
The Effect of the 2nd Generation Clusters:
Changes in the Parallel Programming Paradigms

Jari Porras, Pentti Huttunen, and Jouni Ikonen

Lappeenranta University of Technology, Lappeenranta, FIN-53100, Finland
{Jari.Porras,Pentti.Huttunen,Jouni.Ikonen}@lut.fi

Abstract. Programming paradigms for networks of symmetric multi-
processor (SMP) workstation (2nd generation of clusters) are discussed
and a new paradigm is introduced. The SMP cluster environments are
explored in regard to their advantages and drawbacks with a special fo-
cus on memory architectures and communication. The new programming
paradigm provides a solution to write efficient parallel applications for
the 2nd generation of clusters. The paradigm aims at improving the over-
lap of computation and communication and the locality of communica-
tion operations. The preliminary results with large message sizes indicate
improvements in excess of 30% over traditional MPI implementations.

1 Introduction

The main goal of utilizing a parallel computing environment is, most likely,
the need to increase the performance of time-critical applications. There are
numerous factors that impact the overall performance of a parallel application
such as the number of processors, the memory architecture, and communication
between processors to name a few. In order to maximize the performance of a
parallel system all factors have to be considered and an optimal balance must
be found.

This paper discusses the latest trends in parallel computing environments.
The study shows that a new environment has emerged. This new environment
is a successor of a network of workstations where each workstation consists
of one processor. The 2nd generation of clusters is composed of workstations
that have two or more processors. Furthermore, such systems generally pose a
more heterogeneous execution environment due to various hardware and soft-
ware components found in them. The new parallel environment requires changes
in traditional programming paradigm or entirely new programming paradigms
to efficiently utilize the available resources. This paper discusses requirements
for programming paradigms for 2nd generation clusters, and describes an imple-
mentation of a communication library (MPIT) that supports the special features
of SMP clusters, such as multilevel memory architecture.

M. Bubak et al. (Eds.): ICCS 2004, LNCS 3038, pp. 10–17, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



The Effect of the 2nd Generation Clusters 11

2 Developments in Parallel Environments

Parallel environments have developed significantly during the past few years as
processor and network technologies have evolved. Presently, the environments
can be divided into the following categories:

2.1 Symmetric Multiprocessors (SMP)

In SMP machines the processors are connected through an internal network in
such a way that all processors have equal access to the local (global) memory.
Communication between processors occurs through this memory. Therefore, the
communication is expedient, but can suffer from congestion on the network.
Current multiprocessor PCs represent this category of parallel systems.

2.2 Clusters or Networks of Workstations (NOW)

Clusters are environments where processors are physically separated into differ-
ent workstations and the workstations are connected through a network. The
popularity of these environments is often contributed to the significant improve-
ment in the performance-to-cost ratio compared to proprietary parallel systems.
However, these environments introduce additional complexity to programming
and running of parallel applications. This is a result of the distributed mem-
ory architecture and the external communication network. Together, these two
characteristics introduce latencies to memory access and to communication be-
tween processors. For the purpose of this paper, the networks of single processor
workstations (such as Beowulf clusters) are denoted as 1st generation of the
clusters.

2.3 Clusters of SMP Machines

Due to the low cost of multiprocessor workstations, clusters of SMP worksta-
tions have seen a considerably increased in number [3]. The workstations are
connected in a similar way than in the traditional cluster environments but each
node is a symmetric multiprocessor workstation with two or more processors.
Therefore, the communication can occur internally or externally depending on
the location of source and destination processors. An SMP cluster is denoted as
a 2nd generation cluster.

3 Changes in the Parallel Programming Paradigms

Programming paradigms for parallel environments commonly consists of a com-
munication library to allow processors to exchange messages. In fact, most popu-
lar programming paradigms, such as MPI [10] and PVM [5], are merely message
passing libraries. The communication introduces overhead to parallel applica-
tions, and thus must be carefully implemented to minimize its contribution.



12 J. Porras, P. Huttunen, and J. Ikonen

Fig. 1. The four levels of programmability in parallel systems.

There are various programming paradigms to write parallel applications based on
the environment in which the applications are run. Fig. 1 depicts the paradigms
and their main characteristics.

At the lowest level, parallelism occurs within a processor through the Hy-
perthreading technology [9]. Hyperthreading is the simplest approach from the
programmer’s point of view as the parallelization is automatically performed
by the processors. The communication is handled implicitly through the shared
memory (or even registers). The utilization of user-level threads in an SMP work-
station represents the second level in Fig. 1. The programmer must be familiar
with the thread-programming paradigm to efficiently implement a parallel ap-
plication. Since the processors are still within a single workstation in an SMP
environment, the communication between the processors occurs via the shared
memory. In the 1st generation of clusters the memory architecture is distributed.
Therefore, the environment requires messages to be transferred from one work-
station to another with a help of a communication library such as MPI [10]
or PVM [5]. The 2nd generation of clusters combine the SMP and traditional
cluster environments by incorporating shared and distributed memory environ-
ments. Thus, a new paradigm is required in order to fully utilize the available
resources and to obtain maximum performance. Finally, the top level in Fig. 1
illustrates an environment that integrates (SMP) clusters to each other to form
grids. The grids add another level of message passing as communication between
clusters is necessitated.

4 New 2-Level Communication Paradigm

The 2-level programming paradigm introduced in this section is not novel per se,
since several studies have been conducted on 2-level communication paradigms:

1. Multithreaded and thread-safe MPI implementations have been proposed in
[1], [2], [11], [12], [14], [15]

2. Hybrid models with MPI and OpenMP have been studied in [4], [6], [7], [8],
[13]



The Effect of the 2nd Generation Clusters 13

The programming paradigm, MPIT, developed by the authors is a commu-
nication library built on top of MPI. The library provides functions to handle
MPI operations in a thread-safe manner. MPIT considers both intra and inter
workstation communication by using shared memory and message passing ac-
cording to the resources available. The POSIX threads are used to run instances
of the code on processors in a workstation. The intra workstation communication
among threads is handled through the shared memory. The message passing is
based on the MPI library and used only in inter workstation communication.
The determination of whether shared memory or message passing is utilized is
done automatically within the library.

An MPIT application operates in a single process on a workstation regardless
of the number of processors. This process is created when the MPI environment
is initialized through a 3rd party software (such as mpirun). The MPI environ-
ment must be initialized prior to calling the MPIT initialization function. The
initialization of the MPIT library consists of the creation of the communication
and the worker threads and local message buffers. The communication thread is
responsible for handling all incoming and outgoing messages from a process (i.e.
workstation), whereas worker threads execute the actual code.

In addition to the initialization and termination functions, the MPIT library
provides a set of communication routines. The routines are very similar to the
standard MPI communication operations. As a matter of fact, the only difference
is that the MPIT routines have an additional argument, the target thread id.
The target thread identifier allows for messages to be sent to a specific thread
on a workstation rather than merely to the workstation. However, if the thread
identifier is not defined, the message is sent to the workstation and processed
by any of the worker threads on that workstation. Analogous to MPI, there are
blocking and non-blocking send and receive operations available.

Also, MPIT provides various thread manipulation routines. These routines
allow the programmer to control the number of worker threads on a workstation
and the execution of the threads. With the help of the thread manipulation
routines, the programmer is capable of adjusting the load imposed by the MPIT
application on the workstation; more threads can be created, if the load on the
workstation is low, whereas existing threads can be terminated to lower the
impact of the MPIT application on the workstation’s resources. The remaining
thread manipulation routines are related to synchronization. There are barrier
synchronization routines as well as routines to control the execution of a single
thread.

Aspects like scheduling and load balancing can be addressed by this approach.
The communication thread can be instructed to perform scheduling and load
balancing operations to dynamically adjust loads on workstations or to retrieve
new work for the workstation. This feature provides automatic scheduling func-
tionality that occurs simultaneously with the execution of the worker threads.
Therefore, the proposed programming paradigm supports not only the overlap
of communication and computation but also the overlap of scheduling/load bal-
ancing and computation. The support for the scheduling/load balancing and



14 J. Porras, P. Huttunen, and J. Ikonen

computation overlap is very important in heterogeneous and non-dedicated 2nd

generation clusters due to the necessity of frequent scheduling and load balancing
operations.

The MPIT programming paradigm also provides a mechanism to assign pri-
orities to the threads executed in a workstation. With this priority scheme a pref-
erence may be given either to the communication thread or the worker threads.
Thus, it provides the means for the paradigm to adapt to the needs of the ap-
plication and to the requirements set by the underlying network. For example,
in an application where a large number of messages need to be exchange, the
communication thread should be assigned with a higher priority than the worker
threads. This allows for the communication operations to occur practically in-
stantly minimizing the overhead introduced by the communication. A reversed
priority scheme is applicable when there is no need for constant communication.

5 Performance

The MPIT library was tested in a cluster of 4 dual processor workstations. Table
1 shows the configuration of the workstations.

Table 1. The configuration of dual processor workstations used in the performance
analysis

CPUs Memory Network OS MPI

2 x Pentium III 1GB Myrinet Red Hat MPICH-GM
800MHz 2Gb/s 2.4.24 1.2.5..10

In order to estimate the performance of the MPIT library, a new benchmark
was implemented. This benchmark makes it possible to evaluate the MPIT per-
formance with various processor topologies, messaging schemes, and message
types and sizes. The benchmark configuration for the preliminary results shown
in this paper was as follows: the benchmark had 2 phases, computation and
communication. During the computation phase each processor spent 1 second
in a busy-wait loop, after which the process sent and received a message. The
processor topology was a ring, in which each processor send a message to its
right neighbor and received a message from its left neighbor.

The performance of MPI and MPIT were compared with 2 cluster configu-
rations. The results shown in Fig. 2 illustrate three different cases of where one
processors of all 4 workstations were used. In the dedicated system no other user
processes were run, whereas in two other scenarioes 1 and 3 CPUs on differ-
ent workstations were executing other user processes. As all the processes were
distributed among the workstations all communication operations involved the
Myrinet network.

The results clearly indicate that a simple MPI application is faster when the
message size is below 16KB. However, the MPIT application provides up to 30%



The Effect of the 2nd Generation Clusters 15

-70

-60

-50

-40

-30

-20

-10

 0

 10

 20

 30

 40

1 1024 2048 4096 8192 16384 32768 65536 131072 262144

G
ai

n/
lo

ss
 (

pe
rc

en
ta

ge
)

Message size (B)

Dedicated system
1 loaded CPU
3 loaded CPUs

Fig. 2. Performance gain/loss of the MPIT library with 4 processes (1 process per
workstation).

increase in the performance with message sizes greater than 16KB. The signifi-
cant diffences with small message sizes is explained by the short message transfer
times, whereas their impact becomes more apparent with the large message sizes.
In addition, the current implementation of the MPIT library incurs unnecessary
overhead when a message is sent synchronously to a remote process. This is due
to a fact the communication thread is involved in the transmission even though
it is not mandatory. This issue will be solved in the next release of the software.
The performance improvement over the MPI application can be contributed to
the overlap of computation and communication. The overlap allows processors
to continue their execution immediately after initiating a communication oper-
ation. This also leads to a more synchronized execution of the processes which
minimizes wait times during the communication phases.

The second test included running the benchmark on all available 8 processors
on the test cluster. The test was run only in the dedicated mode where no other
user processes were running. The results are shown in Fig. 3. The figure also
entails the results from the dedicated 4 processor test for comparison purposes.
Again, the MPI application has the advantage over the MPIT library with mes-
sage sizes smaller than 16KB. With larger message sizes, the MPIT library has
significant better performance than MPI. Furthermore, the MPIT performance
has improved slightly compared to the 4 processor test.

These preliminary results indicate that MPIT has the potential to provide
superior performance than MPI. However, at this point, MPI outperforms MPIT



16 J. Porras, P. Huttunen, and J. Ikonen

-80

-60

-40

-20

 0

 20

 40

1 1024 2048 4096 8192 16384 32768 65536 131072 262144

G
ai

n/
lo

ss
 (

pe
rc

en
ta

ge
)

Message size (B)

Dedicated system (4 procs)
Dedicated system (8 procs)

Fig. 3. Performance gain/loss of the MPIT library with 4 and 8 processes (1 process
per workstation) in dedicated systems.

with small message sizes. As earlier discusses, the next release of the MPIT code
will include an improved transmission mechanism for small messages, which
should allow MPIT to excel regardless of the message size.

6 Conclusions

In this paper programming paradigms for cluster of SMP workstations were
discussed. Also, a new programming paradigm, implemented as a thread-safe
communication library on top of MPI, was introduced. The library, MPIT, op-
timizes the communication within and between the workstations of the cluster.
It is important to realize that MPIT does not require any changes to the actual
MPI implementation.

The performance results obtained show that an implementation like MPIT is
required order to take full advantage of the 2nd generation clusters. Although, the
performance of MPIT was inferior to MPI with small message sizes, it outpermed
MPI with large message sizes (16KB and up). The new release of the MPIT
library will include a new design for the transmission of small messages. Overall,
the preliminary results are very encouraging as nearly 40% improvements over
MPI were observed on a cluster of dual processor workstations.

In addition to the new communication scheme, MPIT includes features to
perform automatic scheduling and load balancing, and to prioritize execution of



The Effect of the 2nd Generation Clusters 17

communication and worker threads. In fact, as MPIT encompasses all these fea-
ture it could be extended for use in GRID environments where communication,
load balancing, and scheduling are even further more complex issues than in 2nd

generation clusters.

References

1. Bader, D.A., Jájá, J.: SIMPLE: A Methodology for Programming High Perfor-
mance Algorithms on Clusters of Symmetric Multiprocessors (SMPs). Journal of
Parallel and Distributed Computing 58 (1999) 92–108

2. Chowdappa, A.K., Skjellum, A., Doss, N.E.: Thread-Safe Message Passing with
P4 and MPI. Technical Report TR-CS-941025, Computer Science Department and
NSF Engineering Research Center, Mississippi State University (1994)

3. Clusters@TOP500 list. http://clusters.top500.org
4. Djomehri, M.J., Jin, H.H.: Hybrid MPI+OpenMP Programming of a Overset CFD

Solver and Performance Investigations. NAS Technical Report NAS-02-002 (2002)
5. Geist A. et. al.: PVM: Parallel Virtual Machine. MIT press, 1994.
6. He, Y., Ding, C.H.Q.: MPI and OpenMP Paradigms on Clusters of SMP Archi-

tectures: the Vacancy Tracking Algorithm for Multi-Dimensional Array.
7. Hu, Y., Lu, H., Cox, A. and Zwaenepoel, W.: OpenMP for Networks of SMPs.

Journal of Parallel and Distributed Computing 60 (2000) 1512–1530
8. Kee, Y-S., Kim, J-S., Ha, S.: ParADE: An OpenMP Programming Environment

for SMP Cluster Systems. Proceedings of Supercomputing 2003 (2003)
9. Leng, T., Ali, R., Hsieh, J., Mashayekhi, V., Rooholamini, R.: An Empirical Study

of Hyper-Threading in High Performance Computing Clusters. Proceedings of LCI
International Conference on Linux Clusters: The HPC Revolution 2002 (2002)

10. Pancheco, P.: Parallel Programming with MPI. Morgan Kaufmann (1997).
11. Protopopov, B. Skjellum A.: A multithreaded message passing interface (MPI)

Architecture: Performance and Program Issues. Journal of Parallel and Distributed
Computing 61 (2001) 449–466

12. Rauber, T., Runger, G., Trautmann, S.: A Distributed Hierarchical Programming
Model for Heterogeneous Cluster of SMPs. Proceedings of the International Parallel
and Distributed Processing Symposium (2003) 381–392

13. Smith, L., Bull, M.: Development of mixed mode MPI / OpenMP Applications.
Scientific Programming 9 (2001) 83–98

14. Tang, H., Yang, T.: Optimizing Threaded MPI Execution on SMP Clusters. Pro-
ceedings of Supercomputing 2001 (2001) 381–392

15. Tang, H., Shen, K., Yang, T.: Compile/Run-time Support for Threaded MPI Ex-
ecution on Multiprogrammed Shared Memory Machines. Proceedings of Program-
ming Principles of Parallel Processing (1999) 107–118


	Introduction
	Developments in Parallel Environments
	Symmetric Multiprocessors (SMP)
	Clusters or Networks of Workstations (NOW)
	Clusters of SMP Machines

	Changes in the Parallel Programming Paradigms
	New 2-Level Communication Paradigm
	Performance
	Conclusions



