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Abstract. Agent replication and majority voting is a typical method to realize 
agent fault-tolerance. However, with such method, many agent replicas are 
produced in agent execution, which may cost much network and time resource. 
The paper constructs a novel agent migration fault-tolerance model based on 
integrity verification (AMFIV), which can reduce the complexity degree of 
agent communication and agent replicas amount so that network and time 
resource can be much saved. At last, the paper makes analysis for AMFIV 
based on π-calculus. The π-calculus analysis result proves that the novel model 
provided by the paper is correct and valid. 

1   Introduction 

Mobile agent technology can support agent migration among hosts and make network 
application more flexible and effective. However, mobile agent system may also bring 
out such problem: when there are malicious hosts, how to protect mobile agents 
against them? This is the Problem of Malicious Host [1].  

To solve the Problem of Malicious Host, there have been some works, such as 
Time Limited Blackbox [1], Reference States [2], Cryptographic Traces [3], Authen-
tication and State Appraisal [4], and some other solutions which adopted the measures 
of cryptography, digital signature and trusted environment [5], etc.  

The above researches have made very effect for solving the Problem of Malicious 
Host. However, they often focus on the prevention and detection of the problem, and 
not cope with how to keep the mobile agent system uninterruptedly operating well 
when the Problem of Malicious takes place. Aiming at such situation, the concept of 
agent fault-tolerance was presented. Among the relative researches, [6] is the 
representative one in which the measure of agent replication and majority voting was 
adopted.  

Now we introduce the typical relative work on agent fault-tolerance-replicated 
agent migration computation with majority voting (RAMMV) in [6], as shown in 
Fig.1.  
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Fig. 1. Replicated agent migration computation with majority voting 

In RAMMV, a node p in stage i takes as its input the majority of the inputs it 
receives from the nodes comprising stage i-1. And, p sends its output to all of the 
nodes that it determines comprising stage i+1 [6]. The voting at each stage makes it 
possible for the computation to heal by limiting the impact of the faulty host in one 
stage on hosts in subsequent stages. More precisely, it is possible to tolerate faulty 
values from a minority of the replicas in each stage. 

However, such model is not feasible in practice, mainly as the model requests that 
all agent replicas should keep alive until the end of agent migration and assures that 
replicated hosts fail independently [5], and the large numbers of agent replicas may 
cost much network and host resource. Otherwise, the result voting among the replicas 
of agent can also cost much resource and time. 

To resolve the deficiency of the method in [6] and other relative works, we suggest 
a novel agent migration fault-tolerance model based on integrity verification 
(AMFIV). The new model suggested by us can reduce the cost of resource and time 
very much.  

The rest of the paper is organized as follows. Section 2 presented the novel agent 
migration fault-tolerance model-AMFIV. Section 3 makes analysis for the model 
based on π-calculus. Then the paper concludes in Section 4.  

2   A Novel Agent Migration Fault-Tolerance Model (AMFIV) 

2.1   Illustration of AMFIV 

To solve the Problem of Malicious Host, we presented a novel agent migration fault-
tolerance model based on integrity verification called AMFIV. We can see the trace 
example of AMFIV in Fig 2. 

Fig 2 can be explained as following: agent at stage i runs on hosti and selects a 
node with the highest priority as the next host to migrate which can be denoted as 
hosti+1 (0); then the agent spawns a replica which migrates to hosti+1 (0); agent replica 
runs on hosti+1 (0), after running its integrity is verified by hosti; if the integrity 
verification result is ok, then the agent on hosti+1(0) spawns a replica to migrate to 
hosti+2(0), and the agent on hosti is terminated; otherwise hosti+1(0) is a malicious one, 
then the agent on hosti re-selects another host with the second priority as the next one 
to migrate which can be denoted as hosti+1(1), and the model will execute the 
operations as the same as above operations. If hosti+1(1) is also malicious, then the 
agent on hosti will re-select another host hosti+1(2) with the third priority as the next 
one to migrate…until there exists a normal host to migrate or there don’t exist any 
other adjacent nodes to select. If hosti hasn’t any other adjacent nodes, then the agent 
on hosti returns to hosti-1, and selects another node as hosti (1). 
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Fig. 2. The agent migration trace example of AMFIV 

From Fig 2, we can see that agent needn’t to produce replica at every migration 
step. In the AMFIV model, firstly agent migrates according to linear trace, only when 
the agent integrity is damaged by a malicious host then a new path is re-selected. But 
RAMMV model requires that at every migration step the replicas should be produced. 
Otherwise, AMFIV model limits the fault-tolerance problem to be solved in single 
hop, which avoid the multi steps accumulative problem. 

Let the number of agent migration steps is n, and the number of standby nodes in 
every step is m, obviously the complexity of agent migration communication degrees 
in RAMMV is O(n*m2), and the one in AMFIV is O(n*m). So AMFIV reduces the 
complexity degrees of agent migration communication from cube level to square 
level. Therefore, in AMFIV the network load can be reduced much accordingly. 

On the amount of replicas produced, the average complexity in RAMMV is 
O(n*m), but in AMFIV only under the worst situation, i.e. in every step the first m-1 
nodes are all malicious, the complexity can reach O(n*m). Obviously, the worst 
situation seldom takes place in practice, so AMFIV can also reduce the amount of 
agent replicas. 

2.2   The Verification of Agent Integrity in AMFIV 

The agent integrity includes the integrity of agent code, data and state. Here we 
discuss how to make agent code and data integrity verification in AMFIV model. In 
our verification protocol, we suppose the hosts have a shared key. 

 The Sub-module of Agent Code Integrity Verification 
After the agent runs on hosti+1, we make code integrity verification to detect that 
whether the agent code is damaged by hosti+1. 

The agent code integrity verification protocol is explained as follows: (Ki,i+1(x) 
denotes that encrypting x with the key shared by hosti and hosti+1). 

− A). hosti → hosti+1 : i, Ri, Ki,i+1(ti); 
− B). hosti+1 →hosti: Ri+1, Ki,i+1(Ri , ti+1); /*Ri denotes the request message sent by 

hosti, and Ri+1 denotes the request message sent by hosti+1 */ 
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− C). hosti →hosti+1: Ki,i+1(Ri+1); /*A), B), C) denote the identification authenti-
cation between hosti and hosti+1*/ 

− D). hosti+1 →hosti: Ki,i+1(hash(Codei+1||ti+1)); /* hosti+1 sends the hash value of the 
agent code on hosti+1 with time stamp to hosti */ 

− E). hosti: Check:  
compute hash(Codei||ti+1); 

if hash(Codei||ti+1)== hash(Codei+1||ti+1) 
then Agent code integrity is ok; 
else Agent code integrity isn’t ok. 

/* hosti computes the hash value of the agent code on itself, then compares 
it with the hash value returned by hosti+1  and judge if the agent code integrity is ok.*/ 

Analysis for the protocol: since the agent code shouldn’t be changed in migration, 
so if some malicious hosts change the agent code, then the hash value of code should 
be different and can be detected. Since hosti+1 don’t know the hash(Code||ti+1) 
computed by hosti, so it can’t forge hash(Code||ti+1). If hosti+1 makes any change to the 
agent code, the hash value returned is different from the one computed by hosti, so the 
change can be detected. Therefore, the protocol is secure and correct. 

 The Sub-module of Agent Data Integrity Verification 
On the base of the work of [7], we design the sub-module of agent data integrity 
verification in AMFIV. 

Thereinafter Di signifies the data collected by the agent on hosti, and ADi signifies 
the list of data collected by the agent from host0 to hosti accumulatively. 

− Stage 0: Host0 generates a secret number C0, then computes C1=hash(C0), and 
passes C1 to the agent, now AD0={}; 

− Agent encrypts C1, then migrates to host1;  
− On host1: C1 can be obtained by decryption, agent collects data D1, AD1= 

AD0υD1, computes the data proof PROOF1=hash(D1,C1), C2=hash(C1); 
− On hosti (1≤i≤n-1): Ci can be obtained by decryption, Agent collects data Di, 

ADi= ADi-1υDi, computes the data proof PROOFi=hash(Di, Ci, PROOFi-1), 
Ci+1=hash(Ci); then Agent encrypts Ci+1 and passes it with ADi, PROOFi together 
to hosti+1. 

− The protocol that hosti verifies the agent data integrity after running on hosti+1 

is shown as follows.  
− A). hosti →hosti+1 : i, Ri, Ki,i+1(ti); 
− B). hosti+1 →hosti: Ri+1, Ki,i+1(Ri , ti+1);  
− C). hosti →hosti+1 : Ki,i+1(Ri+1); /*Similar to the protocol of agent code 

integrity verification, the A), B), C) are used for identification 
authentication between hosti and hosti+1 */ 

− D). hosti+1 →hosti: Ci+1, ADi+1, PROOFi+1, ; /* hosti+1 passes the agent 
data information to hosti */ 

− E). hosti: Computes proofi+1=hash(ADi+1-ADi, hash(Ci), PROOFi);  
/* Computes proofi+1 on hosti */ 

− F). hosti: if (proofi+1 == PROOFi+1) and (Ci+1== hash(Ci))  
then agent data integrity is ok; 
else agent data integrity isn’t ok. 
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Analysis for the protocol: since Ci+1= hash(Ci), so hosti+1 can't obtain Ci from Ci+1, 
and hosti+1 can’t obtain Cj(j<i+1); hosti+1 doesn’t know Cj(j<i+1), and can’t modify 
Dj(j<i+1), so it can’t forge PROOF. Therefore the protocol is secure. Obviously, if the 
original data of agent is damaged by hosti+1, then proofi+1 isn’t equal to PROOFi+1, so 
the damage of data integrity can be detected, therefore the protocol is correct. 
Obviously, we can see that the protocol can only detect any tampering of the data 
collected before hosti+1, and can’t detect whether hosti+1 collects dirty data. Therefore, 
the protocol only guarantees the integrity of validly collected data. 

3   Make Analysis Based on π-Calculus 

Now we will make analysis to AMFIV based on π-calculus. 
In our π-calculus model, the channels used are seen in Table 1. 

Table 1. List of Channel Name in the π-Calculus Model 

Channel Sender Receiver Message 
next hosti hosti cha: denotes the next host to migrate 
cha hosti hosti+1 Agent replica (includes data, code, etc.)  
chr hosti+1 hosti The agent running result on hosti+1 
chv1 hosti hosti The verification result of agent integrity 
chv2 hosti hosti+1 The verification result of agent integrity 

We can define the π-calculus model of hosti as Formula (1)1: 

1 1

1 1 1

2 1 1
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( ( ( , ).

( ( , ))))

| ( ).([ ]. ( )

[ ].( ( ( 1)).

def
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i

host next cha cha RUN agenti chr x let code data

x in chv VALIDATE code data

chv VALIDATE code data

chv y y true TERMINATE agent

y false next SELECT i

+ +

+ +

+ +

=

=

= +

= + ))ihost

 (1) 

The Formula (1) is explained as following: from channel next hosti obtains the 
hosti+1 which is denoted as channel cha, then spawns a replica of agenti after running 
on hosti, and migrates the replica through channel cha to hosti+1; From channel chr 
hosti obtains the running result of agenti+1 on hosti+1, and makes verification 
(VALIDATE) for its code and data integrity, then passes the verification result to 
channels chv1, chv2; From channel chv1 hosti obtains the verification result, if it is true 
the agent on hosti is terminated, or else hosti should re-select a new node to migrate, 
and passes the new node to channel next, then repeats all the acts of the model. 

                                                           
1  A pair splitting process let (x, y)=M in P  behaves as P[N/x][L/y] if term M is the pair (N,L), 

and otherwise it is stuck. 



596         Y. Jiang et al. 

 

We can define the π-Calculus model of hosti+1 as Formula (2): 

1 1 1

2

( ). ( ( )) |

( ).([ ]. [ ]. )

def

i i ihost cha agent chr RUN agent

chv z z true GETMASTER z false ISOLATED
+ + +=

= + =
 (2) 

The Formula (2) is explained as following: from channel cha1 hosti+1 receives the 
agent replica and runs it, and then passes the result (data part and code part) back to 
hosti; From channel chv2 hosti+1 receives the verification result, if the verification result 
is true then hosti+1 gets the control power and agent can migrate further, or else hosti+1 
is a malicious one and it should be isolated. 

Therefore, we can define the π-Calculus model of AMFIV as Formula (3): 
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Now we can use the π -calculus simulate the execution of AMFIV. 
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From above we can see that: if the integrity of agent code and data is ok, the 

ultimate result is ( ) |iTERMINATE agent GETMASTER , so the agent on hosti is 

terminated, hosti+1 gets the control power, and agent migrates according to a linear 
trace; if the integrity of agent code and data is damaged by hosti+1, the ultimate result 

is 1 1( )( ( ( 1)). | )inext next SELECT i host ISOLATEDν + , so hosti re-selects 

another node as the next one to migrate, and repeats the acts of the model, and hosti+1 
is isolated. 

Therefore, from the above simulation result of the π-Calculus model of AMFIV, 
we can see that AMFIV is correct. 
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4   Conclusion 

In this paper, aiming at the deficiency of other typical agent fault-tolerance models, 
we suggested a novel agent migration fault-tolerance model based on integrity 
verification called AMFIV. Comparing to other agent fault-tolerance models, our 
model can reduce the complexity degree of agent communication and agent replicas 
amount. The π-calculus simulation validation results prove that AMFIV is correct and 
efficient. 
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