Adaptation of Legacy Software to Grid Services

Bartosz Bali§"?, Marian Bubak!?, and Michal Wegiel®

! Institute of Computer Science, AGH, al. Mickiewicza 30, 30-059 Krakéw, Poland
2 Academic Computer Centre - CYFRONET, Nawojki 11, 30-950 Krakéw, Poland
{balis,bubak}@uci.agh.edu.pl, mvegiel@student.uci.agh.edu.pl

Abstract. Adaptation of legacy software to grid services environment
is gradually gaining in significance both in academic and commercial
settings but presently no comprehensive framework addressing this area
is available and the scope of research work covering this field is still
unsatisfactory. The main contribution of this paper is the proposal of a
versatile architecture designed to facilitate the process of transition to
grid services platform. We provide thorough analysis of the presented so-
lution and confront it with fundamental grid requirements. In addition,
the results of performance evaluation of a prototype implementation are
demonstrated.

Keywords: Legacy software, grid services, design patterns

1 Introduction

In this paper we intend to propose a versatile framework enabling for semi-
automated migration from legacy software to grid services environment [IJg].
A detailed analysis of the presented solution can be found in [2] which contains
rationale supporting our design decisions and justification for rejection of other
approaches. Here, we outline the most recent stage of evolution of our concept
and demonstrate the results of performance evaluation of its prototype imple-
mentation.

The need for a framework enabling for cost-effictive adaptation of legacy
software to grid services platform is a widely recognized issue. Nonetheless, it
is still addressed inadequately as compared to its significance. We have summa-
rized the related research, which originates from both academia and industry, in
[2]. Recent experiences in this area were presented at the GGF9 Workshop [3].
Currently no comprehensive framework facilitating migration to grid services en-
vironment is available and, as discussed in [2], existing approaches [{I5] possess
numerous limitations.

2 System Structure

In the proposed architecture, we can distinguish three main components: back-
end host, hosting environment and service client. As depicted in Fig.[I they

M. Bubak et al. (Eds.): ICCS 2004, LNCS 3038, pp. 26-33] 2004.
(© Springer-Verlag Berlin Heidelberg 2004

Adaptation of Legacy Software to Grid Services 27

- SOAP hosting environment

permanent service ﬂ creates SOAP M creates

transient service instance

l

T e >
permanent process proxy factory

legacy software
u creates

« proxy instance

@
)
O
<o

transient process

Fig. 1. System architecture

are potentially located on separate machines. The presented diagram reflects the
configuration for a single legacy system which is exposed as a grid service.

Communication between components takes place by means of SOAP mes-
sages. Data is exchanged by remote method invocations performed on services
deployed within the hosting environment.

2.1 Backend Host

Backend host represents the machine on which legacy software is installed and
executed. In order to enhance performance and scalability as well as improve
reliability and fault tolerance, we may decide to deploy several redundant copies
of a single legacy application on different computing nodes, possibly in various
geographic locations. For this reason, in the context of a particular service, we
can end up having multiple backend hosts constituting dynamic pool of available
processing resources.

We propose the following approach to maintenance and utilization of such
a conglomerate.

— Backend hosts do not fulfill the function of network servers. Instead, they are
devised to act as clients. Legacy applications are not required to be directly
accessible from the outside.

— We employ registration model. Backend hosts are expected to volunteer to
participate in computations and offer their capabilities of serving client re-
quests.

Each backend host comprises two flavors of processes: master and slave
ones. The master process is a permanent entity responsible for host registration
and creation of slave processes. Whenever the load of a particular backend host
in comparison with its resources allows it to serve a new client, the master
process is obliged to report this fact by calling the registry service. Along with
this invocation, the estimated processing capability (in the sense of a certain
metric) and validity timestamp are provided. The call blocks until the given time

28 B. Balis, M. Bubak, and M. Wegiel

expires or one of the pending clients is assigned. In the latter case, a new slave
process is spawned in order to take over further processing. There is only one
master process per host. Slave processes are transient — as clients come and go,
the number of concurrently running slave processes changes respectively. These
processes are in charge of direct collaboration with legacy software on behalf of
the clients that they represent. This cooperation can assume various forms and
range from local library usage to communication over proprietary protocols. The
primary activity performed by each slave process is intercepting subsequent client
invocations, translating them into legacy interface and delivering the obtained
results. Slave processes communicate with the service container by means of
blocking method invocations performed on the proxy instance.

2.2 Hosting Environment

The hosting environment contains a collection of grid services that jointly fulfill
the role of shielding clients from unmediated interaction with backend hosts.
For each legacy system, there are three permanent services deployed: registry,
factory and proxy factory. Depending on the number of simultaneously served
clients, we have varying number of transient services, two types of which exist:
instance and proxy instance.

Access to all services is authorized and restricted to subjects holding adequate
identities. In case of internal services, such as registry, proxy factory and proxy
instance, permission is granted on the basis of host certificates. For the remaining
services, namely factory and instance, we employ user certificates. Clients are
not eligible to use internal services. Moreover, both types of instances can be
accessed exclusively by their owners.

Registry is a service that controls the mapping between clients and back-
end hosts, which offered their participation in request processing. It is obliged
to assign consecutively appearing clients to the chosen backend hosts. For the
purpose of selection, registry maintains priority queue to which pending master
processes are inserted. The ordering criterion is processing capability advertised
during each registration.

The remaining services form two pairs, each consisting of factory and the
corresponding instance. We discriminate two types of factories and instances:
ordinary and proxy ones. The former are designated for clients whereas the latter
are auxiliary entities providing mediation facilities. Proxy entities are logically
separated because they serve internal purposes and should be transparent to the
clients.

3 System Operation

Let us now turn our attention to the scenarios that take place during typical
client-service interaction. From the client’s perspective, the following sequence
of actions normally is performed: (1) new service is created, (2) certain methods
are invoked, (3) the service is destroyed. On the internal system side, each of the

Adaptation of Legacy Software to Grid Services 29

above-mentioned steps involves a number of activities. They are schematically
presented in Fig. Plas a time sequence diagram. The prerequisite for all depicted
scenarios is an operative environment with permanent services up and running.
Moreover, before any client interaction takes place, at least one master process
should be registered in the context of the considered service. It is essential since
otherwise no actual processing would be feasible.

I factory

client

registry) T

proxy factory

legacy
software

h A

wait for

|

|

|

|

create fhos client :
instance create |
(1) instance i
|

: |

| assignslave |1 b :

T | process create | |
		1	
		wait for	
y ! N |

" T |

call method T
H forwarq request

I] forward |

call

supply result

wait for
request

Y.

I e S W R

destroy instance

forward request

|
|
|
|
I
I
I
I
N|
I
I
I
I
I
I
: request
|
|
|
1
I
I
I
|
I
I
I
I
I
I
I
|
|
1

!

——><——|:1J'—————|:—"————-|:b-—

¢
U
X

____><_

Fig. 2. Scenarios: (1) service construction (2) method invocation (3) service destruction

All scenarios are triggered by clients. Procedures accompanying service con-
struction and destruction are executed by container’s callback methods con-
nected with lifetime management.

3.1 Service Construction

The scenario of service construction encompasses several actions. In the first
place, proxy factory is contacted and the corresponding proxy instance is created.
Following this, registry service is invoked. As a result of this call, one of the
registered master processes is selected and provided with the location of the
newly deployed proxy instance. The chosen master process spawns a new slave
process which in turn starts to wait for client requests using the created proxy
instance.

30 B. Balis, M. Bubak, and M. Wegiel

3.2 Method Invocation

After a successful initialization, three transient entities are created: instance,
proxy instance and slave process. Since they cannot be shared, we can treat them
as a private property of a particular client. Whenever a client invokes a method,
its complete description, together with passed parameters, is forwarded to the
proxy instance. The request is then further propagated to slave process. The
call blocked on waiting for client action returns and slave process translates the
obtained invocation to its legacy equivalent. Next, legacy processing is started.
As soon as it is finished, the obtained results are supplied to the proxy instance
via a separate asynchronous method invocation. This in turn causes that control
is transferred back to service instance and after that to the client from which it
originated.

Effective scenario of method invocation is critical to the system performance
due to the frequency with which it occurs. The communication between instance
and proxy instance takes place within the borders of a local container so it should
not pose a bottleneck. Apart from this, we have two internal remote invocations
per client call.

3.3 Service Destruction

Grid services support explicit and soft state mode of destruction. The former
takes place on client demand whereas the latter is executed automatically when
instance lifetime expires. The scenario of service removal is relatively simple.
The request of destruction is forwarded to proxy instance. Once it is delivered,
it is intercepted by the slave process, which terminates its execution. In the next
steps, proxy instance and instance are deleted by the container.

4 System Features

Having examined individual components and scenarios comprising the proposed
architecture, we will now characterize it from a wider perspective and confront
its properties with requirements that have to be satisfied in a grid environment.

4.1 Security
We can point out two major aspects concerning the security of our infrastructure.

— There is no need to introduce open incoming ports on backend hosts.
— It is possible to obtain the identity of machines with which we cooperate and
verify that the processing is delegated only to trusted nodes.

We owe both these advantages to the fact that backend hosts act as clients rather
than servers. As we stated earlier, we perform authentication and authorization
procedures. If needed, communication integrity and privacy can be ensured by
means of digital signatures and encryption. In our solution security configuration

Adaptation of Legacy Software to Grid Services 31

can be thought of as two lists of identities. First for clients that are entitled to
use our service, and second for hosts that are permitted to perform processing
for our service. In consequence, maintenance of security policy should not involve
excessive administrative effort.

4.2 Scalability

The combination of several factors enables to achieve high scalability of our ar-
chitecture. Since actual processing is always delegated to backend hosts, compu-
tations can be heavily distributed across a large number of nodes. Furthermore,
service instances residing in the container do not incur large resource consump-
tion. Their activity is in fact reduced to message forwarding. Moreover, thanks
to registration model we earn automatic load balancing. Backend hosts decide
about client acceptance themselves and volunteer only when they can guarantee
that processing can be finished within reasonable amount of time. This brings
high responsiveness to unexpected changes in utilization. In addition, master pro-
cesses advertise temporal capabilities of machines on which they are executed.
This can be used for resource reservation, which is essential for the assurance of
the quality of service.

4.3 Fault Tolerance

The proposed solution offers a high degree of resilience to component failures.
The most important reason for this is the fact that processes are not bound to
any specific endpoint. Being clients, they can arbitrarily change their location
between subsequent method calls without any serious repercussions. Thus, pro-
cess migration is supported. In case of legacy systems which maintain internal
state or work in a transactional manner, process migration has to be disabled or
automatic repetition of all preformed method invocations should be allowed.

Immunity to sudden changes of configuration is ensured by the eager regis-
tration model. At any point in time, it is not necessary to poll backend hosts in
order to determine operative nodes. We have up-to-date system image sustained
continuously.

4.4 Portability

Unquestionably, an important advantage of our architecture is the fact that we
make no assumptions as regards programming language or platform on which
both backend host and hosting environment are based. Our solution is versatile
enough to accommodate a variety of legacy systems and container implementa-
tions. Furthermore, legacy software can remain in the same location where it was
initially installed. There is no necessity of moving programs between machines
or changing their configuration.

32 B. Balis, M. Bubak, and M. Wegiel

5 Performance Evaluation

In order to estimate the communication overhead introduced in the proposed
framework, we developed a simple benchmark — echo grid service exposing a sin-
gle method which repeated the string passed as its parameter. There were two
functionally equivalent implementations of the above service. Measurements were
performed on the client side and embraced solely method invocation scenario.
No security mechanism was employed. In consequence, the results reflect the
overhead introduced merely by our core architecture. The influence of different
security modes on efficiency of Globus I/O library is quantified in [6].

We performed two types of tests: bandwidth- and latency-oriented. The for-
mer used large messages whereas the latter transmitted small amount of data.

The experiment was carried out on a single-processor desktop machine run-
ning Linux operating system. It simultaneously played the role of the hosting en-
vironment, backend host and service client. As for software configuration, Globus
Toolkit 3.0 [9] together with gSOAP 2.1 [I0] were used. We performed time mea-
surement for message payload being 1 and 10° bytes. Number of method calls
ranged from 1 to 256 and 8192 for bandwidth and latency measurement, respec-
tively.

The obtained measurement results are presented in Fig. [3. In order to en-
hance clarity, logarithmic scale (base 2) is used. We observe a linear dependence
between the number of method calls and the time needed for their execution.
Thereby, the introduced overhead can be computed as a quotient of directional
coeflicients of linear approximations of individual functions.

message size = 1 byte message size = 10° bytes
17
179
—— legacy service 15 4 —— legacy service
1479 —s— ordinary service —s— ordinary service
£ 111 g 37
[0) ()
£ s E 1y
5 93
2 T T T T T 7 . : T T T T T
0 2 4 6 8 10 12 0 1 2 3 4 5 6 7 8
number of calls [] number of calls []

Fig. 3. Results of performance evaluation

In case of transmitting small SOAP messages, the obtained ratio was 3.65
whereas for relatively large ones we got the proportion equal to 1.79. This phe-
nomenon can be explained if we take into account that the impact of communi-
cation overhead diminishes along with the message enlargement.

Adaptation of Legacy Software to Grid Services 33

On the basis of the conducted experiments, we can draw a conclusion that
in our architecture, in average case, we should expect approximately threefold
decreased communication efficiency.

6 Concluding Remarks

Implementation of initial version of the presented framework took place while
porting grid monitoring system, OCM-G [7], to grid services environment. This
project served as a proof of the concept of the overall solution. Since then the
architecture has undergone a number of refinements. Its current form is to a large
extent stable. Our work is now focused on developing additional test cases in
order to evaluate the proposed architecture under a variety of circumstances. The
anticipated direction of project evolution is implementation of tools facilitating
the application of our framework. This includes, among others, utilities allowing
for automatic interface and code generation.

References

1. Foster, 1., Kesselman, C., Nick, J., Tuecke, S.: The Physiology of the Grid.
http://www.globus.org/research/papers/ogsa.pdf

2. Balis, B., Bubak, M., Wegiel, M.: A Framework for Migration from Legacy Software
to Grid Services. To be published in Proc. Third Cracow Grid Workshop, Cracow,
Poland 2003.

3. Contributions to GGF9 Workshop Designing and Building Grid Services.
http://www.gridforum.org

4. Huang, Y., Taylor, 1., Walker, D., Davies, R.: Wrapping Legacy Codes for Grid-
Based Applications. In Proc. International Workshop on Java for Parallel and
Distributed Computing, Nice, France, 2003.

5. Kuebler, D., Eibach, W.: Adapting Legacy Applications as Web Services.
http://www-106.ibm.com/developerworks/webservices/library /ws-legacy

6. Balis, B., Bubak, M., Rzasa, W., Szepieniec, T., Wismiiller, R.: Two Aspects of
Security Solution for Distributed Systems in the Grid on the Example of OCM-G.
To be published in Proc. Third Cracow Grid Workshop, Cracow, Poland 2003.

7. Balis, B., Bubak M., Funika, W., Szczepieniec, T., Wismiiller, R., Monitoring Grid
Applications with Grid-enabled OMIS Monitor. In Proc. First European Across
Grids Conference, Santiago de Compostela, Spain, February 2003. To appear.

8. Open Grid Services Infrastructure Specification.
http://www.gridforum.org/ogsi-wg/

9. Globus Project homepage: http://www.globus.org

10. gSOAP Project homepage: http://www.cs.fsu.edu/ engelen/soap.html

	Introduction
	System Structure
	Backend Host
	Hosting Environment

	System Operation
	Service Construction
	Method Invocation
	Service Destruction

	System Features
	Security
	Scalability
	Fault Tolerance
	Portability

	Performance Evaluation
	Concluding Remarks

