A Convergence Architecture for GRID
Computing and Programmable Networks

Christian Bachmeir, Peter Tabery, Dimitar Marinov,
Georgi Nachev, and Jorg Eberspéacher

Munich University of Technology, Institute of Communication Networks
bachmeir@ei.tum.de, http://www.lkn.ei.tum.de

Abstract. GRID computing in the Internet faces two fundamental chal-
lenges. First the development of an appropriate middleware for provision
of computing services in a scalable and secure manner. Second the dis-
tributed, scalable and fast connection of GRID processing components
to the network. The latter is important to enable fast data exchange
among the distributed components of virtualized super-computers.

In this work, we focus on the connection aspects of GRID architectures
and advocate to enhance edge-routers with clusters of high performance
computing machines.

We propose enhancing available GRID resources to a component-
based programmable node. Our approach delivers three advantages:
Use of the same hardware/software for GRID computing and Pro-
grammable Networks. Support of GRID computing through—then
available—programmable services, like data transport and distribution
in the GRID through Programmable Networks. Finally we see GRID
computing as a leverage for the future deployment of Programmable
Networks technology.

1 Introduction

In this paper we propose a convergence architecture for GRID computing and
Programmable Networks. The primary design goal of our approach is to provide
a flexible platform that can be integrated in a GRID (see Figure[ll) and a Pro-
grammable Network simultaneously. The major benefit of our approach is the
convergence of the two network-based, distributed computing technologies. Our
approach can provide both, the execution of GRID processing jobs as well as the
provision of Programmable Network services.

Basic idea of our approach is a spatial separation between routing of traffic,
the actual processing of services and the control of the system across different
machines.

Through this separation we provide a powerful, scalable programmable archi-
tecture that is integrated into a GRID. We introduce dedicated signaling hosts
in our architecture, that provide access to the programmable node, based on
standard web services. Using this open signaling approach our architecture can
be integrated in GRID middleware.

M. Bubak et al. (Eds.): ICCS 2004, LNCS 3038, pp. 187-[T34] 2004.
(© Springer-Verlag Berlin Heidelberg 2004

188 C. Bachmeir et al.

Use available GRID Resources |
for Programmable Networks

User Gateway/ Edge-Router Gateway/ Edge-Router User

Fig. 1. Available Grid Ressources

Main contribution of this work is the integration of a new layer 4 encapsula-
tion and proximity switching mechanism in programmable architectures, which
obsoletes explicit kernelspace-to-userspace communication on process-
ing machines. Based on layer 4 encapsulation and decapsulation, IP data packets
are forwarded to to processing components by the router component.

Using standard UDP sockets, we introduce the concept of Operating System
as Execution Environment (OSaFE). We propose to execute service modules
as standard userspace programs. These service modules can mangle original IP
packets by receiving and sending them using standard UDP sockets. As we
do not use kernel-userspace communication, the principle of OSaEE is inherently
the same as processing GRID jobs.

Based on three mechanisms (layer 4 forwarding, OSaEE and a reliable sig-
naling architecture) we present a robust architecture that bypasses security and
fault tolerance limits which are currently faced by proposed programmable archi-
tectures, and which prohibit to use the resources of programmable architectures
in a GRID.

This paper is organized as follows: In the next Section an overview of our
architecture and the interworking with the GRID is presented. In Section Bl we
show performance measurements of our prototype implementation.

2 Overview of the Proposed Architecture

In Figure[2, an overview of the programmable node architecture is shown. We
derive our architecture from HArPooN [I], and propose to spatially separate
routing functions from computing functions. The routing resp. switching is done
in the Routing Component, an enhanced standard router. With computing
we subsume the signaling, necessary for access and control, the provision of
programmable services and the use of the resources in a GRID context. Our
architecture executes these computing functions on machines in the Computing
Component.

Key component of our architecture is a lightweight interface between the
router and the computing cluster. We propose to enhance the architecture of the
router with a traffic encapsulation and decapsulation module (see paragraph[2:1]).
When using our architecture as a programmable node this module is used to
forward data packets to processing machines, which provide active and pro-
grammable services. When accessing GRID components, the module is bypassed.

A Convergence Architecture for GRID Computing 189

Regular Switching Encapsulation/ Routing Component
Network — jum e Decapsulation Linux Kernel Module
Interfaces Plane Module (Netfilter Framework)

| |

Network Interfaces
to Computing Component

Signaling Process Process Computing Component
Host(s) Host ®®* | Host Signaling

— Programmable Service Execution
m GRID Computing Ressource

Fig. 2. Component based Programmable Router & GRID Architecture

2.1 Routing Component and OSaEE

In this section we elaborate on the encapsulation and decapsulation module,
located in the routing component. Every time an IP packet arrives at the routing
component, it is first checked whether the packet originates from the computing
cluster of our proposed programmable architecture. If the IP packet does not
originate from the computing cluster, the local database (provided by Module
Control) is queried whether this IP packet belongs to a traffic flow, for which
our architecture currently provides a service. If this is the case, the entire packet
is encapsulated within a UDP packetEI. The UDP/IP header is set to address
the process host and the port number of the corresponding service module.
Because of the encapsulation header, the packet does not continue its original
way through the network, but is routed towards the processing machine and
received by a service module with a corresponding UDP socket.

Process Host

o]
<
S
T
(=]
=]

Fast Ethernet

Service Module

IP—Packet*
ﬁ

Router IP/UDP | IP-Packet*

Encap./ GBit Ethernet
Decap.
IP/UDP

Fast Ethernet

UDP Socket

Signaling
Host

Fig. 3. Data flow in the component based Programmable Node

! Fragmentation due to encapsulation and enlargement of the packet size does not
happen as we use GBit Ethernet between Routing and Computing Component,
which allows ” Jumbo packets” with a frame size up to 9 Kbyte

190 C. Bachmeir et al.

The processed IP packet is then sent by the service module as a payload
using again the UDP socket. The IP destination address and the destination port
number are set to the IP address of the routing component and a determined
port number.

When the encapsulation/decapsulation mechanism of the routing component
receives this encapsulated packet, it decapsulates the packet (deleting exterior
IP and UDP headers). The remainder of the packet—the IP packet constructed
by the service module—is routed by the routing component on its way through
the Internet.

In some proposed architectures the loadable service modules are granted
administrator privileges, due to kernel-userspace communication implementation
issues. Obviously this is a back door for all kinds of attacks towards the system
architecture. Therefore, security mechanisms are engineered around the service
modules (e.g., the service module is prevented from deleting certain files on the
system, it is not allowed to fork processes, etc.).

In case of architectures where loadable service modules are proposed as ker-
nel modules [2], the issues concerning security is even a more severe one. Kernel
modules cannot be controlled against security violations at all. Therefore archi-
tectures have been proposed which are using access policies, primarily building
on trusted code sources.

When discussing security of programmable nodes against internal attacks,
we felt like "reinventing the wheel”. Therefore we propose to make our architec-
ture independent towards security issues like internal attacks, through OSaEE
(Operation System as Execution Environment)ﬁ.

We consider the development of the security of standard operating systems
(e.g. Linux) against internal attacks already at a mature stage. When developing
OSaEE we intend to leverage that basis for our architecture.

The general goal of OSaEE is to use a standard operating systems on ma-
chines in the computing cluster, without any modifications as a platform to
execute loadable programs. On that basis OSaEE enables us to use standard
security features of the deployed operating system, e.g. the user management.
Each service module (userspace program) is then started under a different user.
Once a certain user consumes “too much” system resources or generates ”too
much” traffic, the control process of the system reacts, e.g. by killing offending
processes of that specific user. By introducing OSaEE we see major advantages
compared to state-of-the-art programmable architectures:

— Our architecture is simplified, leading to a higher robustness and usability.

— Using OSaEE we make our architecture independent towards security re-
quirements regarding internal attacks of the system.

— Flexibility: Service modules can be written in a variety of programming
languages

2 External attacks, targeting or originating by the programmable node are clearly out
of the scope of this work. We state that proposed mechanisms can be integrated in
our architecture.

A Convergence Architecture for GRID Computing 191

— Due to abstraction of network stack: Composition of complex services using
special libraries (e.g. transcoding) in the userspace.

— Process Hosts may utilize different operating systems.

— Computing Resources can be used simultaneously in a GRID.

In Figure [3 the exemplary data flow of a single IP packet through HArPooN
as described in paragraph 2]is shown. Due to the Encap./ Decap. mechanism,
regular userspace programs are able to intercept entire IP packets that want
to bypass the Router Component. On the processing machines in the comput-
ing cluster there is no modification necessary to enable this mechanism as the
userspace programs only need to be able to use standard UDP sockets.

Besides improving issues for Programmable Networks, the adaptability of
OSaEE also enables us to offer computing resources of our programmable ar-
chitecture to a Computing GRID. The necessary flexible signaling mechanism is
presented in the next paragraph.

2.2 Interworking: Layered Signaling

Because of the spatial separation between routing component and computing
cluster, there is a need of synchronization between both. In our approach we
introduce dedicated signaling hosts (see Figure [2]) to perform this task. To
enable fault tolerance our approach foresees supplemental signaling hosts, run-
ning in hot standby. The signaling hosts are basically responsible for three main
tasks:

1. Control of the Router Component (entries in Encap./ Decap module)

2. Basic external signaling (load, start, and monitor a service or GRID jobs on
our architecture).

3. Internal multicast-based signaling (for monitoring and controlling the Pro-
cess Hosts)

These three mechanisms are general and service unspecific, therefor we sub-
sume all three under the expression Basic Signaling.

It might be the case that for a specific service to work, there is a Service or
Job Specific Signaling necessary. In case of a service (or a GRID job) that
consists of modules which are distributed on numerous machines in the Inter-
net, it is necessary to allow e.g. TCP connections between the different service
modules for data exchange. We consider that kind of signaling as part of the
service (or job) itself. In our approach, distributed service modules can commu-
nicate with each other, using standard sockets. The Routing Component does
not affect these data streams. This separation between general basic signaling
and (loadable) service or job specific signaling delivers a layered signaling
architecture presented in Figure @l In our implementation of the system, we use
Java technologiesﬁ to realize the general basic signaling. Using the Java Web
Services mechanism, the basic external interface can easily be provided, because

3 Java 1.3.1, Netbeans IDE 3.5

192 C. Bachmeir et al.

A
Requesting o 7 E
GRID o -
Services K . \‘\‘\‘V

GRID Entry: Middleware

. . e
Multimedia Datastream E
mmmmmmmmmE=
gummsmmmmmmEEE
Client .
Requesting
Programmable Enhanced Router Server
Networks
Services

UDP-based
Socket Communication

o, GRID Datastream
‘a,

7
»,
e,

Wy

Signal Hy Process Host
> pli=

AR
= D
— Z Multicast—based eoo
Web 5‘-'2 % 15 Tg Communication Internal Multicast ! 2
Service 23 E é Signaling Processing Local Service Control
External Signaling | Internal Signaling GRID Programmable Node

Process Host Control ‘

Fig. 4. Layered Signaling and embedding of signaling components in the architecture

the basic functionality is already implemented by the web service frameworks
(like JAX-RP([4, that we used).

The Process Hosts Control Moduldd is using the internal multicast-based sig-
naling interface to access Process Hosts. The basic task of the multicast protocol
is, to start and stop programs representing active services on the process hosts.
Also other general, service unspecific information, e.g. monitoring, is exchanged
via this interface. We implement that protocol based on multicast solely for rea-
sons of fault tolerance (hot standby) and scalability of the whole system, when
employing several Process Hosts. Our approach also provides a second signaling
host, which can take over immediately the control of the respective services in
case of a failure. Moreover the strict separation between Basic External Signaling
and Internal Multicast based Signaling is also a security feature of our approach.
It is not possible to start a service (or a GRID job) directly on a process host
from outside of our architecture, only signaling hosts are allowed to do so.

3 Performance Evaluation of the Programmable Node

In this section, performance evaluation results of our approach are presented.
In Figure [the perceived packet loss in our testbed is shown. As outlined in

4 Java API for XML-based RPC: Simplifies Programming of Web Services
® Realized with Enterprise Java Beans: Performant execution of parallel beans

A Convergence Architecture for GRID Computing 193

o
©

©

o N

2 ¢

w

Packet Loss Rate in %
o o o o o o
(4]

o 9O ¢
~ N

/

10 20 30 40 50 60 70 80 90 100
Offered Traffic in MBit/s

o

o

Fig. 5. Packet Loss in our prototype

figure [l our prototype consists of five machines. One is a 700 MHz Linux-based
Pentium 3 machine with four 1 GBit Ethernet cards, which represents the modi-
fied router. the others are Pentium 4 machines, acting as client, server, signaling
host and one process host. Client and server are connected using 100 MBit Eth-
ernet to the router. We send multimedia datastreams at constant bit rates from
server to client. The data packets of the stream where intercepted at the router,
encapsulated and forwarded to the Process Host. At the process host data pack-
ets were received, using UDP sockets and sent backd to the router. There they
where decapsulated and forwarded to the client.

Although we used hardware with relatively low performance for the prototype
implementation of the router, we perceived a considerably low packet loss. Even
when offering 100 MBit/s of data only 1.1 % of the packets were lost. Com-
pared to measurements of state-of-the-art implementations of Programmable
Networks 3] our approach is clearly competitive.

We state that perceived losses will vanish entirely, when using a modified
standard router hardware, instead of the PCI-Bus PC used in our prototype.

We did not measure our approach against multi machine based active and
programmable node architectures like e.g. [4], as the used hardware cannot
be compared. However we state if a high performance router—with proposed
modifications—would be embedded in our architecture, the performance should
be at least comparable to proposed architectures.

4 Conclusion

In this work we present a new architecture of a programmable node based on
GRID computing resources. Foundation of our approach is, to keep changes at

6 Data packets where not processed resp. modified at the Processing host, as we only
measured for maximum throughput. Due to possible load balancing our architecture
improves execution time of services anyway [1].

194 C. Bachmeir et al.

the actual router at a minimum, when transforming a regular router into an ac-
tive and programmable router. Therefore we see a good chance to implement our
proposal in future products and enable deployment of active and programmable
services outside research environments.

In this work we present two major contributions: First, we provide a flexi-
ble platform that can be integrated in a GRID. We see a major benefit in this
approach as available resources can be used concurrently for programmable net-
work services as well as for computation of jobs in a GRID context. Besides the
programmable part, our architecture delivers means to enhance the GRID, e.g.
through the provision of dynamic configurable data transport mechanisms.

Second, we provide a new high performance architecture of a component
based programmable router. Through the separation of routing, signaling and
processing on different machines we improve local security and fault tolerance
of the programmable node. The primary benefit of our architecture is in the
provision of complex, resource-demanding active and programmable services.

We think that our approach is a powerful enhancement to the GRID. Based
on the emerging deployment of GRID computing services, we see a potential for
leveraging programmable networks technology.

References

[1] Bachmeir, C., Tabery, P., Sfeir, E., Marinov, D., Nachev, G., Eichler, S.,
Eberspéacher, J.: HArPooN: A Scalable, High Performance, Fault Tolerant Pro-
grammable Router Architecture. In: Poster Session in IFIP-TC6 5th Annual In-
ternational Working Conference on Active Networks, IWAN’2003, Kyoto, Japan
(2003)

[2] Keller, R., Ruf, L., Guindehi, A., Plattner, B.: PromethOS: A dynamically exten-
sible router architecture supporting explicit routing. In: 4th Annual International
Working Conference on Active Networks, IWAN 2002, Zurich, Switzerland (2002)

[3] Conrad, M., Schoéller, M., Fuhrmann, T., Bocksch, G., , Zitterbart, M.: Multiple
language family support for programmable network systems. In: Proceedings of the
5th Annual International Working Conference on Active Networks, IWAN’2003,
Kyoto, Japan (2003)

[4] Kuhns, F., DeHart, J., Kantawala, A., Keller, R., Lockwood, J., Pappu, P.,
Richards, D., Taylor, D., Parwatikar, J., Spitznagel, E., Turner, J., Wong, K.:
Design of a high performance dynamically extensible router. In: DARPA Active
Networks Conference and Exposition (DANCE), San Francisco (2002)

	Introduction
	Overview of the Proposed Architecture
	Routing Component and OSaEE
	Interworking: Layered Signaling

	Performance Evaluation of the Programmable Node
	Conclusion

