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Abstract. An application of the method suitable for modelling and con-
trol of general discrete event dynamic systems (DEDS) to special kinds of
communication systems is presented in this paper. The approach is based
on Petri nets (PN) defined in [12] and directed graphs (DG) described
in [11]. It is supported by the previous author’s works [1]-[10], [13].

1 Introduction

DEDS are the systems driven by discrete events. A sequence of discrete events
can modify the DEDS behaviour. There are two kinds of discrete events - spon-
taneous events (peculiar to the system) and controllable ones (forced from with-
out). Typical DEDS are flexible manufacturing systems, communication systems,
transport systems. Processes in Web and/or multiagent systems are special kinds
of communication systems. Thus, the modelling and control methods suitable for
DEDS in general can be applied to modelling and control of them. We will use
the analytical PN-based model of the DEDS dynamics development as follows

xk+1 = xk + B.uk , k = 0, N (1)
B = GT − F (2)

F.uk ≤ xk (3)

where k is the discrete step; xk = (σk
p1

, ..., σk
pn

)T is the n-dimensional state
vector of DEDS in the step k; σk

pi
∈ {0, cpi

}, i = 1, ..., n express the
states of the DEDS elementary subprocesses or operations - 0 (passivity) or
0 < σpi

≤ cpi
(activity); cpi

is the capacity of the DEDS subprocess pi as
to its activities; uk = (γk

t1 , ..., γ
k
tm

)T is the m-dimensional control vector of
the system in the step k; its components γk

tj
∈ {0, 1}, j = 1, ..., m repre-

sent occurring of the DEDS elementary discrete events (e.g. starting or ending
the elementary subprocesses or their activities, failures, etc.) - i.e. the pres-
ence (1) or the absence (0) of the discrete event; B, F, G are constant ma-
trices; F = {fij}n×m, fij ∈ {0, Mfij }, i = 1, ..., n , j = 1, ..., m expresses
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the causal relations among the states of the DEDS (as causes) and the discrete
events occuring during the DEDS operation (as consequences) - i.e. the nonex-
istence (0) or the existence and multiplicity (Mfij > 0) of the causal relations;
G = {gij}m×n, gij ∈ {0, Mgij }, i = 1, ..., m, j = 1, ..., n expresses very analogi-
cally the causal relations among the discrete events (causes) and the DEDS states
(consequences); F and G are the arcs incidence matrices and B is given by means
of them according to (2); (.)T symbolizes the matrix or vector transposition.

Simultaneously, we will utilize the DG-based model in the form

X(k + 1) = ∆k.X(k) , k = 0, N (4)

where k is the discrete step; X(k) = (σ(k)
π1 (γ), ..., σ(k)

πnRT
(γ))T , k = 0, N is the

nRT -dimensional state vector of the DG in the step k; σ
(k)
πi (γ), ∈ {0, 1}, i =

1, nRT is the state of the elementary DG node πi in the step k. Its value depends
on actual enabling its input transitions. γ symbolizes this dependency; ∆k =
AT

DGf
= {δ

(k)
ij }

nRT ×nRT
, δ

(k)
ij = γ

(k)
tπi|πj

, i = 1, nRT , j = 1, nRT is the functional

matrix; γ
(k)
tπi|πj

∈ {0, 1} is the transition function of the PN transition fixed
on the edge oriented from the DG node πj to the DG node πi. It is necessary
to say that the PN places pi are completely different form the DG nodes πi.
While pi represent the states of elementary activities inside PN, πi represent the
complete state vectors of the PN. It corresponds with the fact that the DG (with
the nodes πi, i = 1, ... nRT ) is the RG of the PN (with the places pi, i = 1, ... n)
and represents the alternative artificial fictive state machine (SM) with the nodes
πi , i = 1, ... nRT representing the reachable state vectors of the PN.

In [1], [2] the procedure enumerating the quasi-functional adjacency matrix
A of the RG and the space of the PN reachable states in the form of the matrix
Xreach was presented in a different depth. The columns of the matrix Xreach

are the PN state vectors x0, x1, x2, ... reachable from the initial state x0. The
inputs of the procedure are the PN structural matrices F, GT and the PN initial
state vector x0. While the PN-based model in general (where any transition can
have more than one input places as well as more than one output places) cannot
be understood to be the classical SM (because of synchronization problems), the
DG-based model (where DG is RG of the PN in question) is the classical SM.

To illustrate the operation of the above mentioned procedure let us model
the client-server cooperation as simply as possible. There can be distinguished
the following principal partial activities expressed by PN places: p1 = the client
requests for the connection, p2 = the server is listening , p3 = the connection
of the client with the server, p4 = data sent by the client to the server, p5 =
the disconnection of the client by the client himself. The PN representing the
problem is given on the left side in Fig. 1. The PN transitions t1 - t3 represent
discrete events that realize the system dynamics. The order of their occurrence
influences the actual development of the system dynamics. The inputs F, G and
x0 are the following as well as the outputs - i.e. the quasi-functional adjacency
matrix A of the RG (given on the right in Fig. 1), the corresponding transpose
of the functional matrix ∆k, and the state space of its reachable states Xreach.
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Fig. 1. The PN-based model of the client-server cooperation (on the left) and the
corresponding reachability graph (on the right)

F =




1 0 0
1 0 0
0 1 1
0 0 1
0 1 0




G =




0 0 1 0 0
0 1 0 0 0
0 0 1 0 0


 x0 = (1, 1, 0, 1, 1)T

A =




0 1 0 0 0
0 0 2 3 0
0 0 0 0 0
0 0 0 0 2
0 0 0 0 0




∆T
k =




0 t1 0 0 0
0 0 t2 t3 0
0 0 0 0 0
0 0 0 0 t2
0 0 0 0 0




Xreach =




1 0 0 0 0
1 0 1 0 1
0 1 0 1 0
1 1 1 0 0
1 1 0 1 0




As we can see, the nonzero elements of A represent the indices of the PN tran-
sitions. In this very simple example the control synthesis is very simple. After
occurrence of the discrete event represented by the transition t1 the client is
connected with the server (the state x1). Now the client has two possibilities -
to disconnect once more (by the event t2 to the state x2) or to sent data to the
server (by t3 to x3). After sending data the client can work on the server and
after finishing the work he can disconnect (by t2 to x4). In more complicated
cases (with more places and transitions and/or with more complicated structure
of PN) it is necessary to perform the automatic control synthesis.

2 The Procedure of the Control Synthesis

The problem of control in general is the following: to transform the system to
be controlled from a given initial state x0 to a prescribed terminal state xt at
simultaneous fulfilling the prescribed control task specifications (like criteria,
constraints, etc.). For DEDS control synthesis the very simple idea can be uti-
lized. Consider a system being in the initial state x0. Consider the desirable
terminal state xt. Develop the straight-lined reachability tree (SLRT) from the
state x0 towards xt directed to xt. Develop the backtracking reachability tree
(BTRT) from the state xt towards x0 however, directed to xt. Intersect both
the SLRT and the BTRT. The trajectory (or several ones) starting from x0 and
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Fig. 2. The straight-lined system development from the initial state (on the left), the
backtracking system development from the terminal state (in the centre), and the
intersection (on the right)

finishing in xt is (are) obtained. To illustrate such an approach see Fig. 2 (where
the SLRT is given on the left, the BTRT in the centre, and their intersection
on the right). Although in general there can be more than one trajectory after
intersection, in any case we obtain the feasible possibilities of the system be-
haviour between the x0 and xt. When a criterion for optimality is given we can
find even the optimal trajectory.

To avoid problems with symbolic operations at computer handling ∆k in
(4) we will understand all of the transitions to be enabled (i.e. their transition
functions having the values 1). In such a way we can replace the functional matrix
∆k by the constant matrix ∆. Thus, the DG-based approach operates with the
constant matrix ∆ being the transpose of the constant adjacency matrix of the
RG (representing the SM corresponding to the original PN). The constant RG
adjacency matrix can be obtained from the quasi-functional adjacency matrix A
by means of the replacement all of the nonzero elements by the integer 1. Hence,
the SLBT can be constructed in analytical terms as follows

{X1} = ∆.X0; {X2} = ∆.{X1} = ∆2.X0; . . . ; {XN} = ∆.{XN−1} = ∆N .X0

where XN = Xt. In general, {Xj} is an aggregate all of the states that are
reachable from the previous states. According to graph theory N ≤ (nRT − 1).
The BTRT is developed from the Xt towards X0, however, it contains the paths
oriented towards the terminal state. It is the following

{XN−1} = ∆T .XN ; {XN−2} = (∆T )2.XN ; . . . ; {X0} = (∆T )N .XN

Here, {Xj} is an aggregate all of the states from which the next states are
reachable. It is clear that X0 �= {X0} and XN �= {XN}. It is the consequence of
the fact that in general ∆.∆T �= In as well as ∆T .∆ �= In (where In is (n × n)
identity matrix). The intersection of the trees is made as follows

M1 = (X0,
1{X1}, . . . , 1{XN−1}, 1{XN}); M = M1 ∩ M2

M2 = (2{X0}, 2{X1}, . . . , 2{XN−1},XN ); M = (X0, {X1}, . . . , {XN−1},XN )

where the matrices M1, M2 represent, respectively, the SLRT and the BTRT.
The special intersection both of the trees is performed by means of the column-to-
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Fig. 3. The PN-based model of two agents cooperation (on the left) and the corre-
sponding reachability graph (on the right)

column intersection both of the matrices. Thus, {Xi} = min (1{Xi}, 2{Xi}), i =
0, ..., N with 1{X0} = X0,

2{XN} = XN .
To illustrate the approach let us model a simple cooperation of two agents

A and B by PN. A needs to do an activity P , however, it is not able to do
this. Therefore, A requests B to do P for him. On the base of the conversation
between the agents P is either done (if B is willing to do P and it is able to do
P ) or not (when B refuses to do P or it is willing to do P , however, it is not able
to do P ). The PN places express the activities of the agents and the messages
being routed between them: p1 = the agent A wants to do P , however, he is not
able to do P , p2 = A waits for an answer from B, p3 = A waits for a help from
B, p4 = the failure of the cooperation, p5 = the satisfaction of the cooperation,
p6 = A requests B to do P , p7 = B refuses to do P , p8 = B accepts the request
of A to do P , p9 = B is not able to do P , p10 = doing P by B, p11 = B receives
the request of A, p12 = B is willing to do P , p13 = the end of the work of B. The
transitions correspond either to synchronization due to the receipt of a message
or to conditions of the application of actions. The PN-based model is given on
the left in Fig. 3 while the corresponding RG is given on the right. When the
initial state vector x0 = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0)T and the structural
matrices are

FT =




1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0




G =




0 1 0 0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0 0 1



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the output matrices A, Xreach, and M are, respectively, the following




0 1 0 0 0 0 0 0 0 0 0 0
0 0 6 7 0 0 0 0 0 0 0 0
0 0 0 0 2 0 0 0 0 0 0 0
0 0 0 0 0 3 8 9 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 8 9 0 0
0 0 0 0 0 0 0 0 3 0 0 0
0 0 0 0 0 0 0 0 0 3 0 0
0 0 0 0 0 0 0 0 0 0 4 0
0 0 0 0 0 0 0 0 0 0 0 5
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0




;




1 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 0 0 1 1 0 0 0 0
0 0 0 0 0 1 0 0 1 1 0 0
0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 1 0 0 0 0
0 0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 1 0 1 0 0
1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1




;




1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 1




The approach can be tested very quickly in Matlab. The trajectory given in the
matrix M represents the situation when the desired terminal state is the suc-
cessful cooperation x11 = (0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1)T . It is graphically
demonstrated on the left in Fig. 4. When the terminal state represents the fail-
ure of the cooperation x10 = (0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1)T (when B is not
able to do P ) the result is different - see the trajectory on the right in Fig. 4.
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Fig. 4. The resulting trajectories - in case of the successful cooperation (on the left)
and in case of the failure of the cooperation when B is not able to do P (on the right)

3 The Adaptivity

As to the applicability of the above described approach we can distinguish two
kinds of adaptivity. On the one hand it is the adaptivity concerning the modifying
of the system dynamics development by means of choosing a suitable trajectory
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from the set of feasible state trajectories obtained in the control synthesis pro-
cess. Such a kind of the adaptivity can be clear e.g. from the left picture in Fig. 4
where two different feasible trajectories (expressing possibilities of the system be-
haviour) are presented. Because no other trajectory exists, either the trajectory
corresponding to the sequence of enabled transitions {t01, t17, t29, t33, t45} or the tra-
jectory corresponding to the sequence {t01, t17, t23, t39, t45} can be chosen in order
to adapt the system behaviour to the actual demand. On the other hand it is the
adaptivity of the system behaviour by means of a structural fragment added to
the original system structure. Such a fragment is able to accept demands (given
from without) on the system behaviour and realize them. The adaptivity is il-
lustrated in Fig. 5. On the left the system model consisting of two processes and
the structural fragment containing the place p4 is given. The fragment is able
to influence the performance of the processes (the mutual exclusion, sequencing,
re-run). In the centre of Fig. 5 the RG is presented while the result of the con-
trol synthesis process transforming the system from x0 = (1, 0, 0, 1, 1, 0, 0)T to
x6 = (0, 0, 1, 0, 0, 1, 0)T (when p3 has priority ahead of p7) is put on the right.
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Fig. 5. The PN-based model of the system behaviour (on the left), its reachability
graph (in the centre), and the feasible trajectories from x0 to x6 (on the right)

4 Conclusions

The approach to the modelling and control synthesis of DEDS was presented in
this paper. Its applicability to the special communication systems was demon-
strated. The approach is suitable for DEDS described by PN with the finite
state space. In order to automate the control synthesis process the graphical
tool GraSim was developed. The input of the tool is represented by the RG cre-
ated by means of icons. On its output the tool yields (in the graphical form) the
system trajectories from a given initial state to a prescribed terminal one.
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