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Abstract. The shared memory paradigm provides many benefits to the parallel 
programmer, particular with respect to applications that are hard to parallelize. 
Unfortunately, there are currently no efficient implementations of OpenMP for 
distributed memory platforms and this greatly diminishes its usefulness for real 
world parallel application development. In this paper we introduce a basic 
strategy for implementing OpenMP on distributed memory systems via a 
translation to Global Arrays. Global Arrays is a library of routines that provides 
many of the same features as OpenMP yet targets distributed memory 
platforms. Since it enables a reasonable translation strategy and also allows 
precise control over the movement of data within the resulting code, we believe 
it has the potential to provide higher levels of performance than the traditional 
translation of OpenMP to distributed memory via software distributed shared 
memory. 

1   Introduction 

Recently, programmer productivity has been emphasized for parallel and distributed 
computing.  However, few robust high-level language models have been developed 
for parallel programming. The difficulty of designing a language that offers 
expressivity, portability, ease of use and high performance has inevitably led to many 
failures. The distributed memory paradigm with explicit message passing remains the 
de facto programming standard, mainly because it provides good scalability for 
regular applications and it addresses the price/performance driven evolution of the 
HPC market toward clustered architectures. This scalability comes at a high 
programming cost. The shared memory paradigm has a low entry cost and can be 
much more flexible in its ability to respond to dynamically changing characteristics of 
an application. OpenMP [1] is a popular parallel programming interface for medium 
scale high performance applications on shared memory platforms. Strong points are 
its APIs for Fortran, C and C++, the ease with which its directives can be inserted into 
a code, its ability to support incremental parallelization, features for dynamically 
setting the numbers of threads and scheduling strategies, and strong vendor support. 
This is offset by its lack of support for distributed memory.  

There have been a variety of attempts to implement OpenMP on clusters, most of 
which are based upon a translation of OpenMP to a software DSM (Distributed 
Shared Memory) system which is then responsible for managing data declared to be 
shared [2, 8]. Such solutions tend to be inefficient, as the software DSM will perform 
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expensive amounts of data transfer at each (explicit or implicit) barrier in the 
program, and are particularly problematic for codes that are hard to parallelize, such 
as unstructured computations. In this paper, we propose an alternative strategy for 
translating OpenMP code to execute on clusters. We believe that our strategy will be 
more efficient and of specific benefit for irregular (unstructured) computations.  

The paper is organized as follows. In the next section, we introduce Global Arrays, 
a library for parallel programming upon which our translation strategy is based, and 
explain why we believe that this can help us implement OpenMP efficiently on 
clusters. The remainder of the paper discusses our translation strategy, summarizes 
related work and our future plans. 

2   Global Arrays as a Basis for Translating OpenMP  

Global Arrays (GA) [7] is a collection of library routines that was designed to 
simplify the programming methodology on distributed memory systems. GA has been 
available in the public domain since 1994 and has since been utilized to create parallel 
versions of many major scientific codes for distributed memory machines. It realizes a 
portable interface via which processes in an SPMD-style parallel program do not need 
the explicit cooperation of other processes. In contrast to other popular approaches, it 
does so by providing a library of routines that enable the user to specify and manage 
access to shared data structures in a program. Compared with MPI programming, GA 
thus simplifies parallel programming by providing users with a conceptual layer of 
virtual shared memory for distributed memory systems. Programmers can write their 
parallel program on clusters as if they have shared memory access, specifying the 
layout of shared data at a higher level. However, it does not change the parallel 
programming model dramatically since programmers still need to write SPMD style 
parallel code and deal with the complexity of distributed arrays by identifying the 
specific data movement required for the parallel algorithm. The GA programming 
model forces the programmer to determine the needed locality for each phase of the 
computation.  By tuning the algorithm such that the locality is maximized, portable 
high performance is easily obtained.  Furthermore, since GA is a library-based 
approach, the programming model works with most popular language environments. 
Bindings are currently available for Fortran, C, C++ and python, and hence for those 
languages that are of interest when handling OpenMP.  

GA programs distribute data in blocks to the specified number of processes. The 
current GA is not able to redistribute data. Before a region of code is executed, the 
required data must be gathered from the participating processes; results are scattered 
back to their physical locations upon completion. Since data distributions are simple, 
it is easy to compute the location of any data element. The implementation focuses on 
achieving very high efficiency in the data gathering and scattering phases.  This 
approach is efficient if the regions of code are sufficiently large and the code is able 
to compute the gather and scatter sets only when really necessary. GA relies upon 
MPI to provide it with the execution context.  

The most innovative idea of GA is that it provides an asynchronous one-sided, 
shared-memory programming environment for distributed memory systems. Both this 
shared memory abstraction, and the specific set of features GA offers, make it quite 
reasonable to translate OpenMP to GA. The traditional approach to implementing 
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OpenMP on distributed systems is based upon software DSM, which will transfer 
pages of data between memories when just a single element on that page has been 
modified, thereby potentially unnecessarily moving a considerable amount of data at 
synchronization points. GA provides a higher level of control, since the routines for 
gathering and scattering data can be used to specify precisely which data elements are 
to be transferred to which processor, and they also state when to do so. There are no 
“hidden” data transfers and there is no need to compare sets of changes to a page in 
memory. OpenMP maps computation to threads (just as GA maps computation to 
processes) and thereby indirectly specifies which data is needed by a given thread. 
This attribute makes it possible to translate OpenMP to GA. If the user has taken data 
locality into account when creating the OpenMP code, the benefits will be realized in 
the corresponding GA code. 

3   The Translation Process  

A careful study of OpenMP and GA routines showed that almost all of the OpenMP 
directives, library routines and environment variables can be translated into GA or 
MPI library calls at source level. Using GA and MPI together is not problematic since 
GA was designed to work in concert with the message passing environment. GA has 
the concept of shared data without explicit cooperative communication between 
processes. Coding for GA programs are similar to NUMA (non-uniform memory 
architecture) shared memory systems.  

OpenMP parallel regions are transformed into GA program by invoking MPI_INIT 
and GA_INITIALIZE routines to initialize processes and the memory needed for 
storing distributed array data. Note too that the program only needs to call MPI_INIT 
and GA_INITIALIZE once in GA program for efficiency. Similarly, 
GA_TERMINATE and MPI_FINALIZE routines are called once to terminate the 
parallel regions.  

The general approach to translating OpenMP into GA is to declare all shared 
variables in the OpenMP program to be global arrays in GA. Private variables can be 
declared as local variables that are naturally private to each process in a GA. If the 
parallel region contains shared variables, the translation will turn them into distributed 
global arrays in the GA program by inserting a call to the GA_CREATE routine. GA 
enables us to create regular and irregular distributed global arrays, and ghost cells (or 
halos) if needed. OpenMP FIRSTPRIVATE and COPYIN clauses are implemented 
by calling the GA broadcast routine GA_BRDCST. The reduction clause is translated 
by calling GA’s reduction routine GA_DGOP. GA library calls GA_NODEID and 
GA_NNODES are used to get process ID and number of computing processes 
respectively at run time. OpenMP provides routines to dynamically change the 
number of executing threads at runtime. We do not attempt to translate these currently 
since this would amount to performing data redistribution and GA is based upon the 
premise that this is not necessary. 

In order to implement OpenMP parallel loops in GA, the generated GA program 
reduces the loop bounds according to specified schedule so as to assign work. Based 
on the calculated lower and upper bounds, and the array region accessed in the local 
code, each process in the GA program fetches a partial copy of global arrays via 
GA_GET, performs its work and puts back the modified local copy into global 
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locations by calling GA_PUT or GA_ACCUMULATE. The iteration set and 
therefore also the shared data must be computed dynamically For DYNAMIC and 
GUIDED loop schedules. We use GA locking routines to ensure that a process has 
exclusive access to code where it gets a piece of work and updates the lower bound of 
the remaining iteration set; the latter must be shared and visible for every process. 
However, due to the expense of data transfer in distributed memory systems, 
DYNAMIC and GUIDED schedules may not be as efficient as a static schedule, and 
it may not provide the intended benefits.   

GA synchronization routines will replace OpenMP synchronizations. As OpenMP 
synchronization ensures that all computation in the parallel construct has completed, 
GA synchronization will do the same but will also guarantee that the requisite data 
movement has completed to properly update the GA data structures. GA locks and 
Mutex library calls are used to protect a critical section; we use them to translate the 
OpenMP CRITICAL and ATOMIC directives. The OpenMP FLUSH directive is 
implemented by using GA put and get routines to update shared variables.  This could 
be implemented with the GA_FENCE operations if more explicit control is necessary. 
GA provides the GA_SYNC library call for synchronization; it is used to replace 
OpenMP BARRIER as well as implicit barriers at the end of OpenMP constructs. The 
only directive that cannot be efficiently translated into equivalent GA routines is 
OpenMP’s ORDERED. We use MPI library calls, MPI_Send and MPI_Recv, to 
guarantee the execution order of processes if necessary. Since GA works as a 
complement of MPI, and must be installed on a platform with GA, there is no 
problem invoking MPI routines in a GA program. 

The translation of sequential program sections (serial regions outside parallel 
regions, OpenMP SINGLE, MASTER, and CRITICAL constructs) becomes non-
trivial besides that of parallel regions. The program control flow must be maintained 
correctly in all processes so that some parts of the sequential section have to be 
executed redundantly by all processes. Subroutine/function calls in serial regions need 
to be executed redundantly if these subroutines/functions have parallel regions inside. 
We have identified three different strategies to implement the sequential parts: master 
execution, replicated execution and distributed execution.  

In master execution, only the master process performs the computation, and 
gets/puts the global arrays before and after the computation. Exclusive master process 
execution of the sequential portion of programs invokes coherence issue of private 
data between master process and other processes; a broadcast operation is necessary 
after master process execution in order to achieve a consistent view of data. 

In replicated execution, each process redundantly executes the same computation. 
At the end of computation, only one processor needs to update the global arrays using 
its own local copies, although all the processes need to fetch into local copies before 
the computation. The replicated execution approach has advantages of easy 
maintenance of the coherence of private data, and less data communication if a small 
number of shared variables are modified. But it has overhead of redundant 
computation and may cause more global synchronizations for shared memory updates 
and potentially too much data gathering. The approach could work when a sequential 
part computes mostly scalar data.  

In distributed execution, the process that owns data performs the corresponding 
computation and keeps the computation in a certain order according to data 
dependency information. Each processor executes a portion of work of the sequential 
part according to constraints of sequential execution order. This may introduce 
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considerable synchronization. The distributed computation maximizes the data local-
ity and minimizes the shared data communication, but may also require broadcasting 
of some data. 

4   Related Work  

OpenMP is not immediately implementable on distributed memory systems. Given its 
potential as a high level programming model for large applications, the need for a 
corresponding translation has been recognized. In our previous work, we have 
considered various strategies for helping the user improve the code prior to any 
strategy translating it for distributed execution, primarily by minimizing the amount 
of data that is shared [6].  

A number of efforts have attempted to provide OpenMP on clusters by using it 
together with a software distributed shared memory (software DSM) environment [2, 
3,8]. Although this is a promising approach, and work will continue to improve 
results, it does come with high overheads. In particular, such environments generally 
move data at the page level and may not be able to restrict data transfers to those 
objects that truly require it. There are many ways in which this might be improved, 
including prefetching and forwarding of data, general OpenMP optimizations such as 
eliminating barriers, and using techniques of automatic data distribution to help 
carefully place pages of data. The OMNI compiler has included additional data layout 
directives that help it decide where to place the pages of data in the various 
memories[8]. An additional approach is to perform an aggressive, possibly global, 
privatization of data. These issues are discussed in a number of papers, some of which 
explicitly consider software DSM needs [3, 4, 6, 9].  

The approach that is closest to our own is an attempt to translate OpenMP directly 
to a combination of software DSM and MPI [5]. This work attempts to translate to 
MPI where this is straightforward, and to a software DSM API elsewhere.  The 
purpose of this hybrid approach is that it tries to avoid the software DSM overheads 
as far as possible. While this has similar potential to our own work, GA is a simpler 
interface and enables a more convenient implementation strategy. Because it has a 
straightforward strategy for allocating data, it can also handle irregular array accesses, 
which is the main reason for retaining a software DSM in the above work. GA data 
has a global “home” but it is copied to and from it to perform the computation in 
regions of code; this is not unlike the OpenMP strategy of focusing on the allocation 
of work. For both models, this works best if the regions are suitably large. If the user 
is potentially exposed to the end result of the translation, we feel that they should be 
shielded as far as possible from the difficulties of distributed memory programming 
via MPI. GA is ideal in this respect as it retains the concept of shared data.    

5   Conclusions and Future Work 

This paper presents a basic compile-time strategy for translating OpenMP programs 
into GA programs. Our experiments have shown good scalability of the translated GA 
program in distributed memory systems, even with relatively slow interconnects. This 
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shared memory parallel programming approach introduces new overheads as it then 
must efficiently gather and scatter (potentially) large amounts of data before and after 
parallel loops. Our on-going work investigates the ability of the compiler to support 
the need for efficiency in these gather and scatter operations. We believe that recent 
advances in the MPI standard might enable GA to provide additional functionality 
that could increase the viability of this approach to parallel programming. We intend 
to explore this issue with our GA colleagues. 
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