
M. Bubak et al. (Eds.): ICCS 2004, LNCS 3038, pp. 1289–1296, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Evolutionary State Assignment for
Synchronous Finite State Machines

Nadia Nedjah and Luiza de Macedo Mourelle

Department of Systems Engineering and Computation, Faculty of Engineering,
State University of Rio de Janeiro,

Rio de Janeiro, Brazil
{nadia,ldmm}@eng.uerj.br

http://www.eng.uerj.br/~ldmm

Abstract. Among other important aspects, finite state machines represent a
powerful way for synchronising hardware components so that these components
may cooperate in the fulfilment of the main objective of the hardware design. In
this paper, we propose to optimally solve the state assignment NP-complete
problem, which is inherent to designing any synchronous finite state machines
using evolutionary computations. This is motivated by to reasons: first, finite
state machines are very important in digital design and second, with an optimal
state assignment one can physically implement the state machine in question
using a minimal hardware area and reduce the propagation delay of the machine
output signals.

1 Introduction

Sequential digital systems or simply finite state machines have two main
characteristics: (i) there is at least one feedback path from the system output signal to
the system input signals; and (ii) there is a memory capability that allows the system
to determine current and future output signal values based on the previous input and
output signal values [1].

Traditionally, the design process of a state machine passes through five main steps:
(i) the specification of the sequential system, which should determine the next states
and outputs of every present state of the machine. This is done using state tables and
state diagrams; (ii) the state reduction, which should reduce the number of present
states using equivalence and output class grouping; (iii) the state assignment, which
should assign a distinct combination to every present state. This may be done using
Armstrong-Humphrey heuristics [1]; (iv) the minimisation of the control
combinational logic using K-maps and transition maps; (v) and finally, the
implementation of the state machine, using gates and flip-flops.

In this paper, we concentrate on the third step of the design process, i.e. the state
assignment problem. We present a genetic algorithm designed for finding a state
assignment of a given synchronous finite state machine, which attempts to minimise
the cost related to the state transitions.

The remainder of this paper is organised into five sections. In Section 2, we explain
thoroughly the state assignment problem and show that a better assignment improves

1290 N. Nedjah and L. de Macedo Mourelle

considerably the cost related to state transitions. In Section 3, we give an overview on
evolutionary computations and genetic algorithms and their application to solve NP-
problems. In Section 4, we design a genetic algorithm for evolving best state
assignment for a given state machine specification. We describe the genetic operators
used as well as the fitness function, which determines whether a state assignment is
better that another and how much. In Section 5, we present results evolved through
our genetic algorithm for some well-known benchmarks. Then we compare the
obtained results with those obtained by another genetic algorithm described in [2] as
well as with NOVA, which is uses well established but non-evolutionary method [3].

2 State Assignment Problem

Once the specification and the state reduction step has been completed, the next step
is then to assign a code to each state present in the machine. It is clear that if the
machine has N present states then, one needs N distinct combinations of 0s and 1s. So
one needs K flip-flops to store the machine present state, wherein K is the smallest
positive integer such that 2K ≥ N. The state assignment problem under consideration
consists of finding the best assignment of the flip-flop combinations to the machine
states. Since a machine state is nothing but a counting device, combinational control
logic is necessary to activate the flip-flops in the desired sequence. Given a state
transition function, it is expected that the complexity (area and time) as well as cost of
the control logic will vary for different assignments of flip-flop combinations to
allowed states. Consequently, the designer should seek the assignment that minimises
the complexity and the cost of the combinational logic required to control the state
transitions. For instance, consider the state machine of one input signal and 4 states
whose state transition function is given in tabular form in Table 1 and we are using
JK-flip-flops to store the machine current state. Then the state assignment {s0 ≡ 00, s1

≡ 10, s2 ≡ 01, s3 ≡ 11} requires a control logic that consists of 4 NOT gates, 3 AND gates
and 1 OR gate while the assignments {s0 ≡ 00, s1 ≡ 11, s2 ≡ 01, s3 ≡ 10}, {s0 ≡ 10, s1 ≡ 01,
s2 ≡ 11, s3 ≡ 00} and {s0 ≡ 01, s1 ≡ 10, s2 ≡ 00, s3 ≡ 11} require a control logic that
consists of only 2 NOT gates and 1 OR gate.

Table 1. State transition function

Next Sate
Present State

I = 0 I =1
q0 q0 q1
q1 q2 q1

q2 q0 q3
q3 q2 q1

Evolutionary State Assignment for Synchronous Finite State Machines 1291

3 Evolutionary Computations

Evolutionary algorithms are computer-based solving systems, which use evolutionary
computational models as key element in their design and implementation. A variety of
evolutionary algorithms have been proposed. The most popular ones are genetic
algorithms [4]. They have a conceptual base of simulating the evolution of individual
structures via the Darwinian natural selection process. The process depends on the
adherence of the individual structures as defined by its environment to the problem
pre-determined constraints. Genetic algorithms are well suited to provide an efficient
solution of NP-hard problems [5].

Genetic algorithms maintain a population of individuals that evolve according to
selection rules and other genetic operators, such as mutation and recombination. Each
individual receives a measure of fitness. Selection focuses on individuals, which
shows high fitness. Mutation and crossover provide general heuristics that simulate
the recombination process. Those operators attempt to perturb the characteristics of
the parent individuals as to generate distinct offspring individuals.

Genetic algorithms are implemented through the following generic algorithm
described by Algorithm 1, wherein parameters ps, f and gn are the population size, the
fitness of the expected individual and the number of generation allowed respectively.

Algorithm 1. GA(ps, f, gn):individual;
1: generation := 0;
2: population := initialPopulation();
3: fitness := evaluate(population);
4: do parents := select(population);
5: population := reproduce(parents);
6: fitness := evaluate(population);
7: generation := generation + 1;
8: while(fitness[i] < f, ∀ i ∈ population) & (generation < gn);
9: return fittestIndividual(population);
End

In Algorithm 1, function intialPopulation returns a valid random set of individuals
that compose the population of the first generation, function evaluate returns the
fitness of a given population. Function select chooses according to some criterion that
privileges fitter individuals, the individuals that will be used to generate the
population of the next generation and function reproduction implements the crossover
and mutation process to yield the new population.

4 Application to the State Assignment Problem

The identification of a good state assignment has been thoroughly studied over the
years. In particular, Armstrong [6] and Humphrey [7] have pointed out that an
assignment is good if it respects two rules, which consist of the following: (i) two or
more states that have the same next state should be given adjacent assignments; (ii)
two or more states that are the next states of the same state should be given adjacent
assignment. State adjacency means that the states appear next to each other in the
mapped representation. In other terms, the combination assigned to the states should

1292 N. Nedjah and L. de Macedo Mourelle

differ in only one position; and (iii) the first rule should be given more important the
second. For instance, state codes 0101 and 1101 are adjacent while state codes 1100
and 1111 are not adjacent.

Now we concentrate on the assignment encoding, genetic operators as well as the
fitness function, which given two different assignment allows one to decide which is
fitter.

4.1 Assignment Encoding

Encoding of individuals is one of the implementation decisions one has to make in
order to use genetic algorithms. It very depends on the nature of the problem to be
solved. There are several representations that have been used with success [4].

In our implementation, an individual represents a state assignment. We use the
integer encoding. Each chromosome consists of an array of N entries, wherein entry i
is the code assigned to ith. machine state. For instance, chromosome in Fig. 1
represents a possible assignment for a machine with 6 states:

S
0

S
1

S
2

S
3

S
4

S
5

4 2 1 0 7 6

Fig. 1. State assignment encoding

4.2 The Individual Reproduction

Besides the parameters, which represent the population size, the fitness of the
expected result and the maximum number of generation allowed, the genetic
algorithm has several other parameters, which can be adjust by the user so that the
result is up to his or her expectation. The selection is performed using some selection
probabilities and the reproduction, as it is subdivided into crossover and mutation
processes, depends on the kind of crossover and the mutation rate and degree to be
used.

Given the parents populations, the reproduction proceeds using replacement as a
reproduction scheme, i.e. offspring replace their parents in the next generation.
Obtaining offspring that share some traits with their corresponding parents is
performed by the crossover function. There are several types of crossover schemes
[4]. The newly obtained population can then suffer some mutation, i.e. some of the
genes of some of the individuals. The crossover type, the number of individuals that
should be mutated and how far these individuals should be altered are set up during
the initialisation process of the genetic algorithm.

There are many ways how to perform crossover and these may depend on the
individual encoding used [4]. We present crossover techniques used with binary,
permutation and value representations. Single-point crossover consists of choosing
randomly one crossover point, then, the part of the bit or integer sequence from
beginning of offspring till the crossover point is copied from one parent, the rest is
copied from the second parent. Double-points crossover consists of selecting

Evolutionary State Assignment for Synchronous Finite State Machines 1293

randomly two crossover points, the part of the bit or integer sequence from beginning
of offspring to the first crossover point is copied from one parent, the part from the
first to the second crossover point is copied from the second parent and the rest is
copied from the first parent. Uniform crossover copies integers randomly from the
first or from the second parent. Finally, arithmetic crossover consists of applying
some arithmetic operation to yield a new offspring.

The single point and two points crossover use randomly selected crossover points
to allow variation in the generated offspring and to avoid premature convergence on a
local optimum [4]. In our implementation, we tested single-point and double-point
crossover techniques.

Mutation consists of changing some genes of some individuals of the current
population. The number of individuals that should be mutated is given by the
parameter mutation rate while the parameter mutation degree states how many genes
of a selected individual should be altered. The mutation parameters have to be chosen
carefully as if mutation occurs very often then the genetic algorithm would in fact
change to random search [4]. Fig. 2 illustrates the genetic operators.

 ↓ ↓ ↓
7 0 1 3 6 7 1 2 5 6 0 1 2 5 6
 →

(a)
 →

(b)
 ↓

6 1 2 5 4 6 0 1 3 4 6 0 2 3 4

Fig. 2. State assignment genetic operators: (a) double-point crossover and (b) mutation

4.3 The Fitness Evaluation

This step of the genetic algorithm allows us to classify the individuals of a population
so that fitter individuals are selected more often to contribute in the constitution of a
new population. The fitness evaluation of state assignments is performed with respect
to two rules of Armstrong [6] and Humphrey [7]: (i) how much a given state
assignment adheres to the first rule, i.e. how many states in the assignment, which
have the same next state, have no adjacent state codes; (ii) how much a given state in
the assignment adheres to the second rule, i.e. how many states in the assignment,
which are the next states of the same state, have no adjacent state codes.

In order to efficiently compute the fitness of a given state assignment, we use an
N×N adjacency matrix, wherein N is the number of the machine states. The triangular
bottom part of the matrix holds the expected adjacency of the states with respect o the
first rule while the triangular top part of it holds the expected adjacency of the states
with respect to the second rule. The matrix entries are calculated as in Equation (1),
wherein AM stands for the adjacency matrix, functions next(s) and prev(s) yield the
set of states that are next and previous to state s respectively. For instance, for the
state machine in Table 1, we get the 4×4 adjacency matrix in Fig 3.

() ()()
() ()()










=

<

>

∩

∩

=

ji

ji

ji

qprevqprev

qnextqnext

AM ji

ji

ji

0

#

#

, (1)

1294 N. Nedjah and L. de Macedo Mourelle

 0 1 0 1

 1 0 2 0 Second rule

First rule 1 0 0 0

 1 2 0 0

Fig. 3. Adjacency matrix for the machine state in Table 1

Using the adjacency matrix AM, the fitness function applies a penalty of 2,
respectively 1, every time the first rule, respectively the second rule, is broke.
Equation (2) states the details of the fitness function applied to a state assignment SA,
wherein function nadjacent (q, p) returns 0 if the codes representing states q and p are
adjacent and 1 otherwise.

() () ()∑∑
−

=

−

+=

××+=
1

0

1

1

,, ,2
N

i

N

ij

jiijji SASAnadjacentAMAMSAfitness (2)

For instance, considering the state machine whose state transition function is
described in Table 1, the state assignment {s0 ≡ 00, s1 ≡ 10, s2 ≡ 01, s3 ≡ 11} has a
fitness of 5 as the codes of states s0 and s3 are not adjacent but AM0,3 = 1 and AM3,0 = 1
and the codes of states s1 and s2 are not adjacent but AM1,2 = 2 while the assignments
{s0 ≡ 00, s1 ≡ 11, s2 ≡ 01, s3 ≡ 10} has a fitness of 3 as the codes of states s0 and s1 are
not adjacent but AM0,1 = 1 and AM,1 = 1.

The objective of the genetic algorithm is to find the assignment that minimise the
fitness function as described in Equation (2). Assignments with fitness 0 satisfy all the
adjacency constraints. Such an assignment does not always exist.

Fig. 4. Graphical comparison of the degree of fulfilment of rule 1 and 2 reached by the systems

Evolutionary State Assignment for Synchronous Finite State Machines 1295

Table 2. Best state assignment yield by the compared systems for the benchmarks

FSM Size System State Assignment
 GA [2] [0,2,5,7,4,6,1,3]

 NOVA1 [0,4,2,6,3,7,1,5] Shiftreg
8/16 NOVA2 [0,2,4,6,1,3,5,7]

 Our GA [5,7,4,6,1,3,0,2]
 GA [2] [0,4,12,13,15,1,3,7,5]

 NOVA1 [2,0,4,6,7,5,3,1,11] Lion9
9/25 NOVA2 [0,4,12,14,6,11,15,13,7

 Our GA [10,8,12,9,13,15,7,3,11]
 GA [2] [0,8,2,9,13,12,4,7,5,3,1]

 NOVA1 [0,8,2,9,1,10,4,6,5,3,7] Train11
11/25 NOVA2 0,13,11,5,4,7,6,10,14,15,12]

 Our GA [2,6,1,4,0,14,10,9,8,11,3]
 GA [2] [0,6,2,14,4,5,13,7,3,1]

 NOVA1 [4,0,2,3,1,13,12,7,6,5] Bbarra
10/60 NOVA2 [9,0,2,13,3,8,15,5,4,1]

 Our GA [3,0,8,12,1,9,13,11,10,2]
 GA [2] [0,4,2,1,5,7,3]

 NOVA1 [5,7,1,4,3,2,0] Dk14
7/56 NOVA2 [7,2,6,3,0,5,4]

 Our GA [3,7,1,0,5,6,2]
 GA [2] [0,4,10,5,12,13,11,14,15,8,9,2,6,7,3,1]

 NOVA1 [12,0,6,1,7,3,5,4,11,10,2,13,9,8,15,14] Bbsse
16/56 NOVA2 [[2,3,6,15,1,13,7,8,12,4,9,0,5,10,11,14]

 Our GA [15,14,9,12,1,4,3,7,6,10,2,11,13,0,5,8]
 GA [2] [0,12,9,1,6,7,2,14,11,17,20,23,8,15,10,16,21,19,4,5,22,18,13,3]

 NOVA1 [12,14,13,5,23,7,15,31,10,8,29,25,28,6,3,2,4,0,30,21,9,17,12,1] Donfile
24/96 NOVA2 [6,30,11,28,25,19,0,26,1,2,14,10,31,24,27,15,12,8,29,23,13,9,7,3]

 Our GA [2,18,17,1,29,21,6,22,7,0,4,20,19,3,23,16,9,8,13,5,12,28,25,24]

Table 3. Fitness of best assignments yield by the compared systems

State machine #AdjRes Our GA GA [2] NOVA1 NOVA2
Shiftreg 24 0 0 8 0
Lion9 69 21 27 25 30
Train11 57 18 19 23 28
Bbara 225 127 130 135 149
Dk14 137 68 75 72 76
Bbsse 305 203 215 220 220
Donfile 408 241 267 326 291

5 Comparative Results

In this section, we compare the assignment evolved by our genetic algorithm to those
yield by another genetic algorithm [2] and to those obtained using the non-
evolutionary assignment system called NOVA [3]. The examples are well-known
benchmarks for testing synchronous finite state machines [8]. Table 2 shows the best

1296 N. Nedjah and L. de Macedo Mourelle

state assignment generated by the compared systems. The size column shows the total
number of states/transitions of the machine.

Table 3 gives the fitness of the best state assignment produced by our genetic
algorithm, the genetic algorithm from [2] and the two versions of NOVA system [3].
The #AdjRes stands for the number of expected adjacency restrictions. Each
adjacency according to rule 1 is counted twice and that with respect to rule 2 is
counted just once. For instance, in the case of the Shiftreg state machine, all 24
expected restrictions were fulfilled in the state assignment yielded by the compared
systems. However, the state assignment obtained the first version of the NOVA
system does not fulfil 8 of the expected adjacency restrictions of the state machine.

The chart of Fig 4 compares graphically the degree of fulfilment of the adjacency
restrictions expected in the other state machines used as benchmarks. The chart shows
clearly that our genetic algorithm always evolves a better state assignment.

6 Conclusion

In this paper, we exploited evolutionary computation to solve the NP-complete
problem of state encoding in the design process of asynchronous finite state machines.
We compared the state assignment evolved by our genetic algorithm for machine of
different sizes evolved to existing systems. Our genetic algorithm always obtains
better assignments (see Table 3 of Section 5).

References

1. V.T. Rhyne, Fundamentals of digital systems design, Prentice-Hall, Electrical Engineering
Series. 1973.

2. J.N. Amaral, K. Tumer and J. Gosh, Designing genetic algorithms for the State Assignment
problem, IEEE Transactions on Systems Man and Cybernetics, vol., no. 1999.

3. T. Villa and A. Sangiovanni-Vincentelli, Nova: state assignment of finite state machine for
optimal two-level logic implementation, IEEE Transactions on Computer-Aided Design,
vol. 9, pp. 905-924, September 1990.

4. Z. Michalewics, Genetic algorithms + data structures = evolution program, Springer-
Verlag, USA, third edition, 1996.

5. K. DeJong and W.M. Spears, Using genetic algorithms to solve NP-complete problems,
Proceedings of the Third International Conference on Genetic Algorithms, pp. 124-132,
Morgan Kaufmann, 1989.

6. D.B. Armstrong, A programmed algorithm for assigning internal codes to sequential
machines, IRE Transactions on Electronic Computers, EC 11, no. 4, pp. 466-472, August
1962.

7. W.S. Humphrey, Switching circuits with computer applications, New York: McGraw-Hill,
1958.

8. Collaborative Benchmarking Laboratory, North Carolina State University,
http://www.cbl.ncsu.edu/pub/Benchmark_dirs/LGSynth89/fsmexamples/, November 27th,
2003.

	Introduction
	State Assignment Problem
	Evolutionary Computations
	Application to the State Assignment Problem
	Assignment Encoding
	The Individual Reproduction
	The Fitness Evaluation

	Comparative Results
	Conclusion

