Grid Service Registry for Workflow Composition
Framework

Marian Bubak!?, Tomasz Gubala?3, Michal Kapalka'!, Maciej Malawski'2,
and Katarzyna Rycerz':?

! Institute of Computer Science, AGH, al. Mickiewicza 30, 30-059 Krakéw, Poland
2 Academic Computer Centre — CYFRONET, Nawojki 11, 30-950 Krakéw, Poland
3 Faculty of Sciences, Section of Computational Science, University of Amsterdam
Kruislaan 403, 1098 SJ Amsterdam, The Netherlands
{bubak,malawski,kzajac}@uci.agh.edu.pl
T.Gubala@cyfronet.krakow.pl, kapalkaQicslab.agh.edu.pl

Abstract. The system presented in this paper supports the user
in composing the flow of distributed application from existing Grid
services. The flow composition system builds workflows on an abstract
level with semantic and syntactic description of services available in a
Grid services registry. This paper presents concepts of an overall system
architecture and it focuses on one of the two main modules of the
system — the distributed Grid service registry.

Keywords: Grid workflow, workflow composition, distributed registry,
ontologies, Grid programming

1 DMotivation

The future Grid is often described as a geographically-distributed set of services
deployed on different sites by some service providers. These Grid services, as
described in the Open Grid Service Architecture (OGSA) specifications [712],
should allow the user to do computations, access some resources, get informa-
tion or use external scientific devices. Usually each of them will provide only
a part of functionality required by the user, so using many of them, connected
in a workflow, will be required quite often. It is one of the new approaches to
programming Grid applications. Unfortunately, as the number of available ser-
vices grows, the task of manual workflow composition becomes very difficult and
time-consuming. A mature flow composition system is needed to support the
user and thus make the task feasible. This kind of system would also help in fast
Grid application development (prototyping) and in finding services appropriate
for completing a partial solution prepared by the user. It would also allow for
automatic, on-demand creation of workflows for specified tasks or rebuilding old
workflows when they cannot be run on the Grid anymore due to frequent changes
of the environment. T'wo approaches to mapping an abstract workflow defined in
terms of application components onto a set of available Grid resources are pre-
sented in [B]. In the Web Services community, the most popular registry system

M. Bubak et al. (Eds.): ICCS 2004, LNCS 3038, pp. 34-EI] 2004.
(© Springer-Verlag Berlin Heidelberg 2004

Grid Service Registry for Workflow Composition Framework 35

is the Universal Description, Discovery and Integration standard [I3]. The imple-
mentation of a distributed UDDI registry, within a full-fledged P2P environment,
supported by sophisticated registry ontologies, can be found in METEOR-S [0l
A]. The core specification of the UDDI standard (already in version 3.0) also in-
troduces a new, distributed registry architecture. A simpler, but still very flexible
and efficient solution for sharing any kind of information stored in XML docu-
ments can be found in JXTA Search [14]. Another example of this approach is
the myGrid project [I0] where the improved UDDI system has been successfully
introduced in a Grid OGSA environment. To the best of our knowledge, there
is still no mature distributed system for semi-automatic workflow composition
on a Grid. As a proof-of-concept and for feasibility studies we have developed
a prototype of such a system — an Application Flow Composer (AFC) [2]. Tt is
based on the Common Component Architecture (CCA) and builds flows com-
prised of CCA components. We perceive, however, that syntactic information
about components (the types of their ports) is not sufficient for efficient work-
flow composition. The other disadvantage of the system is its centralization,
leading to lack of scalability and fault tolerance. Therefore, we have decided
to design a new, Grid-enabled distributed system. It is intended to be used to
compose workflows from Grid services, utilizing their semantic description.

2 Overall Structure of the System

The new system consists of two main elements: a flow composer and a distributed
registry (see Fig.[I). Both the flow composer and the registry are distributed and
should run in a heterogeneous, geographically-spread Grid environment. They
can communicate in a standard way (e.g. via SOAP) or, if the highest efficiency
is required, via a dedicated, fast protocol. This distributed topology makes both
subsystems more scalable and fault-tolerant.

The roles of the flow composer and the registry can be explained with the
following scenario. The user who wants to build a new Grid application consist-
ing of Grid services, describes the initial conditions of the application workflow
and sends them to flow composition unit. The flow composer divides this initial
workflow document into smaller parts and tries to find appropriate solutions (in
terms of Grid services) for each of them. To achieve this, it has to ask the registry
for information about services that conform to a given semantic or syntactic de-
scription. After it finds all the necessary components, it combines results from
all subtasks and builds the final workflow description that will be returned to
the user. When multiple solutions can be applied, more than one final document
is prepared. The user should choose the one that is the most appropriate. Some-
times the user’s help is required during the composition process. The system
might ask the user questions in order to ease and speed up the decision-making
process, especially regarding semantic matchmaking which is always difficult for
an artificial entity.

The flow composer architecture can be seen as a distributed set of agents,
composing workflow on a user request. We use the well-known term agent for

36 M. Bubak et al.

Service
Provider
__~""Flow Composition Senice
Workflow composition .- e description
request S Ub SySte m | —— registration
+ [comporer . [| RegisyNods |
Registry Agent
Admin. / =
Composer 0 %)
{ Agent]
Simple service Sawvice
browsing n o
, discove Inter-Agent
Communication
Registry up/down
Policy management Composer %
Agent Service
‘ Lookup
,,,,,,, |- Interface -|
Registry Node [] S 1S
Communication E.}g 2T | Saow
oL 29 S&T
g8 | g% | 5%
. & £ “os
Grid = E

Fig. 1. General view of the system architecture

describing the components of the flow composer, because each of them oper-
ates on behalf of the user, contains its own rules of quasi-autonomous decision
making and uses resources (i.e. descriptions of Grid services). This agent-based
approach has several advantages. It makes the solution scalable and efficient as
the agents can spread on many resources and work together on one composition
problem. It also imparts some fault-tolerance on the system as a failure of one
agent shouldn’t stop the whole process. A more detailed description of the flow
composer subsystem and the workflow composition process is given in [3].

The role of the distributed service registry in the entire framework is crucial.
It is responsible for efficient delivery of data describing every available Grid
service for the use of the flow composer. In this paper we describe our approach
to building the registry together with requirements analysis and design.

3 Distributed Registry

3.1 Requirements

The registry should enable publication and searching for information about com-
ponents of a workflow. It should be as universal as possible in order to reduce
the need for multiple registries within one Grid environment. However, as we
are not able to make a registry capable of storing each kind of information, we
will concentrate on Grid services and their descriptions, aiming at flexibility and

Grid Service Registry for Workflow Composition Framework 37

extensibility. The registry should meet the following requirements which stem
from demands of Grid computing and the flow composition system:

— be distributed and scalable,

— be efficient, at least as far as searching for data is concerned (the speed of
updating and inserting new data into the registry isn’t so crucial),

— allow for some redundancy of stored data (i.e. replication), thus lacking single
points of failures,

— do not depend too much on the format of the information that can be stored,
so new data formats can be introduced or the current one extended,

— be as fault-tolerant as possible,

— use technologies that are Grid-enabled,

be simple to use.

3.2 Contents of the Registry

We want the registry to store information about Grid services. However, a simple
syntactic description is not sufficient and should be extended so that every Grid
service is described at least by:

— its unique identifier (within the whole Grid),

— the syntactic description of its ports and messages (e.g. WSDL),

— semantic information about the service itself and the ports, messages, tasks,
data transformations, etc. it provides,

the domain (or domains) it belongs to.

This complete description of each Grid service will be called a Grid Service In-
formation Document (GSID). We do not specify its format, however, we assume
that it will be an XML document, which should guarantee portability, flexibil-
ity and extensibility. It will also allow for using many pre-existing technological
solutions, such as parsers, XML databases, etc. The domain field enclosed in
every GSID is used by the registry’s internal data distribution algorithm. All
information in the registry is classified according to its domain, which can be,
for example, a scientific domain (like biology, mathematics, etc). It can be a sep-
arate field, provided explicitly during service registration, or a function of the
service’s semantic description. It plays a very important role and thus it should
be selected carefully taking into account the following requirements:

— it should be itself a simple data structure, e.g. the name of an ontology,

— it must be a part of an uncomplicated structure (like a set of ontology trees)
with not too many disjoint parts (e.g. trees), to enable efficient data distri-
bution,

— the number of domains shouldn’t be too small, as it could limit the number
of registry nodes, since these two quantities are strongly correlated.

The user will be able get a list of all most general domains (ie. domains that
have no parents) or a list of all direct subdomains of a specific domain from
the registry. This will assure that at least for the “domain” field the ontologies

38 M. Bubak et al.

will be well known to users. The list of domains can change as users add more
ontologies, however the uniqueness and global consistency of domain names in
the whole registry is still guaranteed.

The syntactical description of a Grid service is relatively simple. We can
apply Grid/web service standards, like WSDL. The semantical description seems
to be much more complicated. We have decided to use ontologies to express
semantics, but the choice of notation is still to be made and many problems (e.g.
whether to use shared or local ontologies) still have to be solved. Fortunately,
many projects are exploring the areas of ontologies and semantic description of
web/Grid services — these include OWL-S and the myGrid project [TO/IT].

3.3 Architecture of the Registry

The registry should be highly distributed and scalable. To achieve that, its ar-
chitecture is a structure of equal and independent registry nodes with a given
communication topology. By equal we mean that every node works in the same
way and presents to the user the same interfaces. Therefore, the complicated
structure of the registry is hidden behind the interfaces and all GSID documents
can be accessed by sending requests to an arbitrary registry node regardless of
their distribution within the whole registry.

As long as the efficiency is not taken into account, it doesn’t matter for a user
which node he or she will use to access the registry through one of its interfaces.
The node that receives the user’s request is responsible for its proper redirection
to other nodes of the registry when necessary. The algorithm of request redi-
rection (routing) is under development. The problem is that no node can store
complete information about data distribution within the whole registry as this
solution wouldn’t be too scalable. On the other hand, remembering only the
domains of the nearest neighbors may not be sufficient and broadcasting user’s
requests throughout all the nodes should be strictly limited.

Every registry node will be responsible for storing GSID documents related
to some specific domains (see Fig. [2). The choice of nodes responsible for given
domains can be done both manually, by a system administrator, and automati-
cally, if that is allowed by the registry’s configuration. The main goal of such an
approach is to store information very close to the places where the correspond-
ing Grid services are deployed and/or most frequently used. It is reasonable to
assume that every domain can be represented by at most one registry node as
this solves problems of data coherency. However, data redundancy is required
(see Sect.[3d]) so we have to introduce data replication between nodes, and, as
efficiency remains essential, cache mechanisms should be added to the registry
— this will require additional copying of data between many nodes. However, all
data can be kept coherent and up-to-date in this kind of complicated structure
and the concept of a single designated node for each domain, as well as other
advanced techniques may be applied for that purpose. The number of registry
nodes and the communication topology are dynamic so new nodes and inter-
connecting links can be added and removed without restarting. Of course, when

Grid Service Registry for Workflow Composition Framework 39

A Management
- - * Administration functions
Service Cat_egorles (servicing node, updating
* Domains software, manage security efc.)
(where the service is used)
*Vocabulary files Service Registat
(where used terms are defined) Entry table e G
Service Entry Algorithm
Service Syntax Service Entry To
¢ Implemented ports Redirection Look
* Exported methods Algorithm i ookup .
 Supported /O messages * Simple queries
Registry (e.g. ID, name)
Specialization * Syntax queries
Service Semantics Rules (eg. Domain) (e.g. port, method)
« Overall service description * Semantic queries
« Purpose of supported methods Data Cache (e.9. meaning of data)
* Meaning of provided output data Mech
Optional internal constraints Distributed 52t Redundancy
A and Inter-Node
Service Identification Registry Coherency Rules
« Name of service Node
« Type of service Registration
zUniqueiidentifien * Add, remove or update
service description
document

Fig. 2. Details of a single registry node

the number of nodes changes, some data has to be transferred and some time
required to propagate all the required information throughout the whole registry.

3.4 Registry Interfaces

Each registry node will present the following interfaces to the outside world: a
registration interface, a management interface and a lookup interface.

The registration interface is responsible for publishing GSID documents and
unregistering them when needed. The registration requester may be a user (e.g.
a developer of a Grid service) or any other entity that can do it automatically
(e.g. searching for services and then publishing some of them). The registration
scenario can be the following: the user wants to register Grid service S in domain
D (placed somewhere in one of the domain trees). If the domain doesn’t exist,
a domain registration request has to be sent by a privileged entity. After that,
service S can be registered by sending a registration request to any node of the
registry. This node will take care of redirecting the request to the right place
(the node responsible for domain D) at which service S will be registered.

The lookup interface allows users to search for data in the registry. An essen-
tial step is the specification of the type of queries the registry should support.
As data lookup should be very fast, we’d rather not put any complicated on-
tological reasoning machine inside the registry. On the other hand, we cannot
confine users to using only these queries that are related to syntactic information
(this would be highly insufficient e.g. for our flow composer). Thus, the following
types of queries should be supported by the registry:

40 M. Bubak et al.

— search by ID,

— search by syntactic information,

— search by semantic service description but using only names of ontologies
and their attributes, not ontological reasoning.

In the last case, the entity that is asking a question is limited only to queries
like: “find all services that have ports which are described by one of the following
ontologies: O1, O3, 03”. The registry does not care about ontological relations; it
only compares names of ontologies (strings). However, these relations might be
introduced here by the entity asking the question, by properly preparing the list
of ontology names that is put in the query (e.g. Oy and O3 may be subclasses
of O1). This approach should be efficient and flexible.

In order to make the migration of clients closer to data possible (e.g. agents
of the flow composer) the registry will, in response to a query, return information
on where exactly (i.e. on which node) the requested GSID document has been
found. It will enable selecting the node which stores the data the user is looking
for and asking next questions directly there, thus speeding up the lookup process.

4 Implementation Choices

It’s now too early to make detailed implementation choices; we thus prefer to
point out several requirements. First of all, as we would like the system to be
portable, the use of a highly portable programming language (e.g. Java or C#)
is desirable. Secondly, as the system has to be distributed, scalable and, at the
same time, efficient, a non-hierarchical peer-to-peer paradigm with a lightweight
underlying platform and fast communication protocols should be used. This will
also allow for automatic deployment of system components in containers on
nodes. For the first prototype of the system we are going to use Globus Toolkit
3.0 8] as a hosting environment. For ontological reasoning we might use the
Jena2 framework [15].

The registry should be conformable to a well-known standard to make it
more universal and portable. This can be, for example, the third version of the
UDDI specification that already supports distributed registries and data repli-
cation [I3]. As the registry is going to be itself a Grid application, it seems
obvious that it has to use a platform that is Grid-enabled. This could be one
of the existing peer-to-peer environments or Grid middleware packages. We are
considering using the JXTA Search system as a base and extending it with the
required functionality. For an internal registry document database we investi-
gate the possibility of using XML-dedicated database management systems, like
Apache Xindice [1]

5 Conclusion and Future Works

This paper presents the design of a workflow composition system, with emphasis
on the registry component (service). The general concept of a distributed reg-
istry is proposed basing on nodes specialized according to data domains, with

Grid Service Registry for Workflow Composition Framework 41

mechanisms of data replication and caching. The main interfaces of the registry
are designed to meet the requirements of the flow composition system. While the
main functionality of the registry system is defined, there are still many issues
that need to be solved, e.g. the choice of data replication mechanisms, query rout-
ing among registry nodes and implementation technologies. Our current work is
focused on these issues and on implementing the proof-of-concept prototype.
The following algorithms and related protocols still have to be developed:

— request redirection algorithm,
— data replication algorithm,
— request and response caching, fault tolerance, backup servers.

Acknowledgements. This work was partly funded by the European Com-
mission, Project IST-2001-32243, CrossGrid, Project IST-2001-34808, GRID-
START and the Polish State Committee for Scientific Research, SPUB-M 112/E-
356/SPB/5.PR UE/DZ 224/2002-2004. We are grateful to Piotr Nowakowski for
his comments.

References

1. Apache Xindice, The Apache XML Project, http://xml.apache.org/xindice
2. Bubak, M., Gérka, K., Gubala, T., Malawski, M., Zajac, K.: Component-based
System for Grid Application Workflow Composition, in: Dongarra, J., et al. (Eds.):
10th European PVM/MPI Users’ Group Meeting, Venice, Italy, September 29 -
October 2, 2003, Proceedings. LNCS 2840, Springer 2003, pp. 611-618
3. Bubak, M., Gubata, T., Kapatka, M., Malawski, M., Rycerz, K.: Design of
Distributed Grid Workflow Composition System. Cracow Grid Workshop 2003,
November 2003, CYFRONET-AGH, Cracow
http://www.cyfronet.krakow.pl/cgw03
4. Cardoso, J. and Sheth, A.: Semantic e-Workflow Composition. Journal of Intelli-
gent Information Systems (JIIS), Vol. 12, 191-225, 2003
5. Deelman, E., et al.: Mapping Abstract Complex Workflows onto Grid Environment.
Journal of Grid Computing 1, 25-39, 2003
6. Expert Group Report: Next Generation Grid(s), European Grid Research 2005-
2010, June 2003
7. Foster, 1., et al.: The Physiology of the Grid: An Open Grid Services Architecture
for Distributed Systems Integration. OGSA WG, Global Grid Forum, June 2002
8. Globus Toolkit 3.0, http://www.globus.org/ogsa
9. METEOR-S Project: http://lsdis.cs.uga.edu/proj/meteor/SWP.htm
10. myGrid Project, http://mygrid.man.ac.uk/
11. OWL-S http://www.daml.org/services/owl-s/1.0/
12. Tuecke, S., et al.: Open Grid Services Infrastructure (OGSI) version 1.0, OGSI
WG, Global Grid Forum, June 2003
13. UDDI 3.0 http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm
14. JXTA Search web page, http://search.jxta.org/
15. Jena — A Semantic Web Framework for Java, http://jena.sourceforge.net/

	Motivation
	Overall Structure of the System
	Distributed Registry
	Requirements
	Contents of the Registry
	Architecture of the Registry
	Registry Interfaces

	Implementation Choices
	Conclusion and Future Works

