
M. Bubak et al. (Eds.): ICCS 2004, LNCS 3038, pp. 1170–1177, 2004. 
© Springer-Verlag Berlin Heidelberg 2004 

Multiuser CDMA Parameters Estimation 
by Particle Filter with Resampling Schemes 

Jang-Sub Kim1, Dong-Ryeol Shin1, and Woo-Gon Chung2 

1 School of Information and Communication Engineering, 
Sungkyunkwan University, 

300 ChunChun-Dong, JangAn-Gu, Suwon, Korea 440-746 
{jangsub,drshin}@ece.skku.ac.kr 

2 Computer Science Dept. CSU at Bakersfield, USA 
wchung@csub.edu 

Abstract. The joint estimation of linear and nonlinear state variables remains 
challenging, especially in multiuser communications applications where the 
state dimension is large and signal to noise ratio is low. In this paper, an 
efficient Particle Filter (PF) is developed to make estimates of nonlinear time 
delay parameters in the presence of non-Gaussian noise. The PF method has the 
advantage that the importance weights are easily evaluated and the importance 
density can be easily sampled. We propose a PF-based algorithm with 
Resampling schemes for the estimation of closely-spaced path delays and 
related coefficients in CDMA environments. Furthermore we present a number 
of resampling schemes, namely: Multinomial Resampling (MR), Residual 
Resampling (RR) and Minimum Variance Resamplings (MVR). The simulation 
results show that MR scheme outperforms the other selection schemes. We also 
show that it provides a more suitable method for tracking time-varying 
amplitudes and delays in CDMA communication systems than RR and MVR 
schemes.  

1   Introduction 

Nonlinearity in the measurement model has always been an obstacle for the reliability 
of the estimation in the Kalman filtering structure. Extended Kalman Filtering (EKF) 
approximates the a posteriori distribution to be Gaussian to simplify computation. 
Recently the unscented transform(UT) has been used in an EKF framework, and the 
resulting filter, known as the unscented Kalman filter, has been employed to tackle 
the nonlinearity and shown its effectiveness in terms of the divergence reduction or 
error propagation [1]. However, all the iterative solutions including Kalman filters 
appeared in the literature necessarily assume that the unknown parameters are 
Gaussian distributed. 

In a CDMA environment which involves a joint channel coefficient and time-delay 
tracking techniques, non-Gaussian properties of unknown parameters are inherently 
taken. In this paper, the particle filter, recently introduced in the communication area, 
which does not require the Gaussian assumption is employed for such an 
exponentially distributed parameter like the propagation delay in the multipath 
environment [2]. The PF results in better performance in the parameter (including 
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other channel coefficients) estimation [3]. We present PF with resampling techniques 
to get around degeneracy problem occurring in the PF without resampling schemes. 
Furthermore we demonstrate a number of resampling schemes, namely: Multinomial 
Resampling (MR), Residual Resampling (RR) and Minimum Variance Resamplings 
(MVR). The major contribution of this paper is to adapt the PF filter to the CDMA 
parameter estimation in the highly nonlinear environments to make easy and practical 
implementation by resampling techniques and to show performance comparisions 
among resampling techniques.. 

This paper is organized as follows. Section 2 introduces the signal and channel 
model that will be used throughout the paper and a description of problem 
formulation. Section 3 provides a description of PF and resampling schemes used for 
parameter estimation. The simulation and results of the performance from computer 
simulations are given in Section 4. Finally, Section 5 provides concluding remarks. 

2   Problem Formulation 

2.1   System and Channel Model 

In DS spread-spectrum [2], the received baseband signal is given by  
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where )(, likτ  and )(
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sikksik elTfPlTc φ= are delays and channel coefficient 

of i th multipaths associated with the k th user’s channel, respectively. )(tak  and 

)(, ld mk  are k th user’s PN spreading code and binary data sequence, respectively. 

AWGN, )(ln , is assumed to have zero mean and variance of 2
nσ . 

2.2   Problem Formulation 

Given the received waveform samples, )(lr , the task is to obtain minimum variance 

estimates of the unknown parameters kc  and kτ  for Kk ,,2,1= , given by 
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where lR  )0(,),1(),({ rlrlr − } is the set of received samples up to time slT . 

Let the unknown parameters be represented by the 12 ×K  vector 

[ ]Tτcx =  (3) 

where T
Kccc ],,,[ 21=c  and T

K ],,,[ 21 τττ=τ . 
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By [2], we can write the state model as 

)()()()1( llll vxFx +=+  (4) 

where the state )(ll xx =  and },{ τFFF cdiag=  is KK 22 ×  augmented state 

transition matrix, [ ]TT
c τvvv =  is 12 ×K  process noise vector with zero mean and 

covariance matrix },{ τQQQ cdiag= , and )(•diag  is diagonal matrix. 
The scalar measurement model follows from the received signal of (1) by 

)())(()( lnlhlz += x  (5) 

where the measurement )()( lrlyyl == , and 
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The scalar measurement )(lz  is a nonlinear function of the state )(lx . Hence, our 

goal is to find the 12 ×K  joint estimator }|)({ llE Rx  with estimated error covariance 

[ ][ ]{ }lTllllllE RxxxxΡ |)|(ˆ)([)|(ˆ)( −−=  (6) 

3   Particle Filtering 

3.1   Implementing the PF 

A particle filter allows for a complete representation of the a posteriori distribution of 
the states, so that any statistical estimates, such as the mean, modes, kurtosis and 
variance, can be easily computed. They can therefore, deal with any nonlinearities or 
distributions. Particle filters rely on importance sampling and, as a result, require the 
design of proposal distributions that can approximate the a posteriori distribution 
reasonably well. The most common strategy is to sample from the probabilistic model 
of the states evolution. We are in a position to compute the particle filter algorithm 
[1]. The basic procedure to construct a particle filter is shown below. The detailed 
derivations are presented in [1] and [3]. The pseudo-code of a generic particle filter 
can now be presented. 

1) Initialization: 0=t  

For Ni ,,1…= , draw the states )(
0
ix  from the prior )( 0xp . 

2) For …,2,1=t  

① Importance sampling step 

− For Ni ,,1…= , sample ),|(~ˆ :1
)(

1:0
)(

t
i
tt

i
t yq −xxx  

− For Ni ,,1…= , evaluate the importance weights up to a normalizing 
constant 
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− For Ni ,,1…= , normalize the importance weights:  
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② Resampling 

− Multiply/Suppress samples )(
:0ˆ i
tx  with high/low importance weights 

)(~ i
tw , respectively, to obtain N  random samples )(
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distributed according to )|( :1
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− For Ni ,,1…= ,  set Ni
t

i
t /1~ )()( == ww  

③ Output : The output of the algorithm is a set of samples that can be used 
to approximate the a posteriori distribution as follows 
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④ One obtains straightforwardly the following estimate of [ ])( :0 ttgE x  
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where the variables tw  is known as the normalized importance weights and ty  is 

measurement signal and the a posteriori density )|( :1:0 tt yp x , where 

},,,{ 10:0 tt xxxx =  and },,,{ 21:1 tt yyyy = , constitutes the complete solution to 
the sequential estimation problem.  

For example, letting tttg :0:0 )( xx =  yields the optimal MMSE estimate 
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identically distributed (i.i.d.) for the approximation to hold. It is usually difficult to 
takes samples from given a posteriori distribution. Bayesian theory proves to result in 
another useful concept, the proposal distribution, )|( :1:0 tt yq x , for the Monte Carlo 
Estimation calculation[1]. Here, the particle filters considered are three resampling 
schemes. The PF algorithm can be easily derived from the SIS algorithm by an 

appropriate choice of : (i) The importance density: ),|( :1
)(
1 t

i
kt yq −xx  is chosen to be the 

prior density )|( )(
1

i
ttp −xx , and (ii) Resampling step: to be applied at every time index. 

The above choice of importance density implies that we need samples from 

)|( )(
1

i
kkp −xx . Thus, the importance weights evaluate )|( )()( i

tt
i

t yp xw = . As the 

importance sampling density for the PF is independent of measurement ty , the state 
space is explored without any knowledge of the observations. As resampling is 
applied at each iteration, this can result in rapid loss of diversity in particles. 
However, the PF method does have the advantage that the importance weights are 
easily evaluated and the importance density can be easily sampled. 
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3.2   Resampling Schemes 

The particle filters rely on sequential importance sampling (SIS). The SIS algorithm 
discussed so far has a serious limitation: the variance of the importance weights 
increases stochastically over time. To avoid the degeneracy of the SIS simulation 
method, a resampling (selection) stage may be used to eliminate samples with low 
importance weights and multiply samples with high importance weights. It is possible 
to see an analogy to the steps in genetic algorithms [4]. A selection scheme associates 

to each particle )(
:0
i
tx  a number of “children”, say Ν∈

i
N , such that ∑ = =N

i i NN
1

. 

Several selection schemes have been proposed in the literature. These schemes satisfy 
)(~)( i

ti wNNE =  but their performance varies in terms of the variance of the particles 

)var( iN . Results in [5] indicate that the restriction )(~)( i
twNiNE =  is unnecessary to 

obtain convergence results. So it is possible to design biased but computationally 
inexpensive selection schemes. We will now present a number of selection or 
resampling schemes, namely: Multinomial Resampling (MR), Residual Resampling 
(RR) and Minimum Variance Resampling (MVR). We found that the specific choice 
of resampling scheme affects the performance of the particle filter. 

3.2.1   Multinomial Resampling 
Resampling involves mapping the Dirac random measure }~,{ )()(

:0
i

t
i
t wx  into an equally 

weighted random measure },{ 1)(
:0

−Nx j
t . This can be accomplished by sampling uni-

formly from the discrete set ( )
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x i N=  with probabilities ( )
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Gordon [6] gave a mathematical proof of this result. After constructing the cumulative 
distribution of the discrete set, a uniformly drawn sampling index i  is projected onto 
the distribution range and then onto the distribution domain. The intersection with the 

domain constitutes the new sample index j . That is, the vector )(
:0
j
tx  is accepted as 

the new sample. Clearly, the vectors with the larger sampling weights will end up 
with more copies after the resampling process.  

Sampling N  times from the cumulative discrete distribution ∑ =
N

i tx

i
t dxw i

t
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equivalent to drawing ),,1;{ NiNi =  from a multinomial distribution with parame-

ters N  and )(~ i
tw . As we are sampling from a multinomial distribution, the variance is 

)~1(~)var( )()( i
t

i
ti wwNN −= . As pointed out in [7], it is possible to design selection 

schemes with lower variance. 

3.2.2   Residual Resampling 
This procedure involves the following steps [4]. Firstly, set  )(~~ i

ti wNN = . Secondly, 

perform an SIR procedure to select the remaining ∑ =−= N

i it NNN
1

~
 samples with 

new weights )
~~( )(1)(
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t NNwNw −=′ − . Finally, add the results to the current iN
~

. For 
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this scheme, the variance ))1()(var( )()( i
t

i
tii wwNN ′−′=  is smaller than the one given 

by the SIR scheme. Moreover, this procedure is computationally cheaper. 

3.2.3   Minimum Variance Resampling  
This strategy includes the stratified/systematic sampling procedures introduced in [5]. 
One samples a set of N  pointsU  in the interval [0, 1], each of the points a distance 

1−N apart. The number of children iN  is taken to be the number of points that lie 

between∑ −
=
1

1
)(~i

j

j
tw  and ∑ =

i

j

j
tw

1
)(~ . This strategy introduces a variance on iN  even 

smaller than the residual resampling scheme, ))1()(var( )()( i
tt

i
tii wNwNN ′−′=  

4   Simulation 

We now examine the performance of the PF for making parameter estimates for a 
multiuser detector. We compare the PF-based estimator with among three resampling 
schemes. The multipath coefficients of the channel can be generated using Clarke and 
Gans Fading Model [8, Chap 4], which provides taps with the appropriate 
distributions and near the correct tap autocorrelations, although the taps are somewhat 
correlated. For simplification purposes, we consider no multipath. For the state model, 

the augmented state transition matrix of (5) was chosen to be  IF 999.0= . Also the 

process noise covariance matrix was IQ 001.0= . 

 

Fig. 1. Operation of multiuer parameter estimation receiver 

We simulate a two-user scenario where the users’ PN spreading codes are chosen 

from the set of Gold codes of length 31 and generated by the polynomials 125 ++ xx  

and 12345 ++++ xxxx . The SNR (Signal-to-Noise Ratio) at the receiver of 
weaker user is 10dB. The Near-Far Ratio is 20dB. Oversampling factor (sample/chip) 
is 2. The SNR for the weaker user is set at 10dB. One aspect about using PF is that 
they require proper initialization. Depending on the problem, the initial guesses may 
need to be close to the correct value for convergence. For the simulation results, we 
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assume such an initial estimator is used to start the tracking algorithm fairly close to 
the true values. Furthermore, we note that the data bits, mkd , , are not included in the 

estimation process, but are assumed unknown a priori. In the simulations, we assume 
that the data bits are available from decision-directed adaptation, where the symbols 

mkd ,  are replaced by the decisions mkd ,
ˆ  shown in Fig. 1. 

The tracker for a two-user system is simulated for a fading channel where the 
channel coefficients are time varying, but the delays remain constant. A simple 
channel model is assumed for each user with a single tap (flat fading). Furthermore it 
is assumed that each user is moving with a Doppler frequency of 200 Hz for User 1 
and 300 Hz for User 2. The fading for in-phase and quadrature components of the the 
channel coefficients for each user was implemented by IFFT and normalized so that 

the average power is unity. The sampling time is taken as )22288.1/(1 ×= MbpscT  

and The bit rate is assumed to be bpsbT 9600/1 =  with processing gain 31. 

 
(a) (b) 

Fig. 2. Parameter estimation errors for (a) channel amplitudes and (b) time delays with a near-
far ratio of 0dB 

 
(a) (b) 

Fig. 3. Parameter estimation errors for  (a) channel amplitude and (b) time delays with near-far 
ratio of 20dB 
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Fig. 2 shows the estimation error for channel coefficients and time delays with 
imperfect power controlled using the Multinomial Resampling, Residual Resampling 
and Minimum Variance Resampling, respectively. As the figure indicates, the 
estimator/tracker with MR and RR is able to accurately track the time-varying 
channel coefficients of each user, even for fast fading rates. But MVR is diverge. The 
results for the same set of assumptions, but with a near-far ratio of 20dB are shown in 
Fig. 3. 

Again, the estimator is able to accurately converge to the correct values of the 
parameters for both the MR and RR. But MR algorithm indicates to converge faster 
RR. 

It is seen that a user is able to accurately converge to the correct delays and channel 
coefficient for PF with MR and RR scheme. PF with MR scheme indicates to 
converge faster and it has smaller mean squared error (MSE). 

5   Conclusions 

We have presented a parameter estimator based on the RPF that are capable of 
estimating channel coefficients and time delays in MAI (near-far ratio = 20dB). The 
PF with MR has been demonstrated to have superior performance over RR and MVR 
scheme. PF with MR can provide a better alternative to nonlinear filtering than RR or 
MVR schemes since it possible to design selection schemes with lower variance. 
Computer simulations also show that it provides a more effective technique for 
tracking time-varying amplitudes and delays in CDMA communication systems than 
RR and MVR. Furthermore the PF with MR estimator is shown to have the ability to 
converge to the user’s true coefficients and time delays for a near-far ratio of 20 dB.  
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