
M. Bubak et al. (Eds.): ICCS 2004, LNCS 3038, pp. 408–413, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Efficient Translation of OpenMP to Distributed Memory

L. Huang1, B. Chapman1, Z. Liu1, and R. Kendall2

1
 Computer Science Dept., University of Houston, Texas
{leihuang,chapman,zliu}@cs.uh.edu

2
 Scalable Computing Lab, Ames Laboratory, Iowa

rickyk@ameslab.gov

Abstract. The shared memory paradigm provides many benefits to the parallel
programmer, particular with respect to applications that are hard to parallelize.
Unfortunately, there are currently no efficient implementations of OpenMP for
distributed memory platforms and this greatly diminishes its usefulness for real
world parallel application development. In this paper we introduce a basic
strategy for implementing OpenMP on distributed memory systems via a
translation to Global Arrays. Global Arrays is a library of routines that provides
many of the same features as OpenMP yet targets distributed memory
platforms. Since it enables a reasonable translation strategy and also allows
precise control over the movement of data within the resulting code, we believe
it has the potential to provide higher levels of performance than the traditional
translation of OpenMP to distributed memory via software distributed shared
memory.

1 Introduction

Recently, programmer productivity has been emphasized for parallel and distributed
computing. However, few robust high-level language models have been developed
for parallel programming. The difficulty of designing a language that offers
expressivity, portability, ease of use and high performance has inevitably led to many
failures. The distributed memory paradigm with explicit message passing remains the
de facto programming standard, mainly because it provides good scalability for
regular applications and it addresses the price/performance driven evolution of the
HPC market toward clustered architectures. This scalability comes at a high
programming cost. The shared memory paradigm has a low entry cost and can be
much more flexible in its ability to respond to dynamically changing characteristics of
an application. OpenMP [1] is a popular parallel programming interface for medium
scale high performance applications on shared memory platforms. Strong points are
its APIs for Fortran, C and C++, the ease with which its directives can be inserted into
a code, its ability to support incremental parallelization, features for dynamically
setting the numbers of threads and scheduling strategies, and strong vendor support.
This is offset by its lack of support for distributed memory.

There have been a variety of attempts to implement OpenMP on clusters, most of
which are based upon a translation of OpenMP to a software DSM (Distributed
Shared Memory) system which is then responsible for managing data declared to be
shared [2, 8]. Such solutions tend to be inefficient, as the software DSM will perform

Efficient Translation of OpenMP to Distributed Memory 409

expensive amounts of data transfer at each (explicit or implicit) barrier in the
program, and are particularly problematic for codes that are hard to parallelize, such
as unstructured computations. In this paper, we propose an alternative strategy for
translating OpenMP code to execute on clusters. We believe that our strategy will be
more efficient and of specific benefit for irregular (unstructured) computations.

The paper is organized as follows. In the next section, we introduce Global Arrays,
a library for parallel programming upon which our translation strategy is based, and
explain why we believe that this can help us implement OpenMP efficiently on
clusters. The remainder of the paper discusses our translation strategy, summarizes
related work and our future plans.

2 Global Arrays as a Basis for Translating OpenMP

Global Arrays (GA) [7] is a collection of library routines that was designed to
simplify the programming methodology on distributed memory systems. GA has been
available in the public domain since 1994 and has since been utilized to create parallel
versions of many major scientific codes for distributed memory machines. It realizes a
portable interface via which processes in an SPMD-style parallel program do not need
the explicit cooperation of other processes. In contrast to other popular approaches, it
does so by providing a library of routines that enable the user to specify and manage
access to shared data structures in a program. Compared with MPI programming, GA
thus simplifies parallel programming by providing users with a conceptual layer of
virtual shared memory for distributed memory systems. Programmers can write their
parallel program on clusters as if they have shared memory access, specifying the
layout of shared data at a higher level. However, it does not change the parallel
programming model dramatically since programmers still need to write SPMD style
parallel code and deal with the complexity of distributed arrays by identifying the
specific data movement required for the parallel algorithm. The GA programming
model forces the programmer to determine the needed locality for each phase of the
computation. By tuning the algorithm such that the locality is maximized, portable
high performance is easily obtained. Furthermore, since GA is a library-based
approach, the programming model works with most popular language environments.
Bindings are currently available for Fortran, C, C++ and python, and hence for those
languages that are of interest when handling OpenMP.

GA programs distribute data in blocks to the specified number of processes. The
current GA is not able to redistribute data. Before a region of code is executed, the
required data must be gathered from the participating processes; results are scattered
back to their physical locations upon completion. Since data distributions are simple,
it is easy to compute the location of any data element. The implementation focuses on
achieving very high efficiency in the data gathering and scattering phases. This
approach is efficient if the regions of code are sufficiently large and the code is able
to compute the gather and scatter sets only when really necessary. GA relies upon
MPI to provide it with the execution context.

The most innovative idea of GA is that it provides an asynchronous one-sided,
shared-memory programming environment for distributed memory systems. Both this
shared memory abstraction, and the specific set of features GA offers, make it quite
reasonable to translate OpenMP to GA. The traditional approach to implementing

410 L. Huang et al.

OpenMP on distributed systems is based upon software DSM, which will transfer
pages of data between memories when just a single element on that page has been
modified, thereby potentially unnecessarily moving a considerable amount of data at
synchronization points. GA provides a higher level of control, since the routines for
gathering and scattering data can be used to specify precisely which data elements are
to be transferred to which processor, and they also state when to do so. There are no
“hidden” data transfers and there is no need to compare sets of changes to a page in
memory. OpenMP maps computation to threads (just as GA maps computation to
processes) and thereby indirectly specifies which data is needed by a given thread.
This attribute makes it possible to translate OpenMP to GA. If the user has taken data
locality into account when creating the OpenMP code, the benefits will be realized in
the corresponding GA code.

3 The Translation Process

A careful study of OpenMP and GA routines showed that almost all of the OpenMP
directives, library routines and environment variables can be translated into GA or
MPI library calls at source level. Using GA and MPI together is not problematic since
GA was designed to work in concert with the message passing environment. GA has
the concept of shared data without explicit cooperative communication between
processes. Coding for GA programs are similar to NUMA (non-uniform memory
architecture) shared memory systems.

OpenMP parallel regions are transformed into GA program by invoking MPI_INIT
and GA_INITIALIZE routines to initialize processes and the memory needed for
storing distributed array data. Note too that the program only needs to call MPI_INIT
and GA_INITIALIZE once in GA program for efficiency. Similarly,
GA_TERMINATE and MPI_FINALIZE routines are called once to terminate the
parallel regions.

The general approach to translating OpenMP into GA is to declare all shared
variables in the OpenMP program to be global arrays in GA. Private variables can be
declared as local variables that are naturally private to each process in a GA. If the
parallel region contains shared variables, the translation will turn them into distributed
global arrays in the GA program by inserting a call to the GA_CREATE routine. GA
enables us to create regular and irregular distributed global arrays, and ghost cells (or
halos) if needed. OpenMP FIRSTPRIVATE and COPYIN clauses are implemented
by calling the GA broadcast routine GA_BRDCST. The reduction clause is translated
by calling GA’s reduction routine GA_DGOP. GA library calls GA_NODEID and
GA_NNODES are used to get process ID and number of computing processes
respectively at run time. OpenMP provides routines to dynamically change the
number of executing threads at runtime. We do not attempt to translate these currently
since this would amount to performing data redistribution and GA is based upon the
premise that this is not necessary.

In order to implement OpenMP parallel loops in GA, the generated GA program
reduces the loop bounds according to specified schedule so as to assign work. Based
on the calculated lower and upper bounds, and the array region accessed in the local
code, each process in the GA program fetches a partial copy of global arrays via
GA_GET, performs its work and puts back the modified local copy into global

Efficient Translation of OpenMP to Distributed Memory 411

locations by calling GA_PUT or GA_ACCUMULATE. The iteration set and
therefore also the shared data must be computed dynamically For DYNAMIC and
GUIDED loop schedules. We use GA locking routines to ensure that a process has
exclusive access to code where it gets a piece of work and updates the lower bound of
the remaining iteration set; the latter must be shared and visible for every process.
However, due to the expense of data transfer in distributed memory systems,
DYNAMIC and GUIDED schedules may not be as efficient as a static schedule, and
it may not provide the intended benefits.

GA synchronization routines will replace OpenMP synchronizations. As OpenMP
synchronization ensures that all computation in the parallel construct has completed,
GA synchronization will do the same but will also guarantee that the requisite data
movement has completed to properly update the GA data structures. GA locks and
Mutex library calls are used to protect a critical section; we use them to translate the
OpenMP CRITICAL and ATOMIC directives. The OpenMP FLUSH directive is
implemented by using GA put and get routines to update shared variables. This could
be implemented with the GA_FENCE operations if more explicit control is necessary.
GA provides the GA_SYNC library call for synchronization; it is used to replace
OpenMP BARRIER as well as implicit barriers at the end of OpenMP constructs. The
only directive that cannot be efficiently translated into equivalent GA routines is
OpenMP’s ORDERED. We use MPI library calls, MPI_Send and MPI_Recv, to
guarantee the execution order of processes if necessary. Since GA works as a
complement of MPI, and must be installed on a platform with GA, there is no
problem invoking MPI routines in a GA program.

The translation of sequential program sections (serial regions outside parallel
regions, OpenMP SINGLE, MASTER, and CRITICAL constructs) becomes non-
trivial besides that of parallel regions. The program control flow must be maintained
correctly in all processes so that some parts of the sequential section have to be
executed redundantly by all processes. Subroutine/function calls in serial regions need
to be executed redundantly if these subroutines/functions have parallel regions inside.
We have identified three different strategies to implement the sequential parts: master
execution, replicated execution and distributed execution.

In master execution, only the master process performs the computation, and
gets/puts the global arrays before and after the computation. Exclusive master process
execution of the sequential portion of programs invokes coherence issue of private
data between master process and other processes; a broadcast operation is necessary
after master process execution in order to achieve a consistent view of data.

In replicated execution, each process redundantly executes the same computation.
At the end of computation, only one processor needs to update the global arrays using
its own local copies, although all the processes need to fetch into local copies before
the computation. The replicated execution approach has advantages of easy
maintenance of the coherence of private data, and less data communication if a small
number of shared variables are modified. But it has overhead of redundant
computation and may cause more global synchronizations for shared memory updates
and potentially too much data gathering. The approach could work when a sequential
part computes mostly scalar data.

In distributed execution, the process that owns data performs the corresponding
computation and keeps the computation in a certain order according to data
dependency information. Each processor executes a portion of work of the sequential
part according to constraints of sequential execution order. This may introduce

412 L. Huang et al.

considerable synchronization. The distributed computation maximizes the data local-
ity and minimizes the shared data communication, but may also require broadcasting
of some data.

4 Related Work

OpenMP is not immediately implementable on distributed memory systems. Given its
potential as a high level programming model for large applications, the need for a
corresponding translation has been recognized. In our previous work, we have
considered various strategies for helping the user improve the code prior to any
strategy translating it for distributed execution, primarily by minimizing the amount
of data that is shared [6].

A number of efforts have attempted to provide OpenMP on clusters by using it
together with a software distributed shared memory (software DSM) environment [2,
3,8]. Although this is a promising approach, and work will continue to improve
results, it does come with high overheads. In particular, such environments generally
move data at the page level and may not be able to restrict data transfers to those
objects that truly require it. There are many ways in which this might be improved,
including prefetching and forwarding of data, general OpenMP optimizations such as
eliminating barriers, and using techniques of automatic data distribution to help
carefully place pages of data. The OMNI compiler has included additional data layout
directives that help it decide where to place the pages of data in the various
memories[8]. An additional approach is to perform an aggressive, possibly global,
privatization of data. These issues are discussed in a number of papers, some of which
explicitly consider software DSM needs [3, 4, 6, 9].

The approach that is closest to our own is an attempt to translate OpenMP directly
to a combination of software DSM and MPI [5]. This work attempts to translate to
MPI where this is straightforward, and to a software DSM API elsewhere. The
purpose of this hybrid approach is that it tries to avoid the software DSM overheads
as far as possible. While this has similar potential to our own work, GA is a simpler
interface and enables a more convenient implementation strategy. Because it has a
straightforward strategy for allocating data, it can also handle irregular array accesses,
which is the main reason for retaining a software DSM in the above work. GA data
has a global “home” but it is copied to and from it to perform the computation in
regions of code; this is not unlike the OpenMP strategy of focusing on the allocation
of work. For both models, this works best if the regions are suitably large. If the user
is potentially exposed to the end result of the translation, we feel that they should be
shielded as far as possible from the difficulties of distributed memory programming
via MPI. GA is ideal in this respect as it retains the concept of shared data.

5 Conclusions and Future Work

This paper presents a basic compile-time strategy for translating OpenMP programs
into GA programs. Our experiments have shown good scalability of the translated GA
program in distributed memory systems, even with relatively slow interconnects. This

Efficient Translation of OpenMP to Distributed Memory 413

shared memory parallel programming approach introduces new overheads as it then
must efficiently gather and scatter (potentially) large amounts of data before and after
parallel loops. Our on-going work investigates the ability of the compiler to support
the need for efficiency in these gather and scatter operations. We believe that recent
advances in the MPI standard might enable GA to provide additional functionality
that could increase the viability of this approach to parallel programming. We intend
to explore this issue with our GA colleagues.

References

1. OpenMP Architecture Review Board, Fortran 2.0 and C/C++ 1.0 Specifications. At
www.openmp.org.

2. C. Amza, A. Cox et al.: Treadmarks: Shared memory computing on networks of
workstations. IEEE Computer, 29(2):18-28, 1996

3. A. Basumallik, S-J. Min and R. Eigenmann: Towards OpenMP execution on software
distributed shared memory systems. Proc. WOMPEI’02, LNCS 2327, Springer Verlag,
2002

4. Chapman, B., Bregier, F., Patil, A. and Prabhakar, A.: Achieving High Performance under
OpenMP on ccNUMA and Software Distributed Share Memory Systems. Currency and
Computation Practice and Experience. Vol. 14, (2002) 1-17

5. R. Eigenmann, J. Hoeflinger, R.H. Kuhn, D. Padua et al.: Is OpenMP for grids? Proc.
Workshop on Next-Generation Systems, IPDPS’02, 2002

6. Z. Liu, B. Chapman, Y. Wen, L. Huang and O. Hernandez: Analyses and Optimizations
for the Translation of OpenMP Codes into SPMD Style. Proc. WOMPAT 03, LNCS 2716,
26-41, Springer Verlag, 2003

7. J. Nieplocha, RJ Harrison, and RJ Littlefield: Global Arrays: A non-uniform memory
access programming model for high-performance computers. The Journal of
Supercomputing, 10:197-220, 1996

8. M. Sato, H. Harada and Y. Ishikawa: OpenMP compiler for a software distributed shared
memory system SCASH. Proc. WOMPAT 2000, San Diego, 2000

9. T.H. Weng and B. Chapman Asynchronous Execution of OpenMP Code. Proc. ICCS 03,
LNCS 2660, 667-676, Springer Verlag, 2003

	Introduction
	Global Arrays as a Basis for Translating OpenMP
	The Translation Process
	Related Work
	Conclusions and Future Work

