
M. Bubak et al. (Eds.): ICCS 2004, LNCS 3038, pp. 355–362, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Using DMA Aligned Buffer to Improve Software RAID
Performance

Zhan Shi1, Jiangling Zhang1, and Xinrong Zhou2

1 National Storage Lab, Computer Science Department
Huazhong University of Science and Technology, 430074 Wuhan, P.R.China

jlzhang@hust.edu.cn
2 Turku Centre for Computer Science, Åbo Akadeni,

20520 Turku, Finland
xzhou@abo.fi

http://www.abo.fi/~xzhou

Abstract. While the storage market grows rapidly, software RAID, as a low-
cost solution, becomes more and more important nowadays. However the
performance of software RAID is greatly constrained by its implementation.
Varies methods have been taken to improve its performance. By integrating a
novel buffer mechanism – DMA aligned buffer (DAB) into software RAID
kernel driver, we achieved a significant performance improvement, especially
on small I/O requests.

1 Introduction

Most business computers running critical applications use SCSI disks with hardware
RAID controllers. With the power of processors keeping on growing, more and more
developers place greater loads on system CPUs. Nowadays, there are companies that
provide software ATA RAID using cheaper IDE disks instead of the expensive SCSI
disks. Lots of motherboard manufacturers are also including ATA RAID chips on
board. This means that even a home user can afford a RAID solution today. Provided
with benefits of any RAID system [1] such as increased write speeds while writing to
a striped partition, software ATA RAID is now been widely accepted. [2].

However, there are some drawbacks to implement RAID in software. First, the
issue of portability. Since a software implementation will have some OS-specific
components, those components have to be re-written for each different OS. Second,
the kernel-mode program. This is the main problem that troubles kernel-mode
software developers. Unlike applications, kernel-mode program can execute
privileged instructions and manipulate the contents of any virtual address, the whole
system is exposed to these programs without any safeguards against programming
errors. A simple mistake may even lead to a system crash. The third, performance. As
we have already stated, software RAID solutions are typically implemented as kernel
mode components. In fact it is embedded into the kernel itself in Linux. [3]. Many OS
already have build-in buffers and caches to improve its I/O performance [4][5], but
they may not cooperate with software RAID well.

356 Z. Shi, J. Zhang, and X. Zhou

The remainder of this paper is organized as follows. Section 2 introduces the
related works. Section 3 presents how we can improve the performance using DMA-
aligned buffer in detail. Section 4 describes the implementation of DAB in Windows
2000 based software RAID. Section 5 evaluates DAB under a variety of
circumstances. Section 6 ends this paper with a conclusion .

2 Related Work

Caches and buffers are widely used to improve I/O performance in modern operating
systems. Data prefetching is also a popular method to process data inside the cache
and buffer. Lots of work have been done by many researchers. Sequential prefetching
[9] simply look ahead to prefetch a variable number of sequential blocks past the
current reference. Track-aligned prefetching utilizes disk-specific knowledge to match
access patterns to the strengths of modern disks[10]. By allocating and accessing
related data on disk track boundaries, a system can avoid most rotational latency and
track crossing overheads. Avoiding these overheads can increase disk access
efficiency by up to 50% for mid-sized requests (100–500KB). To be the most
successful, prefetching should be based on knowledge of future I/O accesses, not
inferences. Such knowledge is often available at high levels of the system.
Programmers could give hints about their programs' accesses to the file system. Thus
informed, the file system could transparently prefetch the needed data and optimize
resource utilization. This is what Transparent Informed Prefetching (TIP) has
done[11].

Currently, our problem is that I/O requests generated by most applications such as
database, daily transaction, etc, are fairly small, always lesser than 64KB. The
prefetching methods mentioned above do not work well in our situation. How to
improve the small I/O performance while keeping larger I/O least affected in our
software RAID implementation is the main topic of this paper.

3 DMA Aligned Buffer

When surveying the characteristic of access patterns of standard software RAIDs, we
found that there is a significant change in transfer rate while we adjust the I/O packet
size between its minimum value and maximum IDE DMA transfer length. If we take
a close look at many Operating Systems, we will find that every data request is sent to
the low-level drivers such as port/miniport driver. In modern IDE disks, every device
I/O requires a DMA operation to complete. [12] Some applications are likely to
generate a lot of small I/O requests, for example, database application, web
transaction, etc. Operating Systems have to handle these requests by sending them to
their driver stacks, from the highest file system drivers to the lowest HBA drivers [6].
File cache in most operating systems can mitigate the problem when processing most
application-level I/O requests, but it cares little about low-level I/O efficiency. Low-
level fragmental requests can hardly benefit from that.

Using DMA Aligned Buffer to Improve Software RAID Performance 357

Fig. 1. DMA aligned buffer and DMA working process from the programmers point of view,
PDT: Physical Descriptor Table. LBA: Logical Block Address

A typical DMA operation in OS kernel requires several steps to complete, which is
shown in Figure 1. Although our program is running on Windows 2000, the steps are
the same. PDT is an array of descriptor data structure which stands for physical
memory blocks used to perform DMA. According to ATA specification [13], the
sector count register has 8 bits currently, thus the DMA data transfer of IDE interface
is restricted by a maximum length of 256 sectors by now (set the SECTOR COUNT
register to 0).

As we’ve mentioned above, a large number of fragmental requests sent to low-
level drivers may cause too much device I/O, and every device I/O consists of
generating PDT, writing ATA registers, starting DMA, seeking and rotational latency
and waiting for interrupt, therefore they result in a performance decline. We proposed
a buffer method to solve this problem. The buffer format is demonstrated in Figure 1.
Buffer block i acts as a generic LRU buffer together with other buffer blocks. n and
n+1 represent two sequential small requests sent to HBA miniport. If request n isn’t in
the buffer (missed), it’ll then be buffered in one of these blocks and hoping it’ll be
visited again, request n+1 is the same. A prefetching method can be applied here so
that request n can bring on a prefetch to benefit following requests, such as request
n+1. For the small I/O we observed, larger prefetching may service more future
requests. But this differs to typical prefetching, because larger prefetching can also
cause multiple device I/O to complete, not only the longer data transferring. So the
most economical way is to limit prefetching length to just one time larger than the
maximum DMA transfer length (maybe multiple times according to application, and
this needs further working). In order to implement the buffer in a more efficient way,
the starting address we used to prefetch is aligned to the 256 sectors boundary, thus
avoiding buffer block overlapping (In Figure 1, this means all the buffer blocks,
including buffer i are 256 sectors in size and all their mapped starting address are 256
sectors aligned.). Since the buffer is composed of buffer blocks aligned with
maximum DMA transfer length, we call this approach DMA-Aligned Buffer.

However the time spent on data copy in memory and excess device I/O may reduce
the benefit. Additionally, new ATA standard may break DMA transfer barrier by
extending sector count register from 8 bits to 16 bits, hence the maximum data
transfer length in one DMA operation can be increased to 65536 sectors in the future
[13][14]. Thereby more work is needed to improve buffer method in the future.

Besides, we may also use other access characteristics to adjust our buffer
mechanism. Our experimental software RAID is a part of network storage platform,

358 Z. Shi, J. Zhang, and X. Zhou

we can also use special designed aligned-buffer to cut down possible fragmentary
requests which may cause noticeable transfer overhead.

4 Implementation

4.1 Buffer Data Structure

The main buffer of software RAID consists of several fixed-size memory blocks
which act as R/W buffers. The number and size of these memory blocks are described
as BufferNum and BufferLen respectively. These memory blocks form up a buffer
queue, and every buffer block is managed by a data structure called
_BUFFERBLOCK, which is shown in the following structure.

typedef struct_BUFFERBLOCK
{ PVOID PreReadBuffer; //Buffer virtual address pointer
 PVOID Phy_PreReadBuffer;//Physical address pointer
 UCHAR Adapter; //HBA ID
 UCHAR Device; //Device ID
 PREGISTERS_ADDR BaseAddress; // Base address of PCI
configuration space
 ULONG StartLBA; //Start LBA of data stored in
this buffer block
 ULONG SectorCount; //Sector number contained in
this buffer block
 USHORT HitCount; //Buffer hit counter
 USHORT WriteCounter; //Dirty counter (how many
writes since last refresh)
}BUFFERBLOCK, *PBUFFERBLOCK

According to Microsoft Windows Device Driver Development Kit (DDK)
documentation, we may call ScsiPortGetUncachedExtension to allocate BufferNum *
BufferLen bytes memory while SCSI port/miniport driver loading for buffer use.
Maximum allocable memory depends on available system resources and can
influence buffer hit rate, in most cases, the larger the better. BufferLen is decided by
device interface. For example, IDE uses an 8-bit register as sector count, hence the
maximum read/write length is 256 sectors * 512 bytes per sector = 128KB.

4.2 The DAB Scheme

The operation of the DAB scheme can first be divided into four cases depending on
whether the sector of requested block (whether a read or write) is found in the buffer.

(1) Both the first and the last sector of requested block are found in the buffer:
The requested block is located inside of one buffer block since it’s smaller than
128KB. So the request is hit and no actual device I/O is performed, we just return the
buffered data to complete the request.

Using DMA Aligned Buffer to Improve Software RAID Performance 359

(2) When the first sector of requested block is found in the buffer and the last
sector isn’t: The former part of requested block is located in one of the buffer blocks.
So the request is partially hit, device I/O is needed to fetch its latter part. This will
cause a DMA operation in order to prefetch 128K data that begin with this missing
part. After necessary buffer block replacement and prefetching, this request is
completed.

(3) When the first sector of requested block isn’t found in the buffer but the last
sector is: The latter part of requested block is located in one of the buffer blocks. So
the request is also treated as partial-hit, device I/O is needed to fetch its former part.
This will cause a DMA operation in order to prefetch 128K data that end with this
missing part. After necessary buffer block replacement and prefetching, this request is
completed.

(4) Neither the first sector nor the last sector of requested block is found in the
buffer: The requested block isn’t in any buffer block. Act as a traditional buffer and
use 128K-aligned address to prefetch.

The action of the DAB scheme is presented below in algorithmic form.

if (request beginning sector in buffer) then
if (request ending sector in buffer) then{
request is satisfied and LRU stack updated;
}else{
fetch 128K-aligned data that contains the latter part
of request to buffer;
}
elseif (request ending sector in buffer) then{
fetch 128K-aligned data that contains the former part
of request to buffer;
}else{
use 128K-aligned address to prefetch;}

All prefetching can be completed in one DMA operation. We may use either write
through (WT) or write back (WB) policy to handle write requests. [15] Missed write
request will cause its referenced 128K block be prefetched in WB buffer, which is
then updated in place in the buffer, so that later read/write requests may hit, saving its
DMA. For WT buffer, write requests will be sent directly to HBA, thus write
performance will not be affected.

5 Performance Evaluations

We realize our DAB method under Windows 2000. Low-level raw I/O accesses with
different request size are tested. Block-level I/O access is achieved through SRBs
(SCSI Request Block) It is sent from disk class driver to SCSI port/miniport driver,
which is fully complied with Windows internal standards [16].

The benchmark we used to measure system throughput is Iometer [17] which is a
popular file system benchmark developed by Intel. Iometer is an I/O subsystem
measurement and characterization tool for single and clustered systems. It measures
performance under a controlled load. Iometer is both a workload generator and a

360 Z. Shi, J. Zhang, and X. Zhou

measurement tool. It can be configured to emulate the disk or network I/O load, or
can be used to generate synthetic I/O loads. It can generate and measure loads on
single or multiple (networked) systems.

Table 1. Iometer test options

Sequential Distribution 100% Sequential
Read/Write Distribution 100% Read
Transfer Delay 0ms
Burst Length 1 I/Os
Transfer Request Size from 1KB to 16KB

Our experimental settings for the purpose of evaluating the performance of DAB
are shown in Figure 2. We load our driver to the test machine for DAB testing with
the Iometer options shown in Table 1. The test machine runs windows 2000 with two
Tekram DC200 dual-channel UltraDMA IDE adaptors. Its configuration is described
in Table 2 and the parameters of individual disks are summarized in Table 3.

Fig. 2. Experimental platform –Software RAID based on Windows 2000 workstation. We have
four hard disks connected via two dual-channel UDMA66 adapters. This software RAID can be
configured as RAID0 with 2 or 4 disks, RAID1 or RAID1+0

Table 2. Test machine configuration

CPU RAM OS FS
Intel Celeron 700 128M WIN2000 NTFS

Table 3. Disk parameters

Disk Model DJNA371350 RPM 7200
Interface IDE ATA/66 Latency (ms) 4
Capacity 13.5G Transfer rate (MB/s) 17
Data Buffer 2MB Seek Time (ms) 9
Manufacturer IBM

We compared DAB software RAID with original software RAID and single disk in
four aspects: IRP number, Read throughput, IRP response time and CPU utilization,
which stand for total I/Os per second, total MBs data per second, request delay, host
CPU load, respectively. As can be seen in Figure 3, compared to single disk (roughly
the same as RAID1 configuration), both software RAIDs work better. If DAB isn’t
used, software RAID will suffer a significant performance decline on both the transfer
rate and the number of request when the data block size is small. However, by using
DAB, software RAID driver will consume more CPU cycles and the CPU utilization
increases obviously on large data blocks.

Using DMA Aligned Buffer to Improve Software RAID Performance 361

Fig. 3. Software RAID performance test results under windows 2000, using two-disk RAID0
configuration, based on dual-channel UDMA adapter. IRP represents an I/O operation

6 Conclusion and Future Work

According to our previous research on storage system, we noticed that I/O request’s
characteristic has a notable impact on I/O performance. As for software ATA RAID,
adjusting its accessing block size around maximum DMA transfer length may result
in transfer rate change. We proposed DMA-aligned Buffer to make use of this issue,
by aligning small requests with DMA transfer boundary.

 We have also shown that DAB can improve small block transferring, both the
number of serviced request per second and the data transfer rate are improved when
accessing block size is small. For larger accessing block size, the number of serviced
request per second and data transfer rate are least affected by DAB, the downside
happens only when CPU utilization is increased. The gap between the implementation
with and without DAB grows wider as accessing block size increases.

One of our future work is to implement X-aligned buffer in our network software
RAID, where X refers to various access pattern, such as network transfer block size.
Especially for iSCSI protocol [18], its performance is greatly affected by different
block sizes because a large number of fragmentary requests may result in
considerable high overhead.

Although we have proved that our approach is able to enhance software RAID
performance, the work presented in this paper is only the tentative step to the solution
for storage system software implementation with better Cost/Performance Ratio.

362 Z. Shi, J. Zhang, and X. Zhou

References

1. P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A. Patterson.: RAID: High-
Performance, Reliable Secondary Storage. ACM Computing Surveys, (1994) 145–185

2. Software RAID vs. Hardware RAID, http://www.adaptec.com/ (2002)
3. Jakob Østergaard, “The Software-RAID HOWTO”, v0.90.8,

http://www.tldp.org/HOWTO/Software-RAID-HOWTO.html, August 5, (2002)
4. David A. Solomon and Mark E. Russinovich.: Inside Microsoft Windows 2000, Third

Edition, Microsoft Press (2000)
5. Alessandro Rubini, Jonathan Corbet, “Linux Device Drivers”, 2nd Edition, O'Reilly

(2001)
6. Microsoft Windows2000 DDK documents, Microsoft Press (2000)
7. Kotz, D., Ellis, C.S., “Practical Prefetching Techniques for Parallel File Systems” Proc.

First Int'l Conf. on Parallel and Distributed Information Sys, Florida, 1991, pp. 182-189.
8. Smith, A.J., "Disk Cache--Miss Ratio Analysis and Design Consideration". ACM Trans.

on Computer Systems (1985) 161-203.
9. Knut Stener Grimsrud, James K. Archibald, and Brent E.Nelson.: Multiple Prefetch

Adaptive Disk Caching, IEEE Transactions of knowledge and data engineering, Vol 5.
NO.1 (1993)

10. Jiri Schindler, John L. Griffin, Christopher R. Lumb, and Gregory R. Ganger.: Track-
aligned extents: matching access patterns to disk drive characteristics. Conference on File
and Storage Technologies, Monterey, California, USA (2002)

11. Russel Hugo Patterson III.: Informed Prefetching and Caching. PhD Thesis (1997)
12. Leonard Chung, Jim Gray, Bruce Worthington, Robert Horst.: Windows 2000 Disk IO

Performance, Microsoft Research Advanced Technology Division (2000)
13. Information Technology - AT Attachment with Packet Interface – 7. Revision 3e,

http://www.t10.org/ (2003)
14. Serial ATA: High Speed Serialized AT Attachment, http://www.t10.org/ (2003)
15. Stallings, Wm.: Computer Organization and Architecture: Principles of Structure and

Function, Macmillan, New York (1993)
16. Walter Oney.: Programming the Microsoft Windows Driver Model, Microsoft Press

(2002)
17. Iometer project, http://iometer.sourceforge.net/
18. Kalman Z. Meth, Julian Satran.: Design of the iSCSI Protocol, MSS'03 (2003)

	Introduction
	Related Work
	DMA Aligned Buffer
	Implementation
	Buffer Data Structure
	The DAB Scheme

	Performance Evaluations
	Conclusion and Future Work

