MPI Application Development Using the
Analysis Tool MARMOT

Bettina Krammer, Matthias S. Miiller, and Michael M. Resch

High Performance Computing Center Stuttgart
Allmandring 30, D-70550 Stuttgart, Germany
{krammer ,mueller,resch}@hlrs.de

Abstract. The Message Passing Interface (MPI) is widely used to write
parallel programs using message passing. Due to the complexity of par-
allel programming there is a need for tools supporting the development
process. There are many situations where incorrect usage of MPI by the
application programmer can automatically be detected. Examples are
the introduction of irreproducibility, deadlocks and incorrect manage-
ment of resources like communicators, groups, datatypes and operators.
We also describe the tool MARMOT that implements some of these
tests. Finally we describe our experiences with three applications of the
CrossGrid project regarding the usability and performance of this tool.

1 Introduction

The Message Passing Interface (MPI) is a widely used standard [7] to write par-
allel programs. The main reason for its popularity is probably the availability
of an MPI implementation on basically all parallel platforms. Another reason
is that the standard contains a large number of calls to solve standard paral-
lel problems in a convenient and efficient manner. The drawback is that the
MPI 1.2 standard is with 129 calls large enough to introduce a complexity that
also offers the possibility to use the MPI API in an incorrect way. According to
our experience there are several reasons for this: first, the MPI standard leaves
many decisions to the implementation, e.g. whether or not a standard commu-
nication is blocking. Second, parallel applications get more and more complex
and especially with the introduction of optimisations like the use of non-blocking
communication also more error prone.

2 Related Work

Debugging MPI programs has been addressed in various ways. The different so-
lutions can roughly be grouped in three different approaches: classical debuggers,
special MPI libraries and tools.

1. Classical debuggers have been extended to address MPI programs. This is
done by attaching the debugger to all processes of the MPI program. There

M. Bubak et al. (Eds.): ICCS 2004, LNCS 3038, pp. 464-ETT] 2004.
(© Springer-Verlag Berlin Heidelberg 2004

MPI Application Development Using the Analysis Tool MARMOT 465

are many parallel debuggers, among them the very well-known commercial
debugger Totalview [I]. The freely available debugger gdb has currently no
support for MPI, however, it may be used as a back-end debugger in con-
junction with a front-end that supports MPI, e.g. mpigdb. Another example
of such an approach is the commercial debugger DDT by streamline com-
puting, or the non-freely available p2d2 [3]9].

2. The second approach is to provide a debug version of the MPI library (e.g.
mpich). This version is not only used to catch internal errors in the MPI
library, but it also detects some incorrect usage of MPI by the user, e.g. a
type mismatch of sending and receiving messages [2].

3. Another possibility is to develop tools dedicated to look for problems within
MPI applications. Currently three different tools are under active develop-
ment: MPI-CHECK [6], Umpire [I2] and MARMOT [4]. MPI-CHECK is
currently restricted to Fortran code and performs argument type checking
or finds problems like deadlocks [6]. Like MARMOT, Umpire [I2] uses the
profiling interface. But in contrast to our tool, Umpire is limited to shared
memory platforms.

3 Description of MARMOT

Among the design goals of MARMOT are portability, scalability and repro-
ducibility. The portability of an application should be improved by verifying
that the program adheres to the MPI standard [7]. The tool issues warnings and
error messages if the application relies on non-portable MPI construct. Scala-
bility is addressed with the use of automatic techniques that do not need user
intervention. The tool contains a mechanism to detect possible race conditions to
improve the reproducibility. It also automatically detects deadlocks and notifies
the user where and why these have occurred. MARMOT uses the MPI profiling
interface to intercept the MPI calls and analyse them. MARMOT can be used
with any MPI implementation that provides this interface. It adds an additional
MPI process for all tasks that cannot be handled within the context of a single
MPI process, like deadlock detection. Information between the MPI processes
and this additional debug process are transferred using MPI. Another possible
approach is to use a thread instead of an MPI process and use shared memory
communication instead of MPT [I2]. The advantage of the approach taken here is
that the MPI library does not need to be thread safe. Without the limitation to
shared memory systems the tool can also be used on a wider range of platforms.
Since the improvement of portability was one of the design goals we did not
want to limit the portability of MARMOT. This allows to use the tool on any
development platform used by the programmer.

4 Description of the Applications

To measure its overhead when using MARMOT with a real application, we chose
different applications from the CrossGrid project.

466 B. Krammer, M.S. Miiller, and M.M. Resch
4.1 Weather Forecast and Air Pollution Modeling

The MPT parallel application [8] of Task 1.4.3 of the CrossGrid project calculates
the acid deposition caused by a power plant. The used STEM-II model is one
of the most complex air quality models. The transport equations are solved
through the Petrov-Crank-Nicolson-Galerkin method (FEM). The chemistry
and mass transfer terms are integrated using a semi-implicit Euler and a
pseudo-analytic method.

The STEM application is written in FORTRAN and consists of 15500
lines of code. 12 different MPI-calls are used within the application: MPI_Init,
MPI_Comm_size, MPI_Comm_rank, MPI_Type_extent, MPI_Type_struct, MPI_-
Type_commit, MPI_Type_hvector, MPI_Bcast, MPI_Scatterv, MPI Barrier,
MPI_Gatherv, MPI _Finalize.

4.2 High Energy Physics Application

The HEP application [T0] from CrossGrid Task 1.3 performs an analysis of the
physical data produced by the Large Hadron Collider (LHC) at CERN. All
collisions will be recorded by detectors, the corresponding information being
stored in distributed databases with a volume of millions of gigabytes. On-line
filtering techniques as well as mathematical algorithms, such as neural networks,
will be used to select those events and analyse them by physicists working in
research centers across the world.

The MPI parallel application ANN (Artificial Neural Network) is a neural
network application that is part of the data analysis described above. It currently
consists of 11500 lines of C code and uses 11 different MPI calls: MPI_Init, MPI_-
Comm _size, MPI_Comm _rank, MPI_Get_processor_name, MPI_Barrier, MPI -
Gather, MPI_Recv, MPI_Send, MPI_Bcast, MPI_Reduce, MPI_Finalize.

4.3 Medical Application

The application from Task 1.1 is a system used for pre-treatment plan-
ning in vascular interventional and surgical procedures through real-time in-
teractive simulation of vascular structure and flow. A 3D model of the arter-
ies serves as input to a real-time simulation environment for blood flow cal-
culations. The user will be allowed to change the structure of the arteries,
thus mimicking a surgical procedure. The effects of any modification is anal-
ysed in real time while the results are presented to the user in a virtual envi-
ronment. A stripped down version of the MPI parallel application calculating
the blood flow consists of 7500 lines of C code. The code makes use of the
following MPI calls: MPI_Init, MPI_Comm_rank, MPI_Comm_size, MPI_Pack,
MPI_Bcast, MPI_Unpack, MPI_Cart_create, MPI_Cart_shift, MPI_Send, MPI _-
Recv, MPI_Barrier, MPI_Reduce, MPI_Sendrecv, MPI_Finalize.

5

MPI Application Development Using the Analysis Tool MARMOT 467

Possible Checks for the Used MPI-Calls

This section is to present in more detail what kind of checks MARMOT performs
on the calls made by an MPT application. For example, the ANN-application and
the STEM-application described above employ the following calls.

Environmental calls (MPI_Init, MPI_Get_processor_name, MPI_Finalize): A
possible test is to check for illegal MPI-calls before MPI_Init and after
MPI Finalize. It is also illegal to call MPI_Init more than once in an ap-
plication. Currently MARMOT does not perform any checks for MPI_Get_-
processor_name, because it is a local call without much room for errors.
Concerning MPI_Finalize, MARMOT checks if active requests and pending
messages are left over in any communicator.

MPI_Comm _size, MPI_Comm _rank, MPI_Barrier: MARMOT checks if the
communicator of the call is valid, i.e. if it is MPI.COMM_NULL or if it is a
user-defined communicator, which has been created and committed properly
or which might have been freed again before using it.

Construction of datatypes (MPI_Type_extent, MPI_Type_struct, MPI_-
Type-hvector, MPI_Type_commit): MARMOT inspects the validity of the
datatype argument, and for MPI_Type_struct and MPI_Type_hvector it also
inspects if the count and the block length are greater than zero. The tool
also verifies if MPI-Type_commit is used to commit a type again that has
already been committed.

Point-to-point communication (MPI_Send, MPI_Recv,MPI_Sendrecv):
MARMOT inspects the correctness of the communicator, count, datatype,
rank and tag arguments. Similar to the way communicators are checked,
it is verified if the datatype is MPI_.DATATYPE_NULL or if it has been
created and registered correctly by the user. If the count is zero or negative,
a warning will be issued, also if ranks and tags are beyond valid ranges. The
MPI standard also requires that the program does not rely on any buffering
made by the standard send and receive operations. Since the amount and
type of buffering is different between the various MPI implementations this
is one of the problems that would limit the portability of the MPI program.
Other collective operations (MPI_Bcast, MPI_Reduce, MPI_Gather, MPI_-
Gatherv, MPI_Scatterv): The tool checks if the communicator, count, data-
type and the rank of the root are valid. Additionally for MPI_Reduce, it is
also checked if the operator is valid, e.g. if it has been created properly. For
MPI_Gatherv and MPI_Scatterv, also the displacements are examined.

Besides these calls, MARMOT supports the complete MPI-1.2 standard, al-

though not all possible tests have been implemented so far. It also issues warnings
when a deadlock occurs and allows the user to trace back the last few calls on
each node. Currently the deadlock detection is based on a timeout mechanism.
MARMOT’s debug server surveys the time each process is waiting in an MPI
call. If this time exceeds a certain user-defined limit on all processes at the same
time, the debug process issues a deadlock warning.

468 B. Krammer, M.S. Miiller, and M.M. Resch

Possible race conditions can be identified by locating the calls that may
be sources of race conditions. One example is the use of a receive call with
MPI_ANY_SOURCE as source argument. MARMOT does not use methods like
record and replay to identify and track down bugs in parallel programs [5].

6 Performance with the Applications

Our main interest is whether the performance penalty induced by the usage of
MARMOT is small enough to use MARMOT in the daily development work of
the application. A typical development run is between 10 minutes and one hour.
In our experience a run like this should not exceed a time limit of two hours.
In order to be useful MARMOT’s overhead should therefore be less than 100%.
In rare cases where a bug is only present on high processor count an overnight
run (12 hours) should be feasible allowing an overhead of up to 1000%. The
applications were run with and without MARMOT, on an TA32-cluster using
mpich and Myrinet interconnect. For these runs, the execution times were kept
in the range of several minutes by reducing the number of iterations. This does
not limit the validity of the analysis because evey single iteration shows the
same communication behaviour. For example, the STEM application executes
300 iterations to simulate 5 hours of real time, each iteration corresponding to
a minute of real time.

6.1 Weather Forecast and Air Pollution Modelling

The scalability of the weather forecast application is limited. It has a parallel
efficiency on 16 processes of only 14% (19s of 26s execution time is spent in MPI
calls). The scalability with and without MARMOT is shown in Fig. [l With
MARMOT the total time increases from 69.4 s to 70.6 s on 1 process, and from
29 s to 50 s on 16 processes. MARMOT’s overhead is approximately between 2
and 72% on up to 16 processes.

weather forecast application
80
70 r
60 r
50 r
40
30 r
20
10 r

" native MPI

Total Time

0 2 4 6 8 10 12 14 16
Processes

Fig. 1. Comparison of total execution times for the STEM-application between the
native MPI approach and the approach with MARMOT.

MPI Application Development Using the Analysis Tool MARMOT 469

high energy physics application
400
350 1
300 r
250
200 |
150 r

50 f ——

k native MPI
\ MARMOT -

Total Time [s]

0 2 4 6 8 10 12 14 16

Processes

Fig. 2. Comparison of total execution times for the ANN-application between the na-
tive MPI approach and the approach with MARMOT.

Medical Application Medical Application without barrier

o 0 T — T o 0. - — -
o native MPI) o native MPI
Do MARMOT "] 0 0.5 MARMOT —— 1
@ } @
® 0 5 0.4
) . x L e
Rl 0 e o - 0 . 3 . e
Y e 4 ™
g0 0.2 N L .
o 9] L)
g0 TN g0t T
H 0] 0

0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16

Processes # Processes

Fig. 3. Comparison of total execution times for the medical application between the
native MPT approach and the approach with MARMOT. The left side shows the original
result, on the right side one barrier in the application was removed.

6.2 High Energy Physics Application

The results of the HEP application can be seen in Fig.[2 The total time increases
from 339 s to 380 s on 2 processes when MARMOT is linked to the application,
and from 47 s to 246 s on 16 processes.

MARMOT’s overhead is approximately between 20 and 420% on up to 16
processes. On 16 processes the applications runs with 50% parallel efficiency, 26s
of 48s execution time are spent in MPI calls. Most of the communication time
is spent for broadcast and reduce operations.

6.3 Medical Application

The results of the medical application can be seen in Fig. 8l The time per itera-
tion increases from 0.39s to 0.42 s on 1 process when MARMOT is linked to the
application, and from 0.037 s to 0.53 s on 16 processes.

MARMOT’s overhead is approximately between 8 and 1312% on up to 16
processes. A detailed analysis with Vampir showed several reasons for the large
performance penalty caused by MARMOT. First, the communication pattern

470 B. Krammer, M.S. Miiller, and M.M. Resch

HA T e AT

Fig. 4. Message statistics for the medical application without (left) and with MAR-
MOT (right).

of the application is modified, because all application processes have to notify
MARMOT’s debug server about every MPI call. Figure [shows a typical com-
munication pattern that is dominated by message exchanges with two neigbours.
As soon as MARMOT is used the communication is dominated by the messages
between all application processes and the debug server. Second, the application
performs a large number of MPI_Barriers. This is a fast operation for most MPI
implementations. However, inside MARMOT each client will register with the
debug server to notify it about its participation in this operation. This results in
a linear scaling with the number of processes. If the barrier that is called after
each iteration is removed the execution time with MARMOT is reduced from
0.53s to 0.35s (see Fig. B]).

7 Conclusions and Future Work

In this paper we have presented the tool MARMOT. It analyses the behaviour of
an MPI application and checks for errors frequently made in the use of the MPI
API. We demonstrated the functionality of the tool with three real world applica-
tions from the CrossGrid IST project. The applications cover the C and Fortran
binding of the MPI standard. The inevitable performance penalty induced by
the performed analysis and checks depends strongly on the application. For the
applications of the CrossGrid project used in our tests, the runtimes with MAR-
MOT are in the range of several minutes, which allows a regular usage during
the development and verification process of an application. However, especially
for the communication intensive applications with a high number of collective
communications the overhead caused by MARMOT was above 1000%. Future
work will include improvements for this type of applications.

Acknowledgements. The development of MARMOT is supported by the Eu-
ropean Union through the IST-2001-32243 project “CrossGrid”.

MPI Application Development Using the Analysis Tool MARMOT 471

References

10.

11.

12.

WWW. http://www.etnus.com/Products/TotalView.

William D. Gropp. Runtime checking of datatype signatures in MPI. In Jack
Dongarra, Peter Kacsuk, and Norbert Podhorszki, editors, Recent Advances in
Parallel Virtual Machine and Message Passing Interface, volume 1908 of Lecture
Notes In Computer Science, pages 160—167. Springer, Balatonfiired, Lake Balaton,
Hungary, Sept. 2000. 7th European PVM/MPI Users’ Group Meeting.

Robert Hood. Debugging computational grid programs with the portable paral-
lel/distributed debugger (p2d2). In The NASA HPCC Annual Report for 1999.
NASA, 1999. http://hpcc.arc.nasa.gov:80/reports/report99/99index.htm.
Bettina Krammer, Katrin Bidmon, Matthias S. Miiller, and Michael M. Resch.
MARMOT: An MPI analysis and checking tool. In Proceedings of PARCO 2003,
Dresden, Germany, September 2003.

Dieter Kranzlmiiller. Event Graph Analysis For Debugging Massively Parallel Pro-
grams. PhD thesis, Joh. Kepler University Linz, Austria, 2000.

Glenn Luecke, Yan Zou, James Coyle, Jim Hoekstra, and Marina Kraeva. Dead-
lock detection in MPI programs. Concurrency and Computation: Practice and
FEzxperience, 14:911-932, 2002.

Message Passing Interface Forum. MPI: A Message Passing Interface Standard,
June 1995. http://www.mpi-forum.org.

J.C. Mourino, M.J. Martin, R. Doallo, D.E. Singh, F.F. Rivera, and J.D. Bruguera.
The stem-ii air quality model on a distributed memory system, 2004.

Sue Reynolds. System software makes it easy. Insights Magazine, 2000. NASA,
http://hpcc.arc.nasa.gov:80/insights/vol12.

D. Rodriguez, J. Gomes, J. Marco, R. Marco, and C. Martinez-Rivero. MPICH-
G2 implementation of an interactive artificial neural network training. In 2nd
FEuropean Across Grids Conference, Nicosia, Cyprus, January 28-30 2004.

A. Tirado-Ramos, H. Ragas, D. Shamonin, H. Rosmanith, and D. Kranzlmueller.
Integration of blood flow visualization on the grid: the flowfish/gvk approach. In
2nd European Across Grids Conference, Nicosia, Cyprus, January 28-30 2004.
J.S. Vetter and B.R. de Supinski. Dynamic software testing of mpi applications
with umpire. In Proceedings of the 2000 ACM/IEEE Supercomputing Conference
(SC 2000), Dallas, Texas, 2000. ACM/IEEE. CD-ROM.

	Introduction
	Related Work
	Description of MARMOT
	Description of the Applications
	Weather Forecast and Air Pollution Modeling
	High Energy Physics Application
	Medical Application

	Possible Checks for the Used MPI-Calls
	Performance with the Applications
	Weather Forecast and Air Pollution Modelling
	High Energy Physics Application
	Medical Application

	Conclusions and Future Work

