be defined as follows. The pair of (hp,hc), hp ⊂ H, hc ⊂ H describes a
probabilistic consequence relation, where hp is the set of premisses, hc is the set of
consequences and the probability function p((hp,hc)) determines the conditional
probability that hypotheses in set hc become true if hypotheses in set hp are
supposed to be true.

Function exc : H → 2H determines the excluded sets of hypotheses for the
elements of H, that is for hypothesis h the set exc(h) contains those hypotheses,
which cannot be true if h is true (function 2H determines the power set of set H,
i.e. the set of all subsets of the given set). With this function for instance that
kind of constraints can be formalized, which assure the unique state of a unit.

Application in Comparison Based Diagnostics. Four sets of hypotheses
can be distinguished in the diagnostic model described in section 2:

– hypotheses about the states of units

H1 = {Ag | Ag ≡ ‘st(A) = g’ ≡ ‘unit A is good’, A ∈ U}
∪ {Af | Af ≡ ‘st(A) = f ’ ≡ ‘unit A is faulty’, A ∈ U}
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– hypotheses about the states of comparators

H2 = {cg | cg ≡ ‘st(c) = g’, c ∈ C} ∪ {cf | cf ≡ ‘st(c) = f ’, c ∈ C}
– hypotheses about the comparison results if comparator faults are not taken

into consideration

H3 = {AB0 | AB0 ≡ ‘tr((A, c, B)) = 0 & st(c) = g’ ≡ ‘unit A
and unit B are in the same state’, A, B ∈ U, c ∈ C and (A, c, B) ∈ T}

∪ {AB1 | AB1 ≡ ‘tr((A, c, B)) = 1 & st(c) = g’ ≡ ‘unit A
and unit B are in different states’, A, B ∈ U, c ∈ C and (A, c, B) ∈ T}

– hypotheses about the comparison results if comparator faults can alter the
real results

H4 ={AcB0 |AcB0 ≡ ‘tr((A, c, B))=0’, A, B ∈ U, c ∈ C, and (A, c, B) ∈ T}
∪ {AcB1 |AcB1 ≡ ‘tr((A, c, B))=1’, A, B ∈ U, c ∈ C, and (A, c, B) ∈ T}

Consequence relations formalize the information given in Tables 1 and 2:

R1 = {({As, Bt}, {ABx}) | As, Bt ∈ H1, ABx ∈ H3} (1)

An element r of this set having probability p(r) represents the relation ‘if A is
in state s, B is in state t and there exists a fault free comparator between them
then the test result is x with probability p(r)’. The probability function p(·) for
these relations is determined by the parameters given in Table 1.

R2 = {({ABx, cs}, {AcBy}) | cs ∈ H2, ABx ∈ H3, AcBy ∈ H4} (2)

An element r of this set having probability p(r) represents the relation ‘if the
expected test result is x and comparator c is in state s then the real test result
is y with probability p(r)’. The probability function p(·) for these relations is
determined by the parameters given in Table 2.

The excluded set of hypotheses for a hypothesis h ∈ H1 ∪ H2 consists all
hypotheses representing another assumption on the state of the given unit or
comparator: exc(As) = {At | t ∈ Dst \ {s}}.

Example. Let us consider a system with three units (A, B, C) and three com-
parators (c1, c2, c3) according to Fig. 1, where both units and comparators can
fail. The set of hypotheses is H = H1 ∪ H2 ∪ H3 ∪ H4, where

H1 = {Ag, Af , Bg, Bf , Cg, Cf}
H2 = {c1

g, c
1
f , c2

g, c
2
f , c3

g, c
3
f}

H3 = {AB0, AB1, BC0, BC1, AC0, AC1}
H4 = {Ac1B0, Ac1B1, Bc2C0, Bc2C1, Ac3C0, Ac3C1}
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c
2

A

C B

Fig. 1. System with units A, B, C and comparators c1, c2, c3

The set of consequence relations is R = R1 ∪ R2, where

R1 = {({Ag, Bg}, {AB0}), ({Ag, Bf}, {AB1}), ({Af , Bg}, {AB1}),
({Af , Bf}, {AB0}), ({Af , Bf}, {AB1}), . . . }

R2 = {({AB0, c
1
g}, {Ac1B0}), ({AB0, c

1
f}, {Ac1B0}), ({AB0, c

1
f}, {Ac1B1}), . . . }

The excluded sets of hypotheses –where it is not empty– are according to the
followings: exc(Ag) = {Af}, exc(Af ) = {Ag}, exc(Bg) = {Bf} . . .

3.2 Probabilistic Deduction Problem

The probabilistic deduction problem (PD problem, for short) based on set H of
hypotheses is defined by the triplet (Hi,Hd,R), where Hi ⊂ H is the set of initial
hypotheses, Hd ⊂ H is the set of hypotheses to be deduced and R ⊆ 2H × 2H is
the set of probabilistic consequence relations between hypotheses. The object is
to deduce the elements of set Hd from a subset of Hi.

In the probabilistic deduction problem (Hi,Hd,R) the base set of hypotheses
Hb is the set of all hypotheses defined implicitly by the triplet (Hi,Hd,R), i.e.

Hb = Hi ∪ Hd ∪ {h | h ∈ hp ∪ hc, (hp,hc) ∈ R} (3)

Application in Comparison Based Diagnostics. First the model consisting
fault-free comparators is considered. Let set Hd

1 be defined as that subset of H3

which corresponds to the syndrome determined by function tr: Hd
1 = {ABx |

x = tr((A, c, B)) and ABx ∈ H3}. Then the diagnostic task is formulated as the
PD problem (H1,Hd

1 ,R1).
If comparator faults are also included in the model, then the diagnostic task

is formulated as PD problem (H1 ∪ H2,Hd
2 ,R1 ∪ R2), where Hd

2 = {AcBx |
x = tr((A, c, B)) and AcBx ∈ H4}

The base set of hypotheses for the first model is Hb
1 = H1 ∪H3, whereas for

the second one it is Hb
2 = H1 ∪ H2 ∪ H3 ∪ H4.

Example (continued). Let’s consider that the syndrome is 101, i.e.
tr((A, c1, B)) = 1, tr((B, c2, C)) = 0 and tr((A, c3, C)) = 1. The set
of hypotheses to be deduced for the example introduced above is Hd

2 =
{Ac1B1, Bc2C0, Ac3C1}.
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Fig. 2. P-graph model of a single comparator test
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Fig. 3. P-graph model of the example (corresponding to the syndrome)

3.3 P-Graphs

For graphical representation of the probabilistic deduction problem the so-called
P-graphs are used.Consider two finite sets h and r such that r ⊆ 2h × 2h. A
P-graph is defined as a directed bipartite graph that is determined by the pair
of (h,r) by the following way:

1. the vertices of the graph are the elements of the set V = h ∪ r; vertices
belonging to set h are called H-type and are denoted by a dot, whereas those
belonging to set r are called R-type and are denoted by a horizontal bar;

2. the arcs of the graph are the elements of set E = E1 ∪ E2, where E1

and E2 are the sets of arcs from the premisses to the relations and from the
relations to the consequences, respectively. I.e., E1 = {(h, r) | r = (h1,h2) ∈
r and h ∈ h1} and E2 = {(r, h) | r = (h1,h2) ∈ r and h ∈ h2}.

Application in Comparison Based Diagnostics. The P-graph of a sin-
gle comparison test between units A and B with comparator c can be seen on
Fig. 2(a) if comparators are assumed to be fault-free. This P-graph should be
extended with the graph on Fig. 2(b) if comparator faults are taken into consid-
eration. The labels beside the H-type vertices are the names of the hypotheses,
whereas beside the R-type vertices the probability of the relation can be seen.

Example (cont.). Part of the P-graph model of the hypotheses and relations
defined previously, which corresponds to the syndrome can be seen on Fig. 3.
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3.4 Deduction Structures

Consider the probabilistic deduction problem (Hi,Hd,R) and its base set Hb.
Let h ⊆ Hb and r ⊆ R be two sets such that r ⊆ 2h × 2h. Then the structure
consisting the set of hypotheses h and the set of relations r between them is
called a deduction structure of (Hi,Hd,R) and is formally determined by the P-
graph (h,r). A deduction structure given by a P-graph (h,r) is called consistent
if it does not consist hypotheses that exclude each other, i.e. h ∩ exc[h] = ∅.

Example (cont.). The P-graph on Fig. 3 and all of its subgraphs are deduction
structures. The P-graphs on Fig. 4 are consistent deduction structures.

3.5 Solution Structures

The deduction structure given by P-graph (h,r) is called a solution structure of
the probabilistic deduction problem (Hi,Hd,R) if

1. it is consistent,
2. it consist all hypotheses to be deduced, i.e. Hd ⊂ h.
3. a vertex h of H-type has no arc pointing to it if and only if it corresponds

to a hypothesis belonging to the set of initial hypotheses.
4. a vertex h of H-type has no arc starting from it if and only if it corresponds

to a hypothesis belonging to the set of hypotheses to be deduced.
5. every vertex of R-type has at least one path leading to a vertex of H-type

representing a hypotheses to be deduced.

Let S(Hi,Hd,R) denote the set of all solution structure of the probabilistic
deduction problem (Hi,Hd,R). The weight function W (s) assigns a value to ev-
ery solution structure s ∈ S(Hi,Hd,R). This function serves as the optimization
objective function during the selection between solution structures.

Application in Comparison Based Diagnostics. The initial sets of hy-
potheses in solution structures represent the fault patterns that is compatible
with the syndrome. The object is to select one of it, which is optimal according
to a given criteria. This criteria is determined by the weight function, which
can be for instance the conditional probabilities of the syndrome given the con-
ditions of the possible fault patterns. In PD problem for a solution structure
(hs, rs) ∈ S(Hi,Hd,R), this is the probability of P(Hd | Hi∩hs)= P(syndrome |
fault pattern). In this case we are talking about maximum likelihood diagnos-
tics, because that fault pattern is chosen by which the occurrence of the given
syndrome has the maximal probability.

In comparison based diagnostics if fault-free comparators are assumed the
former version of the weight function is determined according to the formula:

W ((hs, rs)) = P(Hd | Hi ∩ hs) =
⋂

h∈Hd

P(h | Hi ∩ hs) =

=
⋂

h∈Hd;(hp,{h})∈rs

P(h | hp) =
⋂

r∈rs

p(r)
(4)
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By this definition, the solution structure having the maximum value of the
weight function should be determined. It can be transformed into a minimiza-
tion problem if necessary by taking the sums of the negative logarithms of the
probabilities of relations as weight function.

Example. Two feasible solution structures s1 and s2 can be seen on Fig. 4(a)
and Fig. 4(b). The weights of these structures are the products of the probabil-
ities of the relations included. For s1 it is 1, meaning that for the given fault
pattern it is sure that the considered syndrome will be the result of the tests.
The weight of s2 is pC01 · pC01 meaning that for this fault pattern the syndrome
arise with this probability. In maximum likelihood diagnostics that fault pattern
is ‘selected’ for which the syndrome arise with the maximum likelihood. This
means that if probability parameters in Tables 1 and 2 are smaller than 1 than
the diagnosis will be the fault pattern according to s1.
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Fig. 4. Two feasible solution structures of the example

4 Conclusions

In this paper a formal description of the previously introduced model of P-graph
based diagnostics is presented. In probabilistic deduction problems the relations
of the information is modeled, which relations corresponds to the structure of
the system and to the structure of the diagnostic procedure. Solving this model
the most probable states of units can be determined on the basis of the syn-
drome. The concept of the model –formulating in general– is that knowing the
relations between pieces of information and knowing the observed information
it is possible to deduce for the hidden or embedded information with the maxi-
mum likelihood (an information is considered hidden or embedded if it cannot be
observed directly). The PD problem can be solved either with a general solver
for linear programming problems or with the adapted version of the solution
algorithm of PNS problems developed by Friedler et al. [10]. The model and
its solution algorithm have been already implemented in C++, and simulation
results demonstrate its good diagnostic performance [3].
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2. B. Polgár, Sz. Nováki, A. Pataricza, F. Friedler. A Process-Graph Based
Formulation of the Syndrome-Decoding Problem, In 4th Workshop on Design and
Diagnostics of Electronic Circuits and Systems, pp. 267–272, Hungary, 2001.
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