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Abstract. Routing and wavelength assignment (RWA) problem in
wavelength routed optical networks is typically solved using a combi-
nation of integer programming and graph coloring. Such techniques are
complex and make extensive use of heuristics. RWA with maximum edge
disjoint path (EDP) using simple bounded greedy algorithm is shown
to be as good as previously known solution method. In this paper, we
present shortest path first greedy algorithm for maximum EDP with
construction of path conflict graph which gives fair and efficient solution
to the RWA problem in optical networks.
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1 Introduction

Routing and wavelength assignment (RWA) for the lightpaths of the virtual
topology in wavelength routed optical networks is typically solved in two parts —
lightpath routing, to determine the route of the lightpaths on the physical topol-
ogy, and wavelength assignment, to assign the wavelengths to each lightpath in
the virtual topology such that wavelength constraints are satisfied for each phys-
ical link. The RWA problem for a given physical network and virtual topology
is known to be NP-complete. Further, routing and wavelength assignment prob-
lems are each known to be NP-complete [3] and many heuristic solutions have
been proposed [7[8]. See [3[I0JITI] for a survey of the various solutions to the
RWA problem. Lightpath routing is done by first selecting the lightpaths and
then assigning routes to them. The order in which the lightpaths are assigned
can be selected by different heuristic schemes such as random, fixed, longest-
first, or shortest-first. Routes can be found by techniques such as shortest path
algorithm, weighted shortest path, or K —shortest path algorithms. The route is
selected from the available candidates using different schemes such as random,
first-fit, or probability. The RWA problem is also solved by formulating it as an
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integer linear program (ILP) optimization problem [9] with one of two objective
functions — minimize the required number of wavelengths to establish the given
set of lightpaths and maximize the number of established lightpaths with a fixed
number of wavelengths. A hard version of the problem is when no wavelength
conversion is used at the routing nodes of the physical network and this requires
that the wavelength continuity constraint be satisfied, i.e., a lightpath should use
the same wavelength on all the links in its path. Extensive and complex heuris-
tics are used to solve the ILP. One solution considers a fractional relaxation with
rounding techniques to obtain an integral solution and wavelength assignment
with graph colouring method [IJ.

Solving the RWA problem using the mathematical programming is quite
complex in view of the large number of variables and constraints, and complex
problem size reduction heuristics. Further, it will not be known how close the
solution is to the optimal. A simple and intuitive alternative method for RWA
with performance comparable to that from mathematical programming tech-
niques is given in [§]. In the next section we describe their method based on
the simple greedy solution of a well known graph theory problem. Then, in Sec-
tion [3] we present our solution for RWA using fair and efficient greedy solution
for the same graph theory problem. We then give approximation bounds for the
algorithm and conclude the paper in Section

2 RWA Using Edge Disjoint Paths

In this section, we describe simple and intuitive solution to the RWA problem
based on a well known graph theory problem [§]. Observe that the lightpaths
that are assigned the same wavelength do not traverse through same physical
link, i.e., these paths are edge disjoint. In graph theory, given a graph and a set
of source-destination pairs and the requirement that a path be found for as many
of the pairs as possible, finding the maximum set of edge disjoint paths is a well
known problem and is formally defined as follows. Let G = (V, E) be the graph
of the physical network with no wavelength conversion, V' the vertex set, and
E the edge set. Connection request i is specified by a pair (s;,t;), (si,t;) € V.
Let 7 be the set of connections for whom edge disjoint paths need to be found,
7 ={(s1,t1),...,(Sk,tx)}. T is said to be realizable in G if there exist mutually
edge-disjoint paths Pi,..., Py in G such that P; has endpoints s; and t;. The
maximum edge disjoint paths problem is to find a maximum size realizable subset
of 7, given G and 7. Let the maximum size of a realizable subset of 7 in G by
a(7). It is easy to see that the maximum edge disjoint path (EDP) problem is a
combinatorial optimization problem and is known to be NP-hard [B].

Given G and 7, let 71, - - - 7; be partitions of 7 such that partition is a solution
to the maximum EDP problem on G, 7. Now the application to the RWA problem
is follows. Given GG and 7 consider a solution of the maximum EDP problem that
obtains a realizable set 71 = (G, 7). Since the paths in 71 are edge disjoint they
can be assigned the same wavelength, say \;. Now construct the set 71 = 7 — 71,
i.e., 71 is the set of connections not contained in 71. An iteration of maximum
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EDP on the G and 7{ will give 75 = (G, 71) and the paths in 75 can be assigned
the same wavelength, say Aa. This process can be repeated till 7/ is empty for
some i. The minimum such 7 will be denoted by x(G, 7). Finding x(G, 7) is the
problem of minimizing the number of wavelengths in wavelength routed optical
networks. It is easy to see that if the solution to the maximum EDP is optimum,
then the optimum y(G,7) can be obtained from above.

Simple greedy algorithm for maximum EDP is used in [8] and it is shown that
it performs as good as that of more complex solution methods based on integer
linear programming. They use bounded greedy algorithm (BGA) for the maxi-
mum EDP that was first described in [5]. Here, the order in which the lightpaths
are selected is random. In this paper, we present improved greedy algorithm for
maximum EDP. This uses shortest-first heuristics for the selection of lightpaths
to be assigned and construction of path conflict graph [7] for assigning the routes
from available candidate routes. In general, any network has the property that
longer paths are likely to experience higher blocking than shorter ones. Con-
sequently, the degree of fairness can be quantified by defining the unfairness
factor as the ratio of the blocking probability on the longest path to that on
the shortest path for a given RWA algorithm. Blocking of long lightpaths leaves
more resources, such as wavelengths on the physical link in wavelength routed
networks, available for short lightpaths. The problem of unfairness is more pro-
nounced in networks without converters since finding long paths that satisfy the
wavelength continuity constraint is more difficult than without this constraint.
This motivates the use shortest path first greedy algorithm (SGA) [6] for RWA in
wavelength routed optical networks. The first fit shortest path among the enu-
merated alternate shortest paths is selected in [§]. This may not give all possible
disjoint paths in that partition. Basically this doesn’t make use of the available
alternate shortest paths which may lead to an inefficient solution. Further the
algorithm can be improved with construction of path conflict graph from which
a set of desirable routes for all (s;,¢;) pairs in 7 can be obtained. Thus, the route
for each (s;,t;) pair is selected from this set. This efficiently packs disjoint paths
for each partition and hence motivates its use for RWA especially in the case
of reducing the blocking probability. In the following, we describe details of the
solution of the RWA problem using the fair and efficient greedy algorithm to
solve the maximum EDP.

3 RWA with Fair and Efficient Greedy EDP

For solving RWA using maximum EDP, in [§], a lightpath is selected randomly
from traffic matrix and first fit shortest path is assigned to it. We improve this
algorithm in two ways. First, by using SGA, that is, by selecting the lightpath
from the traffic matrix which has minimum length shortest path. This imple-
ments fairness in routing for optical networks. The shorter paths are always
assigned before the longer ones. Secondly, we make use of alternate shortest
paths found for each (s;, ;) pair. Basically, we prune the set of routes further
such that a route sharing minimum number of edges with routes for (7 — (s;,t;))
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is selected for each (s;,t;) pair. Then, from this desirable set, route is assigned.
Note that it may not reduce the total number of wavelengths required in all the
cases but it efficiently finds possible disjoint paths that are assigned the same
wavelength. This improves reuse of the wavelength further. This desirable set of
routes is obtained using path conflict graph as explained further in this section.
We consider RWA for static case as selection of lightpath as well as route is per-
formed offline while the algorithm in [8] can be applied to static and dynamic
cases.

3.1 RWA with Shortest Path First Greedy EDP

In this section, we describe the details of the solution of the RWA problem using
SGA to solve the maximum EDP. The inputs to the algorithm are the graph G of
the physical network with no wavelength conversion and the lightpath set 7. The
output of the algorithm is P which is the set of pairs ((s;,t;), P;) where (s;,1;)
is a routed lightpath and P; is the physical path assigned to this lightpath. The
algorithm, SGAforEDP(G, 7), operates as follows. (a) Select a lightpath (s;,%;)
from the set 7, such that the shortest path P; in G for this connection has
minimum length among those of all requests in the set 7. If there are more than
one candidates which can be selected, then choose one of them arbitrarily; (b)
Find the shortest path P; from desired set of routes (explained in Sect. 3.2)) for
this connection; (c) Add ((si,t;), P;) to the path set P and (s;,t;) to the set
of routed lightpaths «(G, 7) and delete the edges in G used by P;; (d) Remove
(s;,t;) from the set 7 and repeat this while 7 contains a request which can be
routed in G. The algorithm is summarized in Fig.[Il Note that (G, ) contains
the lightpaths that get assigned the same wavelength.

Algorithm SGAforEDP(G,T)
Begin
a(Gv T) = &; P(Gv T) =¢
While ( 7 contains a request which can be routed in G) do
If ((si,t;) such that a shortest path P; from
si to t; in G has minimum length among the
requests in 7) then
a(G, 1) =a(G,7) U (sits)
P(G,7)=P(G,7) U ((si,t:), P)
T=7—(8i,ti)
Delete edges in path P; from G
EndIf
EndWhile
End

Fig. 1. Pseudo code for algorithm SGAforEDP

Each iteration of the SGAforEDP results in a set of lightpaths «o(G,T)
that can be assigned the same wavelength. And 7 is the set of unassigned
lightpaths. We run SGAforEDP with the physical topology graph G and the
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set of unassigned lightpaths to obtain the set of lightpaths that get assigned
a distinct wavelength. This is repeated till all the lightpaths are assigned. The
pseudo code is shown in Fig.

Algorithm Greedy_EDP_RWA(G,T)

Begin
A=0
While ( 7 # ¢) do
A=A+1
SGAforEDP(G,T)
Assign A to all paths P; € P
EndWhile
End

Fig. 2. Pseudo code for the algorithm Greedy_EDP_RWA

3.2 Obtain Desired Set of Routes

The shortest path for a selected lightpath in Fig. [is chosen from desired set of
routes. This set is obtained after pruning enumerated alternate shortest paths
using path conflict graph [7]. This is a graph having k partitions each for (s;, ;)
pair. The path conflict graph Gp = (Vp, Ep) has Vp vertices and each ver-
tex represents one route. For an (si,ti) pair there are one or more candidate
routes that is alternate shortest paths which implies |Ps, ;| > 1. Thus there
are Zle | Ps, 1, vertices in Vp. Because of construction of Gp, the vertices in
Vp can be partitioned into k disjoint sets such that Vp = Vi, ¢, U... U Vs, 1
Each partition corresponds to one (s;,t;) pair. For any u,v € Vp, (u,v) € Ep
if and only if two routes corresponding to v and v share at least one edge in
G = (V,E). Now the question is how to choose the best vertex that is route
from each partition to obtain desired set of routes. We use the heuristic given
in [7] which is as follows. First remove all edges whose vertices are in the same
partition, then choose a vertex with the smallest degree as the best vertex and
remove all other vertices in the same partition. Continue this to obtain such a
vertex from each partition. This gives us the desired set of routes.

3.3 Limited Wavelengths

The RWA can also be solved with objective of maximizing the number of light-
paths that are routed using a fixed number of wavelengths, say L. This is similar
to the objective function of Sivarajan and Ramaswami [9]. The Greedy_EDP_RWA
algorithm defined above can be used in this form of RWA as follows. Observe
that there can only be a maximum of L partitions of the lightpath set 7 with
each partition being assigned the same wavelength. It is easy to see that we
need to perform L iterations of the main loop of Greedy_ EDP_RWA. The pseudo
code for this algorithm called as Greedy EDP_RWA _Lim ) is shown in Fig.[3. The
carried traffic Tcarieq is the set of lightpaths for which route and wavelength is
assigned whereas blocked traffic Tpiocked 1S the set of unassigned lightpaths which
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is blocked due to limited number of wavelengths available in the network. Use of
desired set, of routes makes more sense in this case as it efficiently packs disjoint
routes for each wavelength. This increases carried traffic reducing the blocking
probability further.

Algorithm Greedy EDP_RWA _LimA(G,7)

Begin
A=0
Tcarried = ¢, Thlocked = (,b
Fori=1to L
A=A+1
SGAforEDP(G,T)
Assign A to all paths P, € P
Tcarried = Tcarried U a(G, T)
EndFor
Thlocked = T
End

Fig. 3. Pseudo code for the algorithm Greedy EDP_RWA _LimA

4 Approximation Bounds

The maximum EDP is NP-hard and is also hard to approximate and good heuris-
tics are not well known [B]. The best known approximation guarantee for arbi-
trary graphs is O(max+/m,diam(G)), where m is the number of edges in set
E and diam(G) is the diameter of the graph G [B]. Srinivasan and Baveja [2]
improved the approximation algorithms based on LP relaxation. Guruswami et
al [4] have shown that simple greedy algorithms and randomized rounding algo-
rithms can yield approximations similar to those given in [2]. Greedy algorithms
have been extensively studied in combinatorial optimization due to their elegance
and simplicity. The approximability of the maximum edge disjoint paths prob-
lem (EDP) in directed graphs is seemingly settled by the £2(m!/?~¢)-hardness
result of Guruswami et al [4] and the O(y/m) approximation achievable for the
greedy algorithm [5]. Let OPT denote the integral optimum value for the opti-
mal solution for a given instance. Kolliopoulos and Stein [6] show similar bounds
for the shortest first greedy algorithm obtaining

max (OPT/\/mg , OPT?/mq , OPT/dy) paths where mg and dy are the num-
ber of edges and average length of paths respectively, in some optimum solution.
The underlying idea in SGA is that if one keeps routing commodities along suffi-
ciently short paths the final number of commodities routed is lowerbounded with
respect to the optimum. It is clear that the approximation ratio of SGA with
construction path conflict graph is at least as good as that of BGA. As £y C E
is the set of edges used by the paths in an optimal solution and mg = |Ey|, SGA
rather provides the better approximation bound than that of simple BGA. The
approximation existentially improves when |Ey| = o(|E|), i.e., when the optimal
solution uses a small portion of the edges of the graph.
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5

Conclusion

In this paper, we have presented shortest first greedy edge disjoint path based
solution for the routing of lightpaths of the virtual topology of an optical network
and the assignment of wavelengths to them. This method is appealing in its
simplicity and employs fairness aspect providing better approximations than
that of RWA with simple greedy for maximum EDP. Further, this algorithm can
also be used to solve the RWA in which the total number of available wavelengths
is upper bounded and the carried traffic can be improved with the construction
of path conflict graph.
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