
Self-Organizing Sensor Networks

Doina Bein and Ajoy K. Datta

School of Computer Science, University of Nevada Las Vegas, NV 89154
{siona,datta}@cs.unlv.edu

Abstract. We propose a self-organizing protocol in a sensor network.
The algorithm starting from an arbitrary state establishes a reliable
communication (based on the directed diffusion strategy) in the
network in finite number of steps. In directed diffusion protocol [1], a
request for data from a an initiator is broadcast in the network, and
the positive answers from the sensors are forwarded back to the initiator.

Keywords: Directed diffusion, routing, self-organizing, self-
stabilization, sensor networks

1 Introduction

The process of sensing, data processing, and information communication is the
basis of sensor networks ([2], [3]). Due to the large number of nodes and thus,
the amount of overhead, the sensor nodes may not have any global identification
(ID). In some cases, they may carry a global positioning system (GPS). Sensor
nodes are equipped with a processor, but they have limited memory. They can
carry out simple tasks and perform simple computations. The communication is
wireless: radio, infrared, or optical media, and the chosen transmission medium
must be available worldwide. Recent developments in wireless communications
have produced low-power, low-cost, and multifunctional sensor nodes which can
communicate with each other unhindered within small distances.

The nodes in sensor networks are usually deployed for specific tasks: surveil-
lance, reconnaissance, disaster relief operations, medical assistance, etc. Increas-
ing computing and wireless communication capabilities will expand the role of
the sensors from mere information dissemination to more demanding tasks as
sensor fusion, classification, collaborative target tracking. They may be deployed
in an hostile environment, inaccessible terrains, and through a cooperative effort,
proper information has to be passed to a higher level. Their positions are not
predetermined, i.e., the network can start in an arbitrary topology.

Contributions. The goal of this paper is to design a self-organizing sensor net-
work using self-stabilization. Both the sensors and the sensor network infras-
tructure are prone to failures, insufficient power supply, high error rate, discon-
nection, and little or no network support. Many protocols and algorithms have
been proposed for traditional wireless ad-hoc networks, but they do not take
into consideration frequent topology changes, sensors failures, and possible non-
existent global ID. A distributed self-configuring and self-healing algorithm for

M. Bubak et al. (Eds.): ICCS 2004, LNCS 3038, pp. 1233–1240, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



1234 D. Bein and A.K. Datta

multi-hop wireless networks is proposed in [4]. Being self-stabilizing guarantees
that the system will converge to the intended behavior in finite time, regard-
less of the system starting state (initial state of the sensor nodes and the initial
messages on the links).

In this paper, we deal with the communication reliability of the network, and
we present a self-organizing protocol in a sensor network. The protocol constructs
in finite number of steps a reliable communication in the sensor network in which
requests for data sensed by the sensors are answered back to the initiator on the
shortest path, which can send it to a higher level network (e.g. Internet, satellite
etc) or application level.

Related Work. Given a general asynchronous network with at most n nodes,
a similar self-stabilizing protocol is proposed in [5]. Its idea of maintaining the
correct distances in the routing table regarding the closest nodes can be used
for our algorithm in a sensor network, where the criterion is not the shortest
distance among neighbors, but correct collected data for each request.

We use directed diffusion protocol ([1]) for implementing all the distributed
services and for retrieving data through dynamically changing ad-hoc sensor
networks. In directed diffusion (see Subsection 2.1), the nodes are not addressed
by their IP addresses but by the data they generate. In order to be able to
distinguish between neighbors, nodes may have local unique IDs. Examples of
such identifiers are 802.11 MAC addresses ([6]), Bluetooth cluster addresses ([7]).

The most general technique of designing a system to tolerate arbitrary tran-
sient faults is self-stabilization ([8]). A self-stabilizing system is guaranteed to
converge to the intended behavior in finite time, regardless of the initial state
of the nodes and the initial messages on the links ([9]). In a distributed self-
organizing protocol, with no initialization code and with only local information,
the global objective to be achieved is to construct a reliable communication
in the network in which requests for data sensed by the sensors are answered
back through the shortest path with the correct existing data up to the current
moment, meanwhile taking care of topology changes as well.

Paper Organization. In Section 2 we present several aspects regarding sensor
networks, directed diffusion protocol, and self-stabilization as a particular case
of fault tolerance. In Section 3 we present the self-stabilizing directed diffusion
protocol, and we make some concluding remarks and future work in Section 4.

2 Sensor Networks as Distributed Systems

A sensor node is made up of four basic components: a sensing unit, a process-
ing unit, a power unit, and a transceiver unit. Additional components as power
generator, global positioning system, location finding unit can be also attached,
depending on the application. The processing unit, equipped with a small mem-
ory, manages the work of other components, it is responsible for information
communication, and also supervises an eventual collaboration of the node with
other nodes in accomplishing assigned sensing tasks. So it is important for our



Self-Organizing Sensor Networks 1235

routing algorithm to have a low computation time and memory requirements.
The transceiver unit connects the node to the network.

The sensor nodes are generally scattered in a sensor field, and there are one or
more nodes called initiators, capable to communicate with higher level networks
(Internet, satellite etc) or applications. Each sensor is responsible for collecting
data appropriate to its type and specifications, and maintaining a shortest path
communication with the initiator nodes.

Whenever a new data is acquired regarding some past request not expired yet,
a sensor node communicates it to the initiator, and facilitates the shortest path
forwarding. A sensor node is able to do these tasks concurrently for any number
of initiators and any number of request per initiator. Some sensor nodes may fail
due to hard conditions, lack of power, environmental interference. The failure
of a node should not obstruct the network functionality, and its overall task, as
long as the network still remains connected and does not get disconnected.

2.1 Directed Diffusion Protocol

Directed diffusion ([1]) is a data-centric protocol, where the nodes are not iden-
tified by their ID, but by the data they generate as result of detecting (sensing).
The data is organized as attribute-value pairs. An initiator node makes a request
for a certain data by broadcasting an interest for a certain data throughout the
sensor network. Different nodes may matched the request on different degrees,
and gradients are kept in order to point out the neighbor (or the neighbors)
toward the initiator (or initiators) of that particular request. The possible an-
swers are forwarded back to the initiator, and intermediate nodes may perform
a pre-filtering of the answers.

In our sensor network, we consider simple attribute-value scheme, with an
upper bound of K in the number of such pairs. Each attribute has an fixed length
associated value range, but not a fixed range. We impose these restrictions as the
memory in a sensor unit has limited capacity. When broadcasting an interest,
an initiator will specify the exact attribute name, and a much larger interval
attribute. The message contains also a distance field (initially 0), and some
control information: a timestamp, and an expiration value, which added to the
timestamp specifies the moment in the future when the data is not important
anymore (it has expired).

Every node maintains a so called interest cache, that contains for each exis-
tent attribute-values pair, a gradient field, which specifies the neighboring node
through which an interest request has been received, the newest match up to
the current moment, some control fields (timestamp and expiration), a newest
field (identifies the node from which the newest matching data has been received)
and a distance field (keeps track of the shortest distance toward initiator). An
attribute exists in the cache if, at some not far moment in the past, an initia-
tor has manifested an interest for that attribute, so the content of the cache is
interest driven. The variables used are:
- IC = the interest cache data structure, which keeps all the data
- no entries IC: the current number of entries in the IC



1236 D. Bein and A.K. Datta

- sensed: it is set to true by the sensing unit whenever new data is collected
- SU : the sensing unit data structure which contains the complete collected
data, and it has the following fields: attr (attribute name), value (value of the
attribute detected by the sensing unit), and other (other data). The sensing unit
sets the Boolean variable sensed to true whenever new data is collected, and
stores in the data structure SU the complete data.

There are three macros that operate over the variable IC:
- macro add to IC(msg, nbr) adds a new entry based on the field values of
the message msg of type INTEREST , sets the gradient to be nbr, and also
increments no entries IC. If K (the upper bound in the number of entries) is
reached then the oldest message, breaking ties by expiration date, is removed.
- macro modify IC(e, msg, nbr) modifies the entry e of IC based on the field
values of the message msg of type INTEREST , and sets the gradient to be nbr
- macro delete from IC(e) deletes the entry e, and decrements no entries IC.

The interest cache is comparable with a routing cache, where instead of node
IDs, we keep attribute-values pairs. Whenever an interest request is received, the
node checks to see if it has an entry in its interest cache. If not, it creates an
entry, using the parameters received in the message. For any node, an initiator is
identified by a gradient field, which specifies the neighboring node through which
the request has been received. The newest match in the data for an interest is
kept, together with the node local ID (in the field newest) from which this match
comes. The shortest distance toward the initiator is kept in the distance field. If
a node receives data from its sensing unit or from the neighbors which have no
existent interest, the data is simply dropped. Also, if the data received is older
than the existent one, it is also dropped.

We prevent the case in which, as a result of an arbitrary initialization, for
an interest received, wrong matches are stored initially in the cache with good
(newer) timestamps. Whenever a new data corresponding to some pair attribute-
values is received by a node (which can be either from the node itself sensing
unit or from one of its neighbors) and that node ID is stored in the interest
cache as the newest, that data will override the entry, independent of the values
stored currently, even if the new value does not have a better timestamp for
that interest. Later on the values received from the node sensing unit or from
its neighbors will correct this.

Because the node has to self-organize, the interest cache is checked period-
ically for expired interests, and those entries are zapped. It is not necessary to
send messages to the neighbors to do the same, because they already have the
expiration date stored in their own cache, so they can do the same. Also, periodi-
cally, the entries in the cache are compared with the one of the gradients, to make
sure that fictive interests are not stored as a result of an arbitrary initialization.

In [1], the model proposed forces the initiator to periodically broadcast an
interest to the rest of the network, with the purpose to maintain the robustness
and reliability of the network. In our algorithm, this is not necessary, because
each node is responsible for keeping track of changes in its neighborhood, so an
initiator will re-broadcast its interest only if, within a certain timeout, he did not
receive an answer or a proper answer back. An addition to the [1], we allow any



Self-Organizing Sensor Networks 1237

number of initiators and any number of requests per initiator, with the condition
that we have an upper bound of K in the number of entries in the interest cache,
as the memory in a sensor unit has limited capacity. Another difference from [1]
is that we save space by requiring only one gradient per entry, while in [1] there
is a gradient for each neighbor.

2.2 Self-Stabilizing Distributed Systems

In a sensor network, the nodes communicate by messages, with two actions:
send(message), and receive(message). The messages have variable length and
they are sent through wireless links. Our algorithm is asynchronous, so it is
guaranteed to run correctly in networks with arbitrary timing guarantees. A
common assumption is to bound the interval of time for transmitting a message,
called timeout, after which the message is considered lost.

There are some assumptions we make in our algorithm: independent of the
node/link failure, the network never becomes disconnected, and that we have
FIFO ordering among the messages on the channel, which means that the mes-
sages are delivered in a node in the order they have been sent on the channel by
a neighboring node. The messages used:
- CHECK, CLEAR : fields id (sender local ID), attr (attribute name), interval
(interval of values for an interest), time (initiator sending time), expir (expira-
tion time).
- DATA : fields id (sender local ID), attr (attribute name), value (attribute
value), other data (other data), time (sending time).
- INTEREST : fields attr (attribute name), interval (interval of values for the
attribute), time (initiator sending time), expir (expiration time of the interest),
dist (total length of the crossed path)

Each node v has a unique local ID, LIDv, and knows only its direct neighbors
(variable Nv), so it can distinguish among its adjacent wireless links. We assume
that Nv as well as the current time are maintained by an underlying local
topology maintenance protocol, which can modify Nv value during the lifetime
of the node because of adding/crashing of neighboring sensors.

Each sensor node has a local state, identified by its current interest cache,
and its variables. The global state of the system is the union of the local state of
its nodes, as well as the messages on the links. The distributed program consists
of a finite set of actions. Each action is uniquely identified by a label and it is
part of a guarded command : < label >::< guard >→< action >

The action can be executed only if its guard, a Boolean expression involving
the variables, evaluates to true. An action is atomically executed: the evaluation
of the guard and the execution of the corresponding action are done in one
atomic step. In the distributed daemon system, one or more nodes execute an
action, and a node may take at most one action at any moment.

A self-stabilizing system S guarantees that, starting from an arbitrary global
state, it reaches a legal global state within a finite number of state transitions,
and remains in a legal state unless a change occurs. In a non-self-stabilizing
system, the system designer needs to enumerate the accepted kinds of faults,



1238 D. Bein and A.K. Datta

such as node/link failures, and he must add special mechanisms for recovery.
Ideally, a system should continue its work by correctly restoring the system
state whenever a fault occurs.

3 Self-Stabilizing Routing Algorithm in Sensor Networks

The macros/functions used by the algorithm are:
- restart sets the variables IC, SU , no entries IC, turn, sensed to their default
values
- check entry returns true if an INTEREST message has a matching entry in
IC on the data fields, but the control fields show a newer request, false otherwise
- check data returns true if the data collected by the sensing unit or received in
a DATA emssagematches an interest entry in IC, false otherwise
- match entry returns true if the data and control fields from a CLEAR/CHECK
message are matching some entry in the IC, false otherwise

The purpose of the algorithm is to construct a reliable communication in the
sensor network in which requests for data sensed by the sensors are answered
back through the shortest path with the correct existing data.

The guard 1.01 has the role to check for errors as a result of an arbitrary
initialization of the network, and to keep up with topology changes in the imme-
diate neighborhood. Periodically, each entry in the interest cache IC is checked
for expiration and consistency with the gradient node. If it is not expired, the
data and the control fields of the entry is sent to the gradient node (message
CHECK), to make sure that no changes have occurred in the interest requested
in the past. If a change has occur or wrong interests are stored in IC, the gra-
dient node answers back (message CLEAR), and the entry is cleared out of the
interest cache.

Whenever a data is collected through the sensing unit, its content is stored in
the data structure SU , and the variable sensed is set to true. Regulary the data
collected is checked to see if it matches a previous, and not yet expired interest.
If it does, then the data is sent (message DATA) to the corresponding gradient.
In any case, sensed is set back to false. When a DATA message is received,
similar tests are done. If the message matches an interest, it is forwarded to the
gradient, but having in the id field the current node (IDs can be checked only
locally, they have no meaning further.)

When an initiator manifests an interest for some particular data, it sends an
INTEREST message, with data fields (attribute name and interval of values),
control fields (timestamp and expiration), and a distance field, initially set by
the initiator to be 0. Whenever an INTEREST message is received by a node
from a neighbor, the length of the link to the neighbor is added to the distance
field. Among identical INTEREST messages received, the one with the smallest
distance value is selected, in order for the node to be always oriented using the
gradient toward the initiator node through the shortest path.



Self-Organizing Sensor Networks 1239

Algorithm 1 SOSN Self-Stabilizing Directed Diffusion Protocol

error ≡ ¬(0 ≤ turn < no entries IC) ∨ ¬(IC[turn].time > current time)∨
(IC[turn].gradient ∈ Nv) ∨ ¬(IC[turn].newest ∈ (Nv ∪ LIDv))

1.01 error −→ restart

1.02 timeout ∧ (0 ≤ turn < no entries IC) −→
e← IC[turn]
if (e.time + e.expir < current time) then delete from IC(e)
else send CHECK(LIDv, e(attr, values, time, expir)) TO e.gradient
turn := (turn + 1) mod no entries IC

1.03 Upon receipt of msg CHECK from neighbor nbr −→
if (msg id 	= nbr) ∧ (msg.id /∈ Nv) ∨ (msg.id ∈ Nv ∧ (∃ an entry e in IC:

match entry(e, msg))) then discard message msg
else send CLEAR(LIDv, msg(attr, interval, time, expir)) TO nbr

1.04 Upon receipt of msg CLEAR from neighbor nbr −→
if (msg id 	= nbr) ∧ (msg.id /∈ Nv) ∨ (msg.id ∈ Nv ∧ ¬(∃ an entry e in IC:

match entry(e, msg))) then discard message msg
else delete from IC(e)

1.05 timeout ∧ sensed −→
if (∃ an entry e in IC: check data(LIDv, e, SU(attr, value), current time))

then send DATA(LIDv, SU(attr, value, other), current time) TO e.gradient
sensed := false

1.06 Upon receipt of msg INTEREST from nbr −→
if ¬(msg.id ∈ Nv ∧msg.id == nbr) then discard message msg
msg.dist = msg.dist + length path to(nbr)
if (∃ an entry e in IC: match entry(e, msg)) then

if (msg.dist < e.dist ∨ nbr == e.gradient) then
modify IC(e, msg, nbr)
send msg TO all nodes in Nv \ nbr

else discard message msg
else

if (∃ an entry e in IC: check entry(e, msg)) then
modify IC(e, msg, nbr)

else add to IC(msg, nbr)
send msg TO all nodes in Nv \ nbr

1.07 Upon receipt of msg DATA from nbr −→
if (msg.id ∈ Nv ∧msg.id == nbr) ∧ (∃ an entry e in IC:check data(msg.id,

e, msg(attr, value, time))) then send DATA(LIDv, msg(attr, value, other,
time)) TO e.gradient



1240 D. Bein and A.K. Datta

4 Conclusion

We presented a self-organizing protocol that guarantees that starting in an ar-
bitrary state, and having only local information, in finite number of steps builds
a reliable communication in the network based on directed diffusion method.
An interesting open problem is a comparative study between self-stabilizing
directed diffusion and snap-stabilization. Snap-stabilization was first introduced
in [10], and guarantees that a system will always behave according to its
specifications ([11]). Snap-stabilizing propagation of information with feedback
algorithm has been presented in [12] and is used extensively in distributed
computing to solve problems like spanning tree construction, termination
detection, synchronization.

References

1. Chalermek Intanagonwiwat, Ramesh Govindan, and Deborah Estrin. Directed dif-
fusion: a scalable and robust communication paradigm for sensor networks. Pro-
ceedings of the 6th annual international conference on Mobile computing and net-
working, Boston, Massachusetts, United States, pages 56 – 67, 2000.

2. Ian F. Akyildiz, Weilian Su, Yogesh Sankarasubramanian, and Erdal Cayirci. A
survey on sensor networks. IEEE Communications Magazine August 2002, pages
102–114, 2002.

3. G. Hoblos, M. Staroswiecki, and A. Aitouche. Optimal design of fault tolerant
sensor networks. IEEE International Conference Cont. Apps. Anchorage, AK,
pages 467–472, 2000.

4. H. Zhang and A. Arora. GS3: Scalable self-configuration and self-healing in wireless
networks. In 21st ACM Symposium on Principles of Distributed Computing, July
2002.

5. D. Bein, A. K. Datta, and V. Villain. Self-stabilizing routing protocol for general
networks. Second edition of RoEduNet International Conference In Networking,
Iasi, Romania, pages 15–22, 2003.

6. IEEE Computer Society LAN MAN Standards Committee. Wireless lan medium
access control (mac) and physical layer (phy) specifications. Technical Report
802.11-1997, Institute of Electrical and Electronics Engineers New York, NY, 1997.

7. The Bluetooth Special Interest Group. Bluetooth v1.0b specification.
http://www.bluetooth.com, 1999.

8. E. W. Dijkstra. Self stabilizing systems in spite of distributed control. Communi-
cations of the ACM, 17:643–644, 1974.

9. M. G. Gouda. Elements of network protocol design. John Wiley & Sons, Inc., 1998.
10. A. Bui, AK Datta, F Petit, and V Villain. Space optimal snap-stabilizing pif in

tree networks. Proceedings of the Fourth Workshop on Self-Stabilizing Systems,
pages 78–85, 1999.

11. A Cournier, AK Datta, F Petit, and V Villain. Optimal snap-stabilizing pif in un-
oriented trees. 5th International Conference On Principles Of Distributed Systems
(OPODIS 2001), pages 71–90, 2001.

12. A Cournier, AK Datta, F Petit, and V Villain. Snap-stabilizing PIF algorithm in
arbitrary networks. In IEEE 22nd International Conference on Distributed Com-
puting Systems (ICDCS 02), pages 199–206. IEEE Computer Society Press, 2002.


	Introduction
	Sensor Networks as Distributed Systems
	Directed Diffusion Protocol
	Self-Stabilizing Distributed Systems

	Self-Stabilizing Routing Algorithm in Sensor Networks
	Conclusion



