
M. Bubak et al. (Eds.): ICCS 2004, LNCS 3038, pp. 119–123, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Towards a Grid Applicable Parallel Architecture
Machine

Karolj Skala and Zorislav Sojat

Ruder Boskovi, Institute, Center for Informatics and Computing
Bijenicka 54, HR-10000 Zagreb, Croatia.

{skala,sojat}@irb.hr

Abstract. An approach towards defining a flexible, commonly programmable,
efficient multi-user Virtual Infrastructural Machine (VIM) is proposed. A VIM
is a software infrastructure which enables programming a Grid infrastructure
scalable at the lowest possible level. This shall be attained by a Virtual Machine
with inherent parallel execution, executing compiled and interpreted computer
languages on a very complex p-code level. Based on this interactive
deformalized (i.e. natural language like) human-Grid interaction languages
should be developed, enabling parallel programming to be done by inherently
parallel model description of the given problem.

1 Introduction

The development of the e-science, which, predictably, will evolve towards the e-
society, justifies the necessary efforts towards better understanding of computer
implementation, through active Grids, of naturally distributed parallelism of the
environment we live in.

It is a fact that new technologies, clusters and specifically the Grids, are in the
execution of programmed tasks quite different from classical single- or multi-
processor computing environments by using the parallel architecture of a heap of
hugely independent computers, connected through different communication links.

This poses a great many problems in the development of a viable Grid system. The
main issues lie in developing such a structure (i.e. software, including middleware
issues), infrastructure (i.e. hardware, including low level software and firmware) and
applications (including high level portals etc.) which can effectively utilize the
extremely different execution environments1, and actually enable a seamless
integration of different kinds of Grid-enabled equipment, including inter alias
scientific instruments, experimentation and production tools, mobile units of all kinds
etc. into one Grid system.

To enable effective utilization of the multiplicity and variety of Grid resources, in
this paper we propose a direction for further scientific and practical exploration
towards a human usable viable Grid system, i.e. a specific set of, as we see it,
necessary steps towards defining a Grid Applicable Parallel Architecture Machine
(GAPAM).

1 I.e. cross-Grid, cross-platform and cross-cluster execution on computers of different makes,

operating systems, performances and other parameters.

120 K. Skala and Z. Sojat

2 The Grid Software Infrastructure

Actually the approach taken is an attempt to define the software infrastructure of a
complex programmable system which has to be flexible, easily programmable in
commonly known programming languages, and efficient in resource utilization and
execution speed. A further requirement is for it to be multi-user, where all user
privacy and group activities are supported. It shall be scalable, to encompass the
whole range of Grid-enabled equipment, from simple user Grid Terminals, up to
clusters of huge computing or data power, including fast and large data experiment,
collection and visualisation equipment.

A major flexibility prerequisite is that the final system should not be an Operating
System (OS), but a Virtual Infrastructural Machine (VIM), which should be
applicable either in hardware, firmware, as a kernel, or as a layer, daemon or just an
application. Specific programmable devices, like visualization equipment,
measurement equipment, experimental equipment, Grid Terminals and other similar
equipment, as well as different scientific, technical and production tools, have also to
be taken into account.

We state that most of the problems mentioned may be much easier to solve, and
some of the inherent heterogeneity problems would be solved in advance, by
construction of a simple and consistent high performance flexible software
infrastructure as a Virtual Infrastructural Machine (VIM). A VIM is actually a Virtual
Machine (VM), defined in such a way that its basic states are distributed Grid states,
i.e. its basic design is infrastructural.

This can be obtained by providing a lowest programmable common denominator,
in the form of a Virtual Infrastructural Parallel Architecture Machine, so a viable Grid
system could be written in programming languages translated into the interpretative,
therefore easily reconfigurable, VIM p-code, executed in a closed interpretative
software (or even hardware) driven machine. Such a Grid Applicable Parallel
Architecture Machine (GAPAM) would tackle the particular sensitivity of all of the
resources on a Grid to security issues in a strictly controlled way, as the execution of
Grid software is done in a closed module fashion of a Virtual Machine.

Actually, we are advocating a goal of developing a system easily usable by not
only computer experts and programmers, but also a wide circle of scientists and other
common users. To attain such a goal, it is not only necessary to define, as mentioned
above, a GAPAM, but also to develop, based on this VIM, a human interaction
interface, in the form of interactive parallel model description language(s).

3 Approach

To attain this overall goal, we should primarily explore the inherent parallelism
principles of most complex problems, through the prism of their immanent natural
distributed parallelism, and to find effective and efficient methods of implementation
of interactive programming systems which are able to automatically execute
inherently parallel described models on parallel architectures, by a sequence of
coordinated articulation and dearticulation of the model.

Towards a Grid Applicable Parallel Architecture Machine 121

On one side there is the goal of producing such a VIM which allows proper
articulation of a formal programming language into elements which enable loosely
synchronized parallel execution. This will ease the strain of programming parallel
applications.

On the other side, our goal should be producing targeted dearticulated and
deformalized, in other words natural-language like, model definition languages,
which will, through an interactive programming environment, facilitate the use of
complex active Grid technologies, specifically enabling their widespread use by non-
specially educated users.

The existing parallel programming languages (e.g. Occam, Orca etc.) are primarily
based on explicit parallelism rules, i.e. the human user has to explicitly state the
possibilities of parallel execution of certain sub-modules, i.e. sub-algorithms.

It is obvious from general knowledge on programming languages that the
underlining principles of some of the “lateral” and less popular languages are not
derivatives of the single instruction stream thought process. By this we primarily
mean the object-oriented languages like Smalltalk, inherently interactive languages
like Forth, Prolog, Lisp, and inherently parallel languages like APL, J and similar.

Fitting languages are primarily those that enable conceptual parallelism of natural
process description, independent of their present day single-stream implementations.
Those are then the languages that shall be used as the basis for their further
dearticulation and deformalization.

The systematic and inter-compatible articulation2 of the implementation principles
of a particular programming language in parallel computing means finding those
articulations of a specific programming principle which are elegantly and efficiently
applicable onto programming of co-work of a set of identical or different computers
(like in a cluster or a Grid).

The dearticulation of a programming language is actually the production of a
“superstructure” above the programming system. This so called “superstructure”
dearticulated from the programming language is effectively such a language which is
specifically targeted for the description of particular scientific (or other user) models
in a way as to be linguistically as close to the user as possible, and by this also more
usable. By dearticulating the language, a level of interaction easier acceptable by a
human is obtained.

A major principle leading to proper dearticulation, which is, per se, in the end very
user-specific, is interactivity. To augment the measure of acceptability and possibility
of such interactive programming, specifically by the scientists, which in their work, in
modern science, always use formalized models of specific objects or areas of their
scientific endeavours, special targeted dearticulation shall be used. By such
dearticulation GAPAM languages would be adapted to specific targeted user
communities.

The main means of attaining such dearticulation is the definition of a
“superstructure” of the language by using denotational synonyms, and the exploration
of the possibilities of deformalisation of such dearticulated languages. In this sense
deformalisation is to be regarded as development of synonyms, easy and partially
automatic definition of abstracts, i.e. abstraction layers, and a non-too-formal

2 The articulation of a language is extracting of a lover level of symbols, articulating sentences

into words, words into morphemes etc. Language articulation on any level may be syntactic
(like phonetics), or semantic (like semiotics).

122 K. Skala and Z. Sojat

grammar, which enables interactive, step by step, and recursive formalisation of
human input, by leading to the creation of a model description language in a form of a
knowledge base for specific user or user groups and types.

The method to be used for the given purpose and goals is primarily consisting of
proper reformalization, and consequently proper articulation of those model-
definition languages, deformalized and dearticulated in the described way, into
strictly formal forms of chosen programming languages. The mentioned model-
definition languages, due to their deformalized and dearticulated nature may not
strictly be called programming languages.

The articulation of those languages into formal forms shall be done in such a way
that it is reasonably easy, and certainly feasible, to have a high quality implementation
of such model-definition languages on clusters and Grids.

The implementation of the whole system shall, consequently, be done by the
principle of imbedding, where a lower level executional virtual machine, i.e. the
Virtual Infrastructural Machine (VIM), is used to implement a higher level
interpretative Virtual Machine (VM), on a multilevel principle, where each successive
higher level VM implements a specific formal language or deformalized
dearticulation of such a language towards a specifically targeted human language.

As any dearticulated and deformalized language, the same as any natural (i.e. non-
formal) language, allows (and necessitates) polysignificance and unobvious ness, the
interactivity of the system must support guided significance definition of each specific
model definition. In such a way the reformalization of the dearticulated deformalized
language is attained in an interactive way.

The user programs written in such a way would be multiply understandable and
executable. The multiplicity of the understanding and execution possibilities of such
user programs is essential for the attainment of better human-machine interaction
principles. They would be understandable on the scientist’s dearticulated language,
i.e. the community that uses this particular target language for their model
descriptions will be able to understand the notation and notions used in such an
executable model. As such the dearticulated and deformalized language may be quite
close to common scientific jargon used in the specific field; such a model description
can be easily readable and understandable for all humans knowledgeable in the
particular field. On the other hand, the model description programmes will be, after
their first articulation, and the interactive reformalization, understandable on the
chosen underlying programming language. This has a consequence of transferability
to other machines outside the described Virtual Infrastructural Machine system, as
well as the understandability to other humans which do not know the specific science
field dearticulated language, but do know the formal programming language.

Such model description programmes will be executable in a classical manner on a
single sequential execution machine, as well as on fast parallel architectures,
specifically on clusters and Grids. These parallel implementations are attained by the
previously explored implementation articulation through the programming language
imbedding system.

Towards a Grid Applicable Parallel Architecture Machine 123

4 Conclusion and the Vision of Future

In this paper we tried to give a vision of an approach towards higher human
interactivity with future Grid systems by defining several steps we see necessary
regarding the conception of a system able to accept problem definitions in
dearticulated and deformalized, natural-like, model description languages, enabling
non-technical users to start using full power of the Grids.

Our vision of the future is a society where integrated Grids allow easy
programming and interactive solving of user problems in real time by execution of
particular models described by the model description near natural languages on an
amount of machines chosen for the most effective execution, but possibly highly
distributed even for basic VIM parallel complex instructions. A common user
approaches the Grid as approaching a companion, a highly developed tool, which
understands a great deal of the users near-natural language communication. It is such
communication between the human and the machine that enables the Grid to start
being, as W. Ross Ashby termed it, an Intelligence Amplifier.

And finally, regarding the dearticulation and deformalization, to cite A. N.
Whitehead:

“By relieving the brain of all unnecessary work, a good notation sets it free to
concentrate on more advanced problems, and in effect increases the mental power of
the race.”

References

1. Raymond Greenlaw, Lawrence Snyder, “Achieving Speedups for APL on an SIMD
Distributed Memory Machine”, International Journal of Parallel Programming, 1990.

2. Charles Antony Richard Hoare, “Communicating Sequential Processes”, Prentice Hall
International, 1985.

3. Kenneth E. Iverson, “Concrete Math Companion”, ISI, 1995.
4. Siniša Marin, Mihajlo Ristić, Zorislav Šojat, “An Implementation of a Novel Method for

Concurrent Process Control in Robot Programming”, ISRAM ’90, Burnaby, BC, 1990.
5. Robin Milner, “Computing in Space”, CARS, 2003.
6. Karolj Skala, “e-Science”, Ruđer, Vol. 3, No. 7/8, Institute Ruđer Bošković, Zagreb, 2002,

pp. 11-14.
7. Karolj Skala, Zorislav Šojat; Grid for Scientific and Economic devolopment of Croatia,

4th CARNet Users Conference - CUC 2002, September 25-27, 2002, Zagreb, Croatia
8. Zorislav Šojat, “An Approach to an Active Grammar of (Non-Human) Languages”, 27.

Linguistisches Kolloquium, Münster, 1992.
9. Zorislav Šojat, “An Operating System Based on Device Distributed Intelligence”, 1st

Orwellian Symposium, Baden Baden, 1984.
10. Zorislav Šojat, “Nanoračunarstvo i prirodno distribuirani paralelizam” (‘Nanocomputing

and naturally distributed parallelism’), Ruđer, Vol. 3, No. 7/8, Institute Ruđer Bošković,
Zagreb, 2002, pp. 20-22.

11. W. M. Waite, “Implementing Software for Non-Numeric Applications”, Prentice Hall,
New York, 1973.

12. Krzysztof Zielinski, ed., “Grid System Components”, AGridnet Consortium, draft,
December 2002.

	Introduction
	The Grid Software Infrastructure
	Approach
	Conclusion and the Vision of Future

