
Biologically-Inspired: A Rule-Based
Self-Reconfiguration of a Virtex Chip

Gunnar Tufte and Pauline C. Haddow

The Norwegian University of Science and Technology
Department of Computer and Information Science

Sem Selandsvei 7-9, 7491 Trondheim, Norway
{gunnart,pauline}@idi.ntnu.no

Abstract. To be able to evolve digital circuits with complex structure
and/or complex functionality we propose an artificial development pro-
cess as the genotype-phenotype mapping. To realistically evolve such
circuits a hardware implementation of the development process together
with high-speed reconfiguration logic for phenotype implementation is
presented. The hardware implementation of the development process is
a programmable reconfiguration processor. The high-speed reconfigura-
tion logic for evaluation of the phenotype is capable of exploiting the
advantage of massive parallel processing due to the cellular automata
like structure.

1 Introduction

In Evolvable Hardware (EHW), evolutionary algorithms can be used to evolve
electronic circuits. In general, a one-to-one mapping for the genotype-phenotype
transition is assumed.

Introducing inspiration from biological development, where a genotype rep-
resents a building plan of how to assemble an organism rather than a blueprint
of the assembled phenotype may be a way of artificially developing complex phe-
notypes from relatively simple genotypes [1,2]. Combining artificial development
with evolution thus aims to improve the complexity of electronic circuits that
may be evolved [3,4,5].

In this work we continue to use the knowledge-rich development for circuit
design on a Virtual Sblock FPGA platform [5]. The main goal herein is to define
a hardware solution combining artificial development with intrinsic evolution to
be able to realistic evolve complex structure and/or complex functionality.

The hardware used in this project is a cPCI host computer and a Nallatech
BenERA [6] cPCI FPGA card featuring a Xilinx XCV1000E-6 [7].

The article is laid out as follows: Section 2 introduces the Sblock and the
Virtual FPGA concept, which is the platform for our development process. Sec-
tion 3 describes the mapping of Sblocks to our target technology. Section 4
describes our development process. Section 5 explains the implementation of our
hardware solution combining the development process and the developed Sblock
phenotype on an FPGA. Finaly a conclusion is presented in Section 6.

M. Bubak et al. (Eds.): ICCS 2004, LNCS 3038, pp. 1249–1256, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



1250 G. Tufte and P.C. Haddow

EW

S

f

N

f Out
D

Q

Q
SET

CLR

LUT

CLK

Set

Clr

S
W

E
N

Reconfigurable

Sblock array Sblock connections Sblock detailed view

Fig. 1. Sblocks in a Virtual Sblock FPGA

2 Virtual Sblock FPGA

The Virtual Sblock FPGA is a technology independent platform for evolvable
hardware. The key feature is a more evolution and development friendly hard-
ware platform for evolving digital circuits than what is offered from commercial
FPGAs. Figure 1 illustrates the Virtual Sblock FPGA: the grid of Sblocks; local
connections between neighbouring Sblocks and the internal logic of an Sblock.

The Virtual Sblock FPGA [8] contains blocks — Sblocks — laid out as a sym-
metric grid where neighbouring blocks are connected. Each Sblock neighbours
onto Sblocks on its four sides (north N, east E, south S and west W). The output
value of an Sblock is synchronously updated and sent to all its four neighbours
and as a feedback to itself.

An Sblock may be configured as either a logic or memory element with direct
connections to its four neighbours or it may be configured as a routing element.
Functionality of an Sblock (Sblock type) is defined by the content of its look-up
table (LUT), a function generator capable of generating all possible five-input
boolean functions. The five inputs to the LUT consist of inputs from the 4
neighbours and its own output value (Sblock state).

The Virtual Sblock FPGA may also be viewed at as a two-dimensional cel-
lular automata (CA). The cellular automata may be uniform, if all Sblocks have
the same LUT configuration, or non-uniform if different Sblocks have different
LUT configurations.

In this work, the cellular automata interpretation is chosen. The CA i.e. the
complete circuit, starts from some initial condition (interpreted as the input)
and runs for a number of interactions to some final condition (interpreted as the
output). This is the most common interpretation of CA computation [9]. This
interpretation is used in [10,5].

A detailed description of Sblocks and the Virtual Sblock FPGA is presented
in [8]. Evolution and development friendly features of the platform may be found
in [11]. The term development friendly is used to reflect the fact that properties
of the architecture are more suitable to developmental techniques than those
found in today’s technology.



Biologically-Inspired: A Rule-Based Self-Reconfiguration of a Virtex Chip 1251

CLK
CLK

A4
A3
A2
A1

LUT
RAM

ROM

D

A4

A3

A2

A1

LUT

RAM

ROM

D

Low   Y

N F4
E F3
S F2
W F1

N G4
E G3
S G2
W G1

LUTG

LUTF

CKINV SLICE 1

A4
A3
A2
A1

LUT
RAM

ROM

D

A4

A3

A2

A1

LUT
RAM

ROM

D

F

G

BX_B

BX
1
0

F5

F
FXOR 1

0
D

CE

CK

INIT

FF
LATCH

Q

HIGH
LOW

REV

CE_B

CE
1
0

En CE

1
0

ConfEnFF  BX

ConfFF  F4

Low  G4
High G3

Out G2

CLK  CLK

OUT
XQ

FXMUX
F5MUX

FFX

LUTG

LUTF

BXMUX CEMUX

CKINV

DXMUX

SLICE 0

WSF
CK
WE

WSG
DF

BX
BY

DG

BX_B

BX
1
0
BXMUX

BY_B

BY
1
0

BYMUX

1
0

SR_B

SR
1
0

SRMUX

F5

F
FXOR

FXMUX

F6

G
GXOR

GXMUX

High  X

ConfEnLUT
SR

ConfHigh
BX

ConfLow
BY

SblockCLK  CLK
En  CE

ConfEnFF  BX
ConfFF  F4

North  input
East input

South input
West input

Fig. 2. Sblocks hard macro implementation for on-chip reconfiguration

3 Sblock Architecture on a Virtex-E FPGA

The mapping of the Sblock architecture to an FPGA aims to utilize the under-
lying technology of the target device. The Virtex-E [7] series of FPGAs from
Xilinx consists of an array of configurable logic blocks (CLBs) and fast inter-
nal BlockRam (BRAM) memory. BRAM modules are placed in-between CLB
columns at fixed intervals. Exploiting the 2-d array of CLBs in the device, we
form the 2-d grid of Sblocks where an Sblock fits into one CLB. This adaptation
gives us the possibility to constrain the placement of Sblocks to specific CLB
locations in the target device. Knowledge of placement gives us two advantages.
First, knowledge of Sblock placement is crucial for partial reconfiguration, since
it is essential to know where the desired Sblock is located to be able to update
the LUT. Second, the constrained placement of Sblocks ensures adjacent Sblocks
to be placed in CLBs according to their neighbourhood. This implies short and
conform routing between Sblocks, giving approximately the same propagation
delay for all Sblock connections. The Sblock implementation is shown in Figure 2.

Configuration of an Sblock FPGA is a two stage process. The first stage
configures fixed logic, assigns and configures Sblocks into their respective CLBs,
and sets up the routing resources to connect Sblocks. In the second stage re-
configuration manipulates LUTs in desired Sblocks, utilizing partial dynamic
reconfiguration of Sblocks. The first configuration stage uses standard configu-
ration mode provided by the device. The second configuration stage may use the
standard partial reconfiguration modes i.e. frame based reconfiguration [12], or
custom reconfiguration as explained in Section 5.

The LUTs are used as both function generators and as shift registers. An
Sblock requires two slices, while one Sblock fits in to one CLB using both slices.
Bold letters indicate input and output ports on the slices. The LUTs inputs are
connected to form the five input LUT, due to the use of the BXMUX in the shift
register implementation the five input LUT here consists of LUTG and LUTF in
slice 1 and LUTG in slice 0. The shown Sblock implementation gives a maximum
number of Sblocks on an FPGA that equals the number of CLBs.



1252 G. Tufte and P.C. Haddow

Extra signals in Figure 2 are data and control signals for the custom reconfig-
uration of the Sblocks. Instead of using frames to alter LUT content and flip-flop
state we have added extra logic on the FPGA to shift configuration data in and
out of the Sblocks. The data port for shifting data into the LUTs is split in two
ports: ConfLow for shifting data into LUTG and ConfHigh for shifting data into
LUTF. ConfEnLut enables reconfiguration of LUTs. The ConfFF is a data input
used to shift in states to the flip-flop when ConfEnFF is active.

The function of the Sblock in Figure 2 can of course be reconfigured by
changing LUT bits by reading and writing frames, but the implementation also
supports a custom reconfiguration mode for high-speed reconfiguration. The cus-
tom reconfiguration mode exploits the possibility of using LUTs as both func-
tion generators and shift registers. Instead of altering LUT contents by writing
frames, on-chip reconfiguration logic can address desired Sblocks and alter their
LUTs by shifting in new data.

4 Development on an Sblock Platform Inspired by
Biology

As stated in Section 1, instead of using a genotype representation as a blueprint
for a circuit a development process uses a building plan of how to assemble the
circuits. In this work the building plan consists of rules.

The rules are based on two types of rules i.e. change and growth rules. These
rules are restricted to expressions consisting of the type of the target cell and
the types of the cells in its neighbourhood. Firing of a rule can cause the target
cell to change type, die (implemented as a change of type) or cause another cell
to grow into it.

Figure 3 illustrates the process of applying growth and change rules. A growth
rule targets the C Sblock which is an empty Sblock. This means that the con-
dition of this change rule, including types of the four neighbours and the target
itself match. The rule triggered grows a new Sblock into C by copying the Sblock
type from the E neighbour. A change rule then targets the Sblock in position C.
The change rule result is that the targeted Sblock C is changed.

The direction of growth is built into the rules themselves [5]. Growth is not
triggered by an internal cell in the growing organism but in fact by a free cell —
empty Sblock, neighbouring the growing organism. When a growth rule triggers,
it matches to a free cell and its given neighbourhood. Four different growth rules

W C E

N

S

W C E

N

S

W C E

N

S

W C E

N

S

Growth rule triggered Growth rule result Change rule triggered Change rule result

Fig. 3. Change and Growth on an Sblock Grid



Biologically-Inspired: A Rule-Based Self-Reconfiguration of a Virtex Chip 1253

Initial condition Developmental step 2 Developmental step 5

Result C S  E  N  W
  RuleOne:
  RuleTwo:
  RuleThree:
  RuleFour:
  RuleFive
  RuleSix

Gs
Ge
Gw
Gn
T  0
ER

Z
Z
Z
Z

DC
DC

XOR
DC
DC
DC
Z

DC

DC
XOR
DC
DC
Z

XOR

DC
DC
DC

XOR
DC
DC

DC
DC

XOR
DC
DC
DC

Z: Empty Sblock

XOR

East router

T 1

Fig. 4. Example of development to a symmetrical organism

control growth from the North (GN ), East (GE), South (GS) and West (GW )
respectively. This means that if, for example, a north growth rule targets a free
cell, then the type of the cell to the North is copied to the free cell.

In Figure 4 development of an organism is shown. The example shows devel-
opment of an organism with structural properties, no functionality is considered.
Three different Sblock types are possible: XOR, East Router (ER), and a thresh-
old element (T ≥ 1).

The organism develops from a single cell (axiom) shown in the initial condi-
tion. After two development steps, the organism has grown from the axiom to
eleven Sblocks and differentiated to consist of all three Sblock types. At the fifth
and final development step, the organism has developed into an organism with
two symmetrical patterns (one of the two patterns is indicated). The genome
(rules) used is as shown. The rules are ranked, rule one has the highest priority
and the last rule lowest priority. Details concerning development of structural
organisms can be found in [13] and for functionality in [5].

5 Rule Based Reconfiguration Inspired by Biology

The reconfiguration speed depends on both the time spent on downloading con-
figuration data and on the time spent to do the reconfiguration by changing the
functionality of the device. Inspired by the building plan idea we propose a small
on-chip processor [14] for handling the reconfiguration. The FPGA is partitioned
in two: a reconfigurable and a fixed logic partition. The Processor is the fixed
partition. The reconfigurable partition is an Sblock array.

Following the idea of using a building plan as a genome the only configuration
data needed may be the instructions of how to build the phenotype i.e. the
rules. The on-chip reconfiguration logic is designed to use the rules to develop a
phenotype in the on-chip Sblock array. The functionality of the phenotype may
be the interpretation of the states of the Sblocks in the developing organism [5].

The use of a processor design as reconfiguration logic has several advantages.
The two most important features may be: First the speed of downloading recon-
figuration data. The compact rule representation requires only a small amount
of data to be transferred to the chip. Second, the processor design allows an
instruction set. Using an instruction set is flexible, making it possible to use the
processor to configure Sblocks by addressing target Sblocks and downloading
Sblock types to the chip. A more powerful method is to use the processor to
configure the Sblock array using developmental rules. Another flexibility is the
possibility to write small programs. Such programs may be setting a number of



1254 G. Tufte and P.C. Haddow

COM

Fixed partition

FPGA

Reconfigurable partition

DevelopmentUnit

CTRL
LoadStore

ConfigSblock

ReadBack

BRAM

SblockArray

BRAM

BRAM

Fig. 5. Implementation of Sblock on-chip reconfiguration

development steps and/or clock cycles to run the Sblock array. Programs can
also be used to monitor the Sblock array during the development process.

The possibility a hardware implementation gives for massive parallel process-
ing in CA like structures is exploited for running the Sblock array, the develop-
ment process where parallel processing includes implementing the rules in every
cell, was considered to resource consuming. Therefore the development process
is sequential.

Figure 5 shows a block drawing of our reconfiguration processor together
with the Sblock array. The Sblocks is implemented as shown in Figure 2, where
reconfiguration of the Sblocks is done by shifting data into the LUTs. Running
state steps is done in parallel i.e. all Sblocks output values are updated in parallel
each cycle. The processor is divided into seven modules:

– COM: Interface for external communication with the host on the cPCI bus.
– CTRL: This is the control unit of the processor. This module also includes

the instruction memory and manages communication with the COM module.
– BRAM: Intermediate storage of type and state of the Sblock array. Split in

two BRAM modules, storing current development steps state and type and
a second for the developing organism.

– DevelopmentUnit: Hardware implementation of the development process in
Section 4. To speedup the process the development process works on a copy of
the actual Sblock array and the copies is stored in BRAM. The current Sblock
array configuration is stored in one BRAM module. The development process
reads the current Sblock array and updates the second BRAM module with
new Sblock types for those that triggers a rule. The DevelopmentUnit is a
six stage pipeline, processing two Sblocks each clock cycle.

– ConfigSblock: Reconfiguration of the Sblock array. The module reads out
Sblock types and states from BRAM and reconfigures the Sblocks with the
Sblock array under development stored in BRAM. Implemented as a seven
stage pipeline, reconfigures two Sblocks every cycle.

– LoadStore: Handles reading and writing of Sblock types and states to BRAM
and communicates with external devices through the COM interface.

– ReadBack: Used to monitor Sblock types and states. Read back of Sblock
states is done from the Sblock array by the Readback module and stored
as state information in BRAM. Sblock types are already present in BRAM
from the latest development step.



Biologically-Inspired: A Rule-Based Self-Reconfiguration of a Virtex Chip 1255

A typical experiment for the system will be to run a genetic algorithm (GA)
on the host computer and the development process with the developing pheno-
type in hardware. As stated in Section 3 the configuration process is a two stage
process, where the first stage configures the FPGA with the processor design
and the Sblock array. The configuration in the first stage is done after synthe-
sis of the processor design with an Sblock array of desired size. After the first
configuration stage, the FPGA contains the reconfiguration processor and the
Sblock array.

Before the experiments starts, the development process must be defined i.e.
defining the number of development steps and number of state steps for each
evaluation. Criteria for read back of information from the evaluation can also
be defined. These definitions are done by writing and downloading a program to
the reconfiguration processor. The downloaded program is executed to evaluate
each downloaded rule genome from the GA in the host.

To evaluate our hardware solution we first compared reconfiguration time
using the configuration processor with Virtex frame based reconfiguration using
the JTAG interface. The task was to reconfigure a 32 by 32 Sblock array. Since
the goal is to evaluate configuration speed we wanted to include both download
and reconfiguration time in both cases. To manage this the reconfiguration pro-
cessor was only used to receive configuration data from the host and configure
the addressed Sblock i.e. all reconfiguration data was in full downloaded from
the host for both cases. The test was done by reconfiguring all Sblocks in the
array a 1000 times. The frame based reconfiguration used 170,38 seconds to ac-
complish the task. The configuration processor accomplished the same task in
0.55 seconds, giving a speedup of more then 300.

A comparison of performance of the system with a software simulation was
also tried. A software simulator simulated both the development process and
the Sblock states on an 8 by 8 Sblock array. The experiment included both
development steps and state steps. The development process was 10 000 steps
with 50 000 state steps at each development step. For each development step all
Sblock types in the array was stored together with the last state step information.
Storing information implies writing back data from the FPGA to a file on the
host over the cPCI bus while for the software simulation storing is writing to a
file. The software simulation accomplished the task in 18.06 minutes, the runtime
in hardware was measured to 6.2 seconds giving a speedup of 175 times. The
software simulation was performed on a 2.3 GHz Pentium 4 PC.

6 Conclusion

The presented hardware system consisting of a hardware platform including
a development process and high-speed reconfigurable logic shows a promising
speedup both for intrinsic evolution and for evolution using development as
genotype-phenotype mapping. The implementation of a reconfiguration proces-
sor is capable of both running intrinsic EHW experiments requiring high-speed
reconfiguration and to speedup the genotype-phenotype mapping.



1256 G. Tufte and P.C. Haddow

References

1. Kitano, H.: Building complex systems using development process: An engineering
approach. In: Evolvable Systems: from Biology to Hardware, ICES. (1998) 218–229

2. Bentley, P.J., Kumar, S.: Three ways to grow designs: A comparison of embryoge-
nies for an evolutionary design problem. In: Genetic and Evolutionary Computa-
tion Conference (GECCO ’99). (1999) 35–43

3. Gordon, T.G.W., Bentley, P.J.: Towards development in evolvable hardware. In:
the 2002 NASA/DOD Conference on Evolvable Hardware (EH’02). (2002) 241 –250

4. Miller, J.F., Thomson, P.: A developmental method for growing graphs and cir-
cuits. In: 5th International Conference on Evolvable Systems (ICES03). (2003)
93–104

5. Tufte, G., Haddow, P.C.: Identification of functionality during development on a
virtual sblock fpga. In: Congress on Evolutionary Computation. (2003)

6. Nallatech: BenERA User Guide. Nt107-0072 (issue 3) 09-04-2002 edn. (2002)
7. Xilinx: Xilinx Virtex-E 1.8 V Field Programmable Gate Arrays Production Prod-

uct Specification. Ds022-1 (v2.3) july 17, 2002 edn. (2002)
8. Haddow, P.C., Tufte, G.: Bridging the genotype-phenotype mapping for digital

FPGAs. In: the 3rd NASA/DoD Workshop on Evolvable Hardware. (2001) 109–
115

9. Mitchell, M., Hraber, P.T., Crutchfield, J.P.: revisiting the egde of chaos: Evolving
cellular automata to perform computations. Complex Systems 7 (1993) 89–130
Santa Fe Institute Working Paper 93-03-014.

10. van Remortel, P., Lenaerts, T., Manderick, B.: Lineage and induction in the De-
velopment of evolved genotypes for non-uniform 2d cas. In: 15th Australian Joint
Conference on Artificial Intelligence. (2002) 321–332

11. Haddow, P.C., Tufte, G., van Remortel, P.: Evolvable hardware: pumping life into
dead silicon. In Kumar, S., ed.: On Growth, Form and Computers. Elsevier Limited
Oxford UK (2003) 404–422

12. Xilinx: Xilinx XAPP 151 Virtex Configuration Architecture Advanced Users’
Guide. 1.1 edn. (1999)

13. Tufte, G., Haddow, P.C.: Building knowledg into developmental rules for circuite
design. In: 5th International Conference on Evolvable Systems ICES. (2003) 69–80

14. Djupdal, A.: Design and Implementation of Hardware Suitable for Sblock Based
Experiments, Masters Thesis. The University of Science and technology, Norway
(2003)


	Introduction
	Virtual Sblock FPGA
	Sblock Architecture on a Virtex-E FPGA
	Development on an Sblock Platform Inspired by Biology
	Rule Based Reconfiguration Inspired by Biology
	Conclusion



