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Abstract. Contemporary distributed software systems are reaching ex-
tremely high complexity levels which exceeds complexities of known en-
gineering problems to date. Especially open heterogeneous multi-agent
systems which may potentially be spread all around the globe, interacting
with different changing web-services and web-technologies are exposed to
demanding, dynamic and highly unpredictable environments. Traditional
control-based handling of adaptability may not be suitable anymore,
therefore there is a tendency for exploring different adaptability models
inspired by natural/biological phenomena. In this article we review over-
all design of an adaptive software system based on a simple model of ar-
tificial evolution. We propose a new paradigm for handling complexity in
dynamic environments based on a theory of self-producing self-adaptive
software systems. We have substantial evidence to believe that a bottom-
up approach based on self-production and self-maintenance may help to
build more robust and more flexible self-adapting software systems. This
paper introduces the new framework, provides analysis of some results,
implications and future research directions toward a complete and self-
contained theory of evolvable and self-adaptable software systems.

1 Introduction

In plain English adaptation is the act of changing something to make it suitable
for a new purpose or situation. In software systems, the term adaptation is
being used mostly, if not exclusively, with the second semantic meaning. What
is usually meant by software adaptation, is that the system will continue to
fulfil its original and the same purpose in a different circumstances, situation or
environment. The adaptability in such software systems may be achieved by a
set of feedback loops between the system, the controller monitoring and changing
and adapting the system, and the environment itself. The system purpose is pre-
defined in advance as a set of specifications, which are kept within the controller.
The behaviour of the system is automatically altered if the expected outputs are
outside of these pre-defined specifications. Such models are built analogously to
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a way automatic control systems work[1]. Most of them are based on top-down
design and work well in limited environments, where changes in environment can
be predicted and constrained in advance[2]. Such adaptive systems are tuned to
particular kinds and specific levels of change in the environment.

Most of the adaptability in software systems is achieved via control mech-
anism like in automatics. There is a central system, with set of sensors and
actuators, a controller, and an environment. Sensors sense an environment, sys-
tem and controller are tied via a set of feedback loops and the controller tries to
keep the system within a pre-defined boundaries. This model is very easily imple-
mentable, however it is extremely static and can be applied in situations where
we can predict in advance all the changes and variations in the environment.

To make things more robust and flexible, we could implement into the con-
troller an ability to learn, so the rules of changing the system become more
dynamic, therefore the whole ensemble can follow changes in more dynamic
environments. Yet, it still suffers some of the drawbacks of the simple model.
Although in a different scale, there is a limit of environmental change the system
can cope with, which is predefined within the learning mechanism itself.

2 Adaptability and Biological Inspirations

To fully benefit from life-like adaptability in artificial software systems, which
(at least in theory) might match the levels of complexity of biological organism,
we need a formal mathematical model of all the fundamental concepts like: life,
organism, evolvability and adaptation. In this work we will use a formal deductive
model of process of life described in details in [3,4]. Due to limited scope of this
article we will only briefly highlight the main aspects of the theory.

The major step in understanding the process of evolution in natural life
was done by Darwin[5], who proposed mechanisms by which purposeful adap-
tive changes take place via processes of random mutation and natural selection.
Darwinian mechanisms postulate reproduction, statistical character of change
processes, and the process of elimination. After elimination the object ceases to
exist (is not alive anymore). The formal deductive model we are going to use is
just based on these rudimentary darwinian mechanisms, and adaptability in soft-
ware is inspired by the mechanisms which handle purposefulness in natural life.

There has been earlier attempts to formally or mathematically define life,
complexity, organism, organism boundary and information content. In this work
we use a theory of evolvable ensembles. Some of these ideas have been developed
over the last three decades [6,4,3] with the roots of the proposed model can be
traced back to the work of John von Neumann [7,8]. Von Neumann submitted
that a precise mathematical definition must be given to a basic biological theo-
ries. The work of von Neumann has been, most noticeably, pursued and extended
by Gregory Chaitin [9,10]. Slightly different approach in formalising process of
life has been pursued by others (e.g. [11]).

Similarly to von Neumann and Chaitin, our model is based on the discrete
model universe, an automata space, with a finite number of states. Note however,
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that the formal definition of information, which is being used throughout this
article, is defined in a context of static collection of bits (as it was originally
proposed in [12]) rather than an algorithmic settings (as in [10]).

3 Theoretical Foundations

The model we discuss here can be applied to different software architectures. It
is suited for object-oriented web technologies or multi-agent systems. It is not
constrained however to these paradigms, and it can be easily implemented in
any computing paradigm, for example the presented results were obtained on a
simple computing model based on finite-state automata without memory.

For sake of uniformity we will use the term object to denote a coarse-grained
unit of processing within a given computing framework. It can be the actual
object like in the object-oriented paradigm, it can be an individual agent from
agent-oriented paradigm, etc. The important part is that the individual object
is an ensemble of lower-level structures, which can be manipulated at runtime.
That is, the object can be disassembled into its individual components, and re-
assembled again within the system during the actual operation of the system. In
other words a certain level of reflection is needed within a computing paradigm
for the proposed model to be implementable.

We will use here the basic notion of information as introduced in [12]. Infor-
mation is a selection from a set of available choices. Each object contains in its
structure the information of how to react with the external stimuli. Any given
relation between two sets of events or even conditional probability which maps
two sets of events, so that selection in one set causes the selection in another, rep-
resents the casual relationship between respective events. Such a relationship can
be represented as code, and we will use the term code to refer to this kind of rela-
tionships. The process of mapping one set into another we will call: an encoding.

The mapping between the conditions and the expected reactions to these
conditions of our software system can be understood as if it was a specification
of the system. The specification traditionally describes the general behaviour
and the relationships of all objects in a given system, therefore describes the
overall behaviour, or expected behaviour of the system. Specification is based
on some pre-defined properties and characteristics of the interactions of the
software system with its environment. In our case however, the specification
(or as we said earlier, the mapping between the condition and the expected
reactions) is constructed dynamically together with the process of adaptation
to the changing environment.

A purpose is a pre-defined effect, which can be obtained by a particular set
of stimuli. We use here the term stimuli as if they were events observed and
anticipated by the object. Therefore, to keep the software system within the
expected trajectory the object tries to find the mapping between specific events
(causes) which lead to particular effects. In other words the system tries to find
such a configurations which lead to an expected results. The object responsible
for finding such configurations is called controlling unit, or controller for short.
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The actual recording of the selection from a set of causes to the given effect is
called purposeful information, and this purposeful information is been stored in
the structure of the objects themselves.

The relations between events in the environment and effects is, in most cases,
not known in advance. This is why the basic (but not the only) activity of a
controller is to test many hypotheses. The testing requires controller to setup
hypothetical causes which are encoded via the interactions of the object with
its environment into effects, and then record the obtained results within the
structure of the object (for future reference).

4 Experimental Model

The aim of this work is to propose such a mechanism, which would follow in
open-ended fashion the changes in the environment. We require the process of
adaptation to be uniform and long. For this we use the theory of living systems
which exhibits similar (if not the same) characteristics as those required for
self-adaptive software systems.

Given an ensemble of objects we want it to automatically maintain itself
within a presupposed limits, and to compensate any changes in the environ-
ment which may interfere with the operation of the ensemble. We require the
process to be possibly most effective, i.e. such that will lead fastest to higher
values of aptness. This leads to increased amount of redundancy which allows
the controller to test as many hypotheses at the same period of time as possible.
(However, this may be limited to one hypothesis at a time in some application.)

We expect an ensemble to continuously improve its aptness, that is to increase
its effective information content within a given environment, and to follow any
changes in the environment. This can be achieved by different alterations to the
ensemble itself. There are some very characteristics structural tendencies which
one can observe during the development (growth, adaptation and evolution) of
the ensemble, and we discuss them in the next section in more detail.

We do not want objects to exist and maintain themselves just for the sake
of exiting. We want all the software components which occupy our resources to
be in some way useful, therefore there is we require all the objects not only to
maintain their existence, but also to maintain their usefulness. All objects not
useful anymore should be automatically removed from the system (in a similar
way to garbage collection).

Usefulness is very subjective term, and it must be specified in advance. It
is not similar to specification of the system, because it has to be expressed on
different, higher level. It is a meta-purpose. It can be specified by means of a
CPU cycles, e.g. processes not utilising CPU should be garbage collected, by user
interactions, etc. Of course, all objects referenced by useful objects are useful and
shall not be removed.

To facilitate experiments we have used a simple model of finite-state au-
tomata. Such a model has many advantages: it is simple, easy for analysis



556 M. Nowostawski, M. Purvis, and A. Gecow

and implementation, provides easy means to aggregate objects (automata) into
higher-level structures (ensembles), re-arrange connectivity and relations, etc.

Consider a complex system, an object, transforming one set of signal into
another one. The former set of signals represents the environment x of the object,
the latter set y is the object’s answer to the environment.

The system consists of deterministic finite-state automata without memory.
Each automaton receives two or more input signals and it transforms them into
two or more output signals. Signals are several bits long, in the simulation from
1 to 4. Each automaton represents a simple function operating on input signals.
The number of input signals received and output signals sent may vary among
automata, however during simulations we used 2-input and 2-output automata.
Each output may provide input signals for only a single input, and the same
for output signals. The input and outputs of automata are somehow intercon-
nected to form an aggregate of automata. Free inputs of the whole aggregate
receive signals form the environment x, while free outputs represent the answer
y of the aggregate. In our model, due to the symmetry, both: an object or the
environment could represent an active process of encoding of a given cause into
the effect, or the input signal into the output one. Note however that this time
the active part is of the situation is the object, thus the environment plays the
passive role. In the stable (passive) environment x the signals y are changing
because object is changing. The outcome y, is compared with the assumed ideal
goal y∗ and the similarity is the basis for calculated aptness of a given object.
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Fig. 1. Probability of accepting signal change

Figure 1: The probability P (u|L, B) of accepting u of the change of L signals
(2-bit each) from 16 signals of the result y, where B signals match the ideal y∗
(on the left). We are interested in the area of higher aptness B, e.g. B > 8. Area
shown in grey represents all the non-acceptable changes, with P (u) = 0. One
can see the clear tendency of accepting the small changes. On the right hand
side there is plotted the example of the history of growing aptness and amount
of purposeful information for y with 64 2-bit signals. At the time T = 200 the
condition of non-decreasing aptness has been cancelled and both characteristics
rapidly dropped down to the point of the highest entropy.
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Fig. 2. Basic results of the structural tendencies simulations

5 Structural Tendencies

To investigate the structural tendencies for an evolving object we will use the
model of automata aggregate is being proposed above.

Figure 2 shows, on the left diagram, an average growth of an aggregate with
2-bit signals. This is with strict non-decreasing aptness condition when adding
and no constraints when removing automata. Aggregates were allow to grow
up to 1024 automata. The growth is divided into 8 stages 128 automata each.
Addition and removal process have had uniform probability distributions. Nev-
ertheless, one can observe that addition was dominating, leading to increased
size of the aggregate. In the middle we have shown the depth of the automata,
in other words the measure of the functional order D. The depth of automa-
ton depends on the receivers of its output signals. On the left hand side the
aggregate is divided on the layers with the stated balance of addition and re-
moval of automata. In between, we have shown the flow balance. It is clear that
automata are pushed downward by the strong terminal addition, i.e. frequent
addition of new automata at the terminal positions. The acceptance of changes
(u) is contained only within very shallow regions, deeper it ceases (right bottom
corner). It provides consistency of the historic order and functional order (the
right upper diagram). The right diagrams cover all the higher stages from stage
4, where aggregate has already 384 automata. These diagrams are averaged over
different runs and different setups, e.g. with 2-,3-, and 4-bits signals.

The changes of the object are constrained by the improvement condition.
Before we investigate the influence of the object’s changes on the changes of the
signals y, we calculated the acceptance probability distribution of change of y in
function of the change’s size and the object’s aptness. We have noted the “small
change tendency” [13,3] (see also Figure 1 on the left). This in itself is a base
for all further investigated structural tendencies.
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The object consists of many randomly (but subject to improvement condi-
tion) aggregated automata. Signal vectors x, y and y∗ are up to a couple of
dozens dimensions big: 64 in our simulations. Such an aggregate is subjected
to random changes of the structure, i.e. the individual automata are added and
removed from the aggregate at random (see Figure 2). We have investigated
also the influence of changing environment and the ideal signal y∗. The obtained
tendencies are in close correlation to these observed in common day life, in com-
puter science or in biology. In particular, in software engineering one can observe
this phenomenon at work. Some software systems reached the complexity levels
that it became very difficult to make any changes. The only alternative is to add
new features rather than modify the existing system. In biology such phenomena
are observed and referred as de Beer’s terminal changes or Wiessman’s terminal
additions. It is somehow similar to controversial Haeckel formulation of ontogeny
recapitulates phylogeny [3]. The intuitive model proposed by Haeckel seems to
be very adequate to the observed phenomena [6,14]. The aggregate was growing,
the addition and removal of individual automata was concentrated at the area
near output terminals, which are the youngest evolutionary regions. This process
is also referred as terminal changes. In case there is positive balance of additions
to removals in this region, it is called terminal addition.

When the environment changes, the aggregate has only one way to continue
operating properly: it must reproduce within itself the disappearing signals from
the environment. In our model it is achieved by addition of new automata. Some
of the automata added as terminals reproduce the important changed signal
from the environment and thus maintain the aptness of the aggregate. This is a
very strong tendency which we call covering tendency [4,3].

There is another characteristics of our proposed self-adaptable software
model. The controller will inherently pick these hypothesis, which are re-
enforcing discussed here structural tendencies. In other words these characterised
by the highest probability of increasing aptness. This happens because the ac-
tual probability distributions are part of the information recorded in the object
structure (parameters of the controller). This is in a way self-regulating mech-
anism of adjusting the mechanisms of selecting the hypothesis to be tested - a
mechanism (tendency) of re-enforcing structural tendencies.

6 Conclusions

Interestingly, coming independently from two different set of basic definitions
and assumptions, both models (Chaitin [10] and Gecow [3]) achieved same con-
clusions. The process of improvement and the object growth are being accom-
plished by carrying along all the previously developed structure, as a new pieces
of the structure is being added [15]. The simulations and statistical analyses
together replicate similar conclusions of Chaitin. The experimental proof of this
is that ontogeny recapitulates phylogeny, i.e. each embryo to a certain extend
recapitulates in the course of its development the evolutionary sequence that
led to it [10]. The preliminary results based on the finite-state automata model
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discussed in the previous sections present very promising tendencies and robust-
ness. In the discussed scenario the model exhibited self-adaptability and could
be successfully used in some applications with binary input-output signals.

Future work will include a) formal definitions together with analysis of aggre-
gation of aggregations, and tendencies to improve tendencies needs to be further
explored and investigated; b) more experimental data needs to be collected, and
bigger real-life problems must be tested and evaluated. Better understanding of
the necessary reflective capabilities is also required.
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