
M. Bubak et al. (Eds.): ICCS 2004, LNCS 3038, pp. 339–346, 2004.
© Springer-Verlag Berlin Heidelberg 2004

File Replacement Algorithm for Storage Resource
Managers in Data Grids

J.H. Abawajy

Deakin University
School of Information Technology

Geelong, Victoria, Australia.

Abstract. The main problem in data grids is how to provide good and timely
access to huge data given the limited number and size of storage devices and
high latency of the interconnection network. One approach to address this
problem is to cache the files locally such that remote access overheads are
avoided. Caching requires a cache-replacement algorithm, which is the focus of
this paper. Specifically, we propose a new replacement policy and compare it
with an existing policy using simulations. The results of the simulation show
that the proposed policy performs better than the baseline policy.

1 Introduction

Grid computing enables sharing, selection, and aggregation of geographically
distrusted autonomous resources (e.g., super-computers, cluster-computing farms and
workstations). One class of grid computing and the focus of this paper is the data grid
systems [1] [7] that facilitate the sharing of data and storage resources (e.g., direct
attached storage, a tape storage system, mass storage sys-tem, etc.) for large-scale
data-intensive applications. Research in data grid computing is being explored
worldwide and data grid technologies are being applied to the management and
analysis of large-scale data intensive applications. The main problem in data grids is
how to provide good and timely access to such huge data given the limited number
and size of storage devices and high latency of the interconnection network. One
approach to address this problem is to cache the files locally such that remote access
overheads are avoided. The motivation for disk caching in data grid is that it tasks
several minutes to load data on to the mass storage system. Also, it takes a very long
time (up to a few hours) to complete file transfers for a request over WAN. In
addition, the user's personal workstation and in some cases the local computer centers
may not be able to store all the dataset for a long time for his needs.

In this paper, we address the problem of disk cache replacement policy in data
grids environments. The motivation for studying this problem is that the performance
of the caching techniques depends heavily on the cache replacement policy that
determines which file(s) are evicted to create space for incoming files. Caching
techniques have been used to improve the performance gap of storage hierarchies in
computing systems, databases and web-caching. Note that, unlike cache replacement
policies in virtual memory paging or database buffering or web-caching, developing
an optimal replacement policy for data grids is complicated by the fact that the file

340 J.H. Abawajy

objects being cached have varying sizes and varying transfer and processing costs that
vary with time. For example, files or objects in web-caching can be of any media type
and of varying sizes. However web caching in proxy servers are realistic only for
documents, images, video clips and objects of moderate size in the order of a few
megabytes. On the other hand, the files in data grids have sizes of the order of
hundreds of megabytes to a few giga-bytes. Some of the differences between caching
in data grids and web-caching are given in [2].

The rest of the paper is organized as follows. Section 2 describes related work.
Section 3 presents the proposed file replacement algorithm. Section 4 discusses the
performance evaluation framework and the results of the proposed policy. Conclusion
and future directions are presented in Section 5.

2 Related Work and System Model

The problem of disk cache replacement policy is one of the most important problems
in data grids. This is because effectively utilizing disk caches is critical for delivering
and sharing data in data-grids considering the large sizes of re-quested files and
excessively prolonged file transmission time. Ideally, one strives for an optimal
replacement policy for a particular metric measure. An optimal replacement policy
evicts a file that will not be used for the longest period of time. This requires future
knowledge of the file references, which is quite difficult, if not impossible, to
determine.

2.1 System Model

The data grid model used in this paper has n sites interconnected by a wide-area
network (WAN). Each site has one or more storage subsystems (e.g., a tape drive and
disk) and a set of processors. The resources within a site are interconnected through a
local area network (LAN). We assume that the disk subsystem is used as data cache
while all other storage subsystems are used as archives. Each site maintains a set of
files, which have varying sizes. A given file, fi, can be in one or more sites in the grid
at the same time. We use a nomenclature hard replica (HR) to designate a copy of fi
file that has not been modified and kept in one or more well-known sites in the system
while those file replicas that may have been modified or subject to be purged from a
site (i.e., a file copy is not guaranteed to be available all the time) as soft replica (SR).
For example, in European Data Grid system [3], the original copy of the files (i.e., FH
replica) is always kept in at least the European Organization for Nuclear Research
(CERN) site while other sites can keep a copy of the files if need be.

Each site has a storage resource manager (SRM) that is responsible for the
management of the local storage subsystem usage as well as maintaining HR (may be
SR as well) file replica meta-data information (e.g., location, cost, size, etc.) in replica
table. The storage resources in data grids are accessible to a user, remotely or locally,
through a middle-ware service called storage resource manager (SRM). The
information on HR and SR file replicas is collected in two ways. First, the sites that
are designated as keepers of HR replicas can inform all other sites by sending a
notification message when a new file is created. Also, every time these sites send a

File Replacement Algorithm for Storage Resource Managers in Data Grids 341

copy of a given file to a remote SRM upon a request from the latter, a notification
message along the identity of the SRM is sent to all sites within certain distance (e.g.,
region) from SRM. Alternatively, each SRM will send its own notification message to
certain sites only when it receives a copy of the file. The notification message
includes the cost of preparing the file for transferring (e.g., the time taken to stage a
file from a tape to a disk). When a given SRM receives the notification message, it
will estimate the cost of a file acquisition based on the time taken for the notification
message using the following function:

() () ()
()

, ,
,

i

i process

size f
Cost f v u T v Latency

bandwidth u v
= + +

    
 (1)

Data requests from the local system users are sent to the local SRM for processing.
We assume that when a user submits a request for data, the size of storage locally
available (i.e., reserved) for the data is also declared. The file request scheduler (FRS)
is responsible for the admission of data requests, Ri, from users. All requests that can
be satisfied from the local disk are called local request while those that are fetched
from remote sites are called remote requests.

Each admitted request, Ri, is stored in the ready request queue and serviced, based
on the scheduling approach used (e.g., first come first service), by the file request
placement (FRP) component of the SRM. When the file has to be brought in from
another site, the SRM searches the replica table for the best site to get the file from. In
our system, local requests have priority over remote requests. We refer to files cached
locally that are in use as active files while those that are not in use as passive files.

The key function of the SRM is the management of a large capacity disk cache that
it maintains for staging files and objects of varying sizes that are read from or written
to storage resources that are either at the same local site or some remote site. Two
significant decisions govern the operation of an SRM: file request scheduling and file
re-placement. Each of file requests that arrive at an SRM can be for hundreds or
thousands of objects at the same time. As a result, an SRM generally queues these
requests and subsequently makes decisions as to which files are to be retrieved into its
disk cache. Such decisions are governed by a policy termed the file admission policy.
When a decision is made to cache a file it determines which of the files currently in
the cache may have to be removed to create space for the incoming file. The latter
decision is generally referred to as a cache replacement policy, which is the subject of
this paper.

2.2 Related Work

The Least Recently Used (LRU) and Least Frequently Used (LFU) replacement
policies are two extreme replacement policies. The LRU policy gives weight to only
one reference for each file, that is, the most recent reference to the file while giving
no weight to older ones representing one extreme. In contrast, the LFU gives equal
weight to all references representing the other extreme. These extremes imply the
existence of a spectrum between them. A number of replacement policies that fall
within such a spectrum have been proposed in the literature.

A replacement policy referred to as Least Cost Beneficial based on K backward
references (LCB-K) is proposed in [2]. LCB-K is an always cache policy, which

342 J.H. Abawajy

means that all files retrieved from remote sites will be cached. It uses a utility
function that probabilistically estimates which files would be accessed relatively less
soon for ranking the candidate files for eviction. Whenever a file in the cache needs to
be evicted, the algorithm orders all the files in non-decreasing order of their utility
functions and evict the first files with the lowest values of utility function and whose
sizes sum up to or just exceed that of the incoming file. The main problem with this
policy is that the utility function used to predict the future references of the file is
based on global information such as the file reference counts.

An economic-based cache replacement (EBR) policy is proposed in [5]. EBR uses
probability-based utility function technique to measure relative file access locality
strength for the files and makes a decision as to cache a file or not. If there enough
space to store a file, a newly arrived file is automatically stored on the disk. However,
if there is no space left on the disk, EBR evicts the least valuable file from the disk. In
order to make this decision, the Replica Optimiser keeps track of the file requests it
receives and uses this history as input to a future revenue prediction functions. The
prediction function returns the most probable number of times a file will be requested
within a time window W in the future based on the requests (for that or similar files)
within a time window W' in the past. The algorithm keeps track of the access history
and uses a prediction function for estimating the number of future access for a given
file in the next n requests based on the past r request in the history.

In [6], a replacement policy called the Least Value-based on Caching Time
(LVCT) that exploits access regularities (i.e., one-timers versus multiple-timers) in
references is proposed. A single stack with two fields (i.e., caching time and file size)
is used for storing every file request in the site. The size of the stack is adjusted by
pruning it when the total size of files represented in the stack is greater than twice the
cache size or the number of files represented in the stack is greater than two times of
the number of files in the cache. LVCT is shown, through simulation, that it
outperforms LRU, GDS and LCB-K policies. However, this performance comes at
additional costs for taking replacement decisions as updating the cache state at each
reference has overhead. Moreover, there are several shortcomings of this policy. First,
it assumes that clients have enough storage to store the file, which is not the case most
of the time. Second, a file with multiple accesses must be brought from remote size at
least twice. Third, maintaining the stack takes time. Even if there is enough disk
space, first time access file is not stored. Decision to evict or not is made after a
remote file has been completely received.

We propose a new replacement policy that takes into account factors such as the
latency delays in retrieving, transferring and processing of the files. We compare the
proposed replacement policy with several existing policies through simulation under
varying system and workload parameters (e.g., account for delays in cache space
reservation, data transfer and processing). The results of the experiment shows that
the proposed policy performs substantially better than the baseline policies used in the
experiments.

3 New Disk Cache Replacement Policy

The proposed policy is called New Cache Replacement (NRP) policy. It combines
locality, size and cost of files when making a replacement decision. Also, only events

File Replacement Algorithm for Storage Resource Managers in Data Grids 343

that matter for replacement decisions are taken into account. Note that this is not the
case in the other policies discussed in the previous section. For each file f, we keep its
size S and the cost of fetching it from remote site C. Note that C can be the actual cost
incurred of a file or estimated as per Equation (1). This information is used in
determining the set of files to be evicted if this need be. In the proposed algorithm,
only passive files in the cache are potential candidates for eviction. Also, we assume
that SRM serves user requests based on FCFS with local requests having priority over
remote requests.

The proposed policy has three phases: request admission phase (RAP), candidate
selection phase (CSP) and file eviction phase (FEP). The RAP decides if the request
would be a remote-fetch-only (i.e., no caching of the file occurs) or remote-fetch-store
(i.e., fetch the file from remote site and then store it locally). If there is enough disk
space, the request automatically admitted. When there is a miss, the algorithm
invokes the CSP to select possible files to be replaced. That is, for each
remote-fetch-store request i, CSP selects a set of candidate files that are
passive with their size greater than or equal to Si / 2

K where K >= 0. Initially,
we set k=0 and if no file is found, we increment k by one and this process is
continued until a set of files that meet the criterion is located. The FEB uses
the list of candidate files returned by the CSP to replace appropriate files. The
algorithm evicts a set of files from the list (i.e., L) whose sizes sum up to or just
exceed that of the incoming file.

The advantage of the NRP is that it uses local information as opposed to global
information when making the replacement decisions. It also incorporates locality, size
and cost considerations effectively to achieve the best performance possible. As it
selects the file that have size equal to or greater than the documents to be replaced;
this technique of evicting the files saves many misses by not evicting the small files
that are least recently used. In addition, it tries to minimize the number of files
replaced by evicting files that have not been used recently. The main and more
important thing is that the above algorithm also takes in to account the cost of
fetching the file to cache from its original severs. By doing so, this algorithm also
considers the cost of the file before it replaces a particular page. The above algorithm
has some drawbacks when it takes into the account the cost of fetching the document.
Because the above algorithm considers the cost of the document before it replaces the
page, it sometimes replaces a page that has been accessed recently but doing so it also
saves the cost for the new document.

4 Performance Analysis

As in [2] [6] [5], we used the discrete event simulation to compare the performance of
the proposed replacement policy against the economic-based policy [5]. As in [2][6],
we used the hit ratio and the byte hit ratio to measure the effectiveness of the cache
replacement policies.

344 J.H. Abawajy

Fig. 1. An overview of the data grid model used in the paper.

Fig. 2. An overview of the data grid model used in the paper.

4.1 Experimental Setup

The simulator is a modified version of [8] that also accounts for the latency incurred
at the source of the file; the transfer delay in reading the file into the disk cache; and
the holding or pinning delay incurred while a user processes the file after it has been
cached. The simulator takes a stream of requests as an input, calculates the hit ratio
and byte hit ratio for each algorithm, under cache sizes being various percentages of
the total data set size. The data for the simulation is based on [2]. The sizes of files
ranged from about 1.0 to 2.1 gigabytes and the time scales are in the order of minutes.
We use a Poisson inter-arrival time with mean 90 seconds for the requests. The file
sizes are uniformly distributed between 500,000 bytes and 2,147,000,000 bytes. The
entire period of request generation is broken into random intervals and we inject
locality of reference using the 80-20 rule, which within each interval of the request
stream, 80% of the requests are directed to 20% of the files. The length of an interval
is uniformly distributed between 1% and 5% of the generated workload.

As in [5], we used the European DataGrid testbed sites and the associated network
performance. In the simulation 20 sites were used with the total disk capacity of 1.1
terabits distributed in such a way two sites have a disk of 100 GB each while the
remaining 18 sites have 50 GB each. The two sites with the 100 terabit disk are used
to store the original copy of the files in the system. A single copy of each data file was

File Replacement Algorithm for Storage Resource Managers in Data Grids 345

initially placed at CERN. The storage facilities of each site were set at a level to
prevent any site (except CERN) holding all of the files, but allowing the site room for
the preferred job files.

4.2 Results and Discussions

Figure 1 show the results of the experiments. The graphs are generated from runs
using variance reduction technique. Each workload has just over 500,000 entries. For
each specified value of the cache size and for each workload, a run generates 5 values
of the required performance metric, at intervals of about 100,000 requests. Each point
in the graphs, for any particular measure, is the average of the 5 recorded measures in
a run. Figure 1 shows the performance of the two policies as a function of the hit
ratios.

Figure 2 shows the performance of the two policies as a function of the byte hit
ratios. From the data on these figures, it can be observed that the proposed policy
substantially outperforms than the economic-based policy. This can be explained by
the fact that eviction in the economic-based policy is driven by probability that a file
can be used many times. Also, there is a tendency in the economic-policy for bringing
in a file even if there is no space to accommodate it while our policy do not.
Moreover, our policy was able to simply transfer one-timer requests without storing
them in the cache while the economic-based policy did not.

5 Conclusions and Future Direction

A replacement policy is applied to determine which object in the cache needs to be
evicted when space is needed. As a replacement policy is an essential component of
the disk cache management system, we have presented a new policy and shown
through simulation that it performs substantially better than an existing one. Future
work in this area would involve more extensive testing with real workloads from
other mass storage systems. Also, we will include the policies proposed in [2][66]. In
this paper, we assumed that SRM serves user requests based on FCFS with local
requests having priority over remote requests. We are currently studying the impact of
different request scheduling on the performance on the cache replication policies.

References

1. Chervenak, A., Foster, I., Kesselman, C., Salisbury, C., Tuecke, S.: The Data Grid:
Towards an architecture for the distributed management and analysis of large scientific
data-sets. Journal of Network and Computer Applications (2000) 187-200

2. Otoo, E.J., Olken, F., Shoshani, A.: Disk Cache Replacement Algorithm for Storage
Resource Managers in Data Grids. In Proceedings of the SC (2002) 1-15

3. EU Data Grid Project. http://www.eu-datagrid.org.
4. Abawajy, J. H.: Placement of File Replicas in Data Grid Environments. In Proceedings of

PParGMS Workshop (2004)

346 J.H. Abawajy

5. Carman, M., Zini, F., Serafini, L., Stockinger, K.: Towards an Economy-Based
Optimisation of File Access and Replication on a Data Grid. In Proceedings of 2nd
CCGRID (2002) 120-126

6. Jiang, S., Zhang, X.: Efficient Distributed Disk Caching in Data Grid Management. In
Proceedings of Cluster Computing (2003) , Hong Kong, China.

7. Hoschek, W., Jaén-Martínez, F. J., Samar, A., Stockinger H., Stockinger, K.: Data
Management in an International Data Grid Project. In Proceedings of the 1st Workshop on
Grid Computing (2000) 77-90

8. P. Cao and S. Irani, “Cost-aware WWW proxy caching algorithms,” In USENIX
Symposium on Internet Technologies and Systems, 1997.

	Introduction
	Related Work and System Model
	System Model
	Related Work

	New Disk Cache Replacement Policy
	Performance Analysis
	Experimental Setup
	Results and Discussions

	Conclusions and Future Direction

