
M. Bubak et al. (Eds.): ICCS 2004, LNCS 3038, pp. 591–598, 2004.
© Springer-Verlag Berlin Heidelberg 2004

The Construction and Analysis of Agent Fault-Tolerance
Model Based on π-Calculus

Yichuan Jiang1, Zhengyou Xia2, Yiping Zhong1, and Shiyong Zhang1

1 Department of Computing & Information Technology, Fudan University
 Shanghai 200433, P.R.China

http://www.cit.fudan.edu.cn
2 Department of computer, NanJing University of Aeronautics and Astronautics

Nanjing 210043, P.R.China
http://ice.nuaa.edu.cn/academic/4.php

{jiangyichuan,zhengyou_xia}@yahoo.com.cn,
{ypzhong,szhang}@fudan.edu.cn

Abstract. Agent replication and majority voting is a typical method to realize
agent fault-tolerance. However, with such method, many agent replicas are
produced in agent execution, which may cost much network and time resource.
The paper constructs a novel agent migration fault-tolerance model based on
integrity verification (AMFIV), which can reduce the complexity degree of
agent communication and agent replicas amount so that network and time
resource can be much saved. At last, the paper makes analysis for AMFIV
based on π-calculus. The π-calculus analysis result proves that the novel model
provided by the paper is correct and valid.

1 Introduction

Mobile agent technology can support agent migration among hosts and make network
application more flexible and effective. However, mobile agent system may also bring
out such problem: when there are malicious hosts, how to protect mobile agents
against them? This is the Problem of Malicious Host [1].

To solve the Problem of Malicious Host, there have been some works, such as
Time Limited Blackbox [1], Reference States [2], Cryptographic Traces [3], Authen-
tication and State Appraisal [4], and some other solutions which adopted the measures
of cryptography, digital signature and trusted environment [5], etc.

The above researches have made very effect for solving the Problem of Malicious
Host. However, they often focus on the prevention and detection of the problem, and
not cope with how to keep the mobile agent system uninterruptedly operating well
when the Problem of Malicious takes place. Aiming at such situation, the concept of
agent fault-tolerance was presented. Among the relative researches, [6] is the
representative one in which the measure of agent replication and majority voting was
adopted.

Now we introduce the typical relative work on agent fault-tolerance-replicated
agent migration computation with majority voting (RAMMV) in [6], as shown in
Fig.1.

592 Y. Jiang et al.

Fig. 1. Replicated agent migration computation with majority voting

In RAMMV, a node p in stage i takes as its input the majority of the inputs it
receives from the nodes comprising stage i-1. And, p sends its output to all of the
nodes that it determines comprising stage i+1 [6]. The voting at each stage makes it
possible for the computation to heal by limiting the impact of the faulty host in one
stage on hosts in subsequent stages. More precisely, it is possible to tolerate faulty
values from a minority of the replicas in each stage.

However, such model is not feasible in practice, mainly as the model requests that
all agent replicas should keep alive until the end of agent migration and assures that
replicated hosts fail independently [5], and the large numbers of agent replicas may
cost much network and host resource. Otherwise, the result voting among the replicas
of agent can also cost much resource and time.

To resolve the deficiency of the method in [6] and other relative works, we suggest
a novel agent migration fault-tolerance model based on integrity verification
(AMFIV). The new model suggested by us can reduce the cost of resource and time
very much.

The rest of the paper is organized as follows. Section 2 presented the novel agent
migration fault-tolerance model-AMFIV. Section 3 makes analysis for the model
based on π-calculus. Then the paper concludes in Section 4.

2 A Novel Agent Migration Fault-Tolerance Model (AMFIV)

2.1 Illustration of AMFIV

To solve the Problem of Malicious Host, we presented a novel agent migration fault-
tolerance model based on integrity verification called AMFIV. We can see the trace
example of AMFIV in Fig 2.

Fig 2 can be explained as following: agent at stage i runs on hosti and selects a
node with the highest priority as the next host to migrate which can be denoted as
hosti+1 (0); then the agent spawns a replica which migrates to hosti+1 (0); agent replica
runs on hosti+1 (0), after running its integrity is verified by hosti; if the integrity
verification result is ok, then the agent on hosti+1(0) spawns a replica to migrate to
hosti+2(0), and the agent on hosti is terminated; otherwise hosti+1(0) is a malicious one,
then the agent on hosti re-selects another host with the second priority as the next one
to migrate which can be denoted as hosti+1(1), and the model will execute the
operations as the same as above operations. If hosti+1(1) is also malicious, then the
agent on hosti will re-select another host hosti+1(2) with the third priority as the next
one to migrate…until there exists a normal host to migrate or there don’t exist any
other adjacent nodes to select. If hosti hasn’t any other adjacent nodes, then the agent
on hosti returns to hosti-1, and selects another node as hosti (1).

The Construction and Analysis of Agent Fault-Tolerance Model Based on π-Calculus 593

Fig. 2. The agent migration trace example of AMFIV

From Fig 2, we can see that agent needn’t to produce replica at every migration
step. In the AMFIV model, firstly agent migrates according to linear trace, only when
the agent integrity is damaged by a malicious host then a new path is re-selected. But
RAMMV model requires that at every migration step the replicas should be produced.
Otherwise, AMFIV model limits the fault-tolerance problem to be solved in single
hop, which avoid the multi steps accumulative problem.

Let the number of agent migration steps is n, and the number of standby nodes in
every step is m, obviously the complexity of agent migration communication degrees
in RAMMV is O(n*m2), and the one in AMFIV is O(n*m). So AMFIV reduces the
complexity degrees of agent migration communication from cube level to square
level. Therefore, in AMFIV the network load can be reduced much accordingly.

On the amount of replicas produced, the average complexity in RAMMV is
O(n*m), but in AMFIV only under the worst situation, i.e. in every step the first m-1
nodes are all malicious, the complexity can reach O(n*m). Obviously, the worst
situation seldom takes place in practice, so AMFIV can also reduce the amount of
agent replicas.

2.2 The Verification of Agent Integrity in AMFIV

The agent integrity includes the integrity of agent code, data and state. Here we
discuss how to make agent code and data integrity verification in AMFIV model. In
our verification protocol, we suppose the hosts have a shared key.

 The Sub-module of Agent Code Integrity Verification
After the agent runs on hosti+1, we make code integrity verification to detect that
whether the agent code is damaged by hosti+1.

The agent code integrity verification protocol is explained as follows: (Ki,i+1(x)
denotes that encrypting x with the key shared by hosti and hosti+1).

− A). hosti → hosti+1 : i, Ri, Ki,i+1(ti);
− B). hosti+1 →hosti: Ri+1, Ki,i+1(Ri , ti+1); /*Ri denotes the request message sent by

hosti, and Ri+1 denotes the request message sent by hosti+1 */

594 Y. Jiang et al.

− C). hosti →hosti+1: Ki,i+1(Ri+1); /*A), B), C) denote the identification authenti-
cation between hosti and hosti+1*/

− D). hosti+1 →hosti: Ki,i+1(hash(Codei+1||ti+1)); /* hosti+1 sends the hash value of the
agent code on hosti+1 with time stamp to hosti */

− E). hosti: Check:
compute hash(Codei||ti+1);

if hash(Codei||ti+1)== hash(Codei+1||ti+1)
then Agent code integrity is ok;
else Agent code integrity isn’t ok.

/* hosti computes the hash value of the agent code on itself, then compares
it with the hash value returned by hosti+1 and judge if the agent code integrity is ok.*/

Analysis for the protocol: since the agent code shouldn’t be changed in migration,
so if some malicious hosts change the agent code, then the hash value of code should
be different and can be detected. Since hosti+1 don’t know the hash(Code||ti+1)
computed by hosti, so it can’t forge hash(Code||ti+1). If hosti+1 makes any change to the
agent code, the hash value returned is different from the one computed by hosti, so the
change can be detected. Therefore, the protocol is secure and correct.

 The Sub-module of Agent Data Integrity Verification
On the base of the work of [7], we design the sub-module of agent data integrity
verification in AMFIV.

Thereinafter Di signifies the data collected by the agent on hosti, and ADi signifies
the list of data collected by the agent from host0 to hosti accumulatively.

− Stage 0: Host0 generates a secret number C0, then computes C1=hash(C0), and
passes C1 to the agent, now AD0={};

− Agent encrypts C1, then migrates to host1;
− On host1: C1 can be obtained by decryption, agent collects data D1, AD1=

AD0υD1, computes the data proof PROOF1=hash(D1,C1), C2=hash(C1);
− On hosti (1≤i≤n-1): Ci can be obtained by decryption, Agent collects data Di,

ADi= ADi-1υDi, computes the data proof PROOFi=hash(Di, Ci, PROOFi-1),
Ci+1=hash(Ci); then Agent encrypts Ci+1 and passes it with ADi, PROOFi together
to hosti+1.

− The protocol that hosti verifies the agent data integrity after running on hosti+1

is shown as follows.
− A). hosti →hosti+1 : i, Ri, Ki,i+1(ti);
− B). hosti+1 →hosti: Ri+1, Ki,i+1(Ri , ti+1);
− C). hosti →hosti+1 : Ki,i+1(Ri+1); /*Similar to the protocol of agent code

integrity verification, the A), B), C) are used for identification
authentication between hosti and hosti+1 */

− D). hosti+1 →hosti: Ci+1, ADi+1, PROOFi+1, ; /* hosti+1 passes the agent
data information to hosti */

− E). hosti: Computes proofi+1=hash(ADi+1-ADi, hash(Ci), PROOFi);
/* Computes proofi+1 on hosti */

− F). hosti: if (proofi+1 == PROOFi+1) and (Ci+1== hash(Ci))
then agent data integrity is ok;
else agent data integrity isn’t ok.

The Construction and Analysis of Agent Fault-Tolerance Model Based on π-Calculus 595

Analysis for the protocol: since Ci+1= hash(Ci), so hosti+1 can't obtain Ci from Ci+1,
and hosti+1 can’t obtain Cj(j<i+1); hosti+1 doesn’t know Cj(j<i+1), and can’t modify
Dj(j<i+1), so it can’t forge PROOF. Therefore the protocol is secure. Obviously, if the
original data of agent is damaged by hosti+1, then proofi+1 isn’t equal to PROOFi+1, so
the damage of data integrity can be detected, therefore the protocol is correct.
Obviously, we can see that the protocol can only detect any tampering of the data
collected before hosti+1, and can’t detect whether hosti+1 collects dirty data. Therefore,
the protocol only guarantees the integrity of validly collected data.

3 Make Analysis Based on π-Calculus

Now we will make analysis to AMFIV based on π-calculus.
In our π-calculus model, the channels used are seen in Table 1.

Table 1. List of Channel Name in the π-Calculus Model

Channel Sender Receiver Message
next hosti hosti cha: denotes the next host to migrate
cha hosti hosti+1 Agent replica (includes data, code, etc.)
chr hosti+1 hosti The agent running result on hosti+1
chv1 hosti hosti The verification result of agent integrity
chv2 hosti hosti+1 The verification result of agent integrity

We can define the π-calculus model of hosti as Formula (1)1:

1 1

1 1 1

2 1 1

1

(). (()) | ().((,)

(((,).

((,))))

| ().([]. ()

[].(((1)).

def

i i i i

i i

i i

i

host next cha cha RUN agenti chr x let code data

x in chv VALIDATE code data

chv VALIDATE code data

chv y y true TERMINATE agent

y false next SELECT i

+ +

+ +

+ +

=

=

= +

= +))ihost

 (1)

The Formula (1) is explained as following: from channel next hosti obtains the
hosti+1 which is denoted as channel cha, then spawns a replica of agenti after running
on hosti, and migrates the replica through channel cha to hosti+1; From channel chr
hosti obtains the running result of agenti+1 on hosti+1, and makes verification
(VALIDATE) for its code and data integrity, then passes the verification result to
channels chv1, chv2; From channel chv1 hosti obtains the verification result, if it is true
the agent on hosti is terminated, or else hosti should re-select a new node to migrate,
and passes the new node to channel next, then repeats all the acts of the model.

1 A pair splitting process let (x, y)=M in P behaves as P[N/x][L/y] if term M is the pair (N,L),

and otherwise it is stuck.

596 Y. Jiang et al.

We can define the π-Calculus model of hosti+1 as Formula (2):

1 1 1

2

(). (()) |

().([]. [].)

def

i i ihost cha agent chr RUN agent

chv z z true GETMASTER z false ISOLATED
+ + +=

= + =
 (2)

The Formula (2) is explained as following: from channel cha1 hosti+1 receives the
agent replica and runs it, and then passes the result (data part and code part) back to
hosti; From channel chv2 hosti+1 receives the verification result, if the verification result
is true then hosti+1 gets the control power and agent can migrate further, or else hosti+1
is a malicious one and it should be isolated.

Therefore, we can define the π-Calculus model of AMFIV as Formula (3):

1 2 1

1 2

1 1 1

1 1 2 1 1

(, , , ,)(|)

(, , , ,)((). (()) |

().((,) (

((,)). ((,)))

def

i i

i

i i

i i i i

AMFIV next cha chr chv chv host host

next cha chr chv chv next cha cha RUN agent

chr x let code data x in chv

VALIDATE code data chv VALIDATE code data

ν
ν

+

+ +

+ + + +

=

≡

=

1

1 1 2

)

| ().([]. () [].

((1).)) |

(). (()) | ().([].

[].))

i

i

i i

chv y y true TERMINATE agent y false

next SELECT i host

cha agent chr RUN agent chv z z true

GETMASTER z false ISOLATED
+ +

= + =

+

=
+ =

 (3)

Now we can use the π -calculus simulate the execution of AMFIV.

()
1 2

1 1 1

1 1 2 1 1

1

(, , , ,)((()) |

().((,) (

((,)). ((,))))

| ().([]. () [

next cha
i

i i

i i i i

i

AMFIV next cha chr chv chv cha RUN agent

chr x let code data x in chv

VALIDATE code data chv VALIDATE code data

chv y y true TERMINATE agent y

ν

+ +

+ + + +

→

=

= + =

1 1

2

].

(((1)).)) |

(). (()) |

().([]. [].))

i

i i

false

next SELECT i host

cha agent chr RUN agent

chv z z true GETMASTER z false ISOLATED
+ +

+

= + =

 (4)

The Construction and Analysis of Agent Fault-Tolerance Model Based on π-Calculus 597

1 2 1 1

1 1 1 2

1 1 1

(, , , (().((,)

(((,)).

((,)))) | ().([]

. () [].(((1)).)) |

i i

i i

i i

i i

next chr chv chv chr x let code data x in

chv VALIDATE code data chv

VALIDATE code data chv y y true

TERMINATE agent y false next SELECT i host

chr

τ ν + +

+ +

+ +

→ =

=

+ = +

1 2(()) | ().([]

. [].))
iRUN agent chv z z true

GETMASTER z false ISOLATED
+ =

+ =

1 2 1 1 1

1 1 1 2

1 1 1

(, ,)((,) ()

(((,)). (

(,)))) | ().([]. ()

[].(((1).)) |

i i i

i i

i i i

i

next chv chv let code data RUN agent

in chv VALIDATE code data chv VALIDATE

code data chv y y true TERMINATE agent

y false next SELECT i host

chv

τ ν + + +

+ +

+ +

→ =

=

+ = +

2 ().([]. [].))z z true GETMASTER z false ISOLATED= + =

1 1

1 1

1 1

1 1

()(([(,)].

()

((,)].(((1).))

| ([(,)].

[(,)

i i

i

i i i

i i

i i

next VALIDATE code data true

TERMINATE agent

VALIDATE code data false next SELECT i host

VALIDATE code data true GETMASTER

VALIDATE code data false

τ ν + +

+ +

+ +

+ +

→ =
+

= +
= +

=
1 1

1 1

[(,)

[(,)
1

].))

() |

()(((1)). |

)

i i

i i

VALIDATE code data true
i

VALIDATE code data false
i

ISOLATED

TERMINATE agent GETMASTER

next next SELECT i host

ISLOATED

ν

+ +

+ +

=

=

→
→ +



From above we can see that: if the integrity of agent code and data is ok, the

ultimate result is () |iTERMINATE agent GETMASTER , so the agent on hosti is

terminated, hosti+1 gets the control power, and agent migrates according to a linear
trace; if the integrity of agent code and data is damaged by hosti+1, the ultimate result

is 1 1()(((1)). |)inext next SELECT i host ISOLATEDν + , so hosti re-selects

another node as the next one to migrate, and repeats the acts of the model, and hosti+1
is isolated.

Therefore, from the above simulation result of the π-Calculus model of AMFIV,
we can see that AMFIV is correct.

598 Y. Jiang et al.

4 Conclusion

In this paper, aiming at the deficiency of other typical agent fault-tolerance models,
we suggested a novel agent migration fault-tolerance model based on integrity
verification called AMFIV. Comparing to other agent fault-tolerance models, our
model can reduce the complexity degree of agent communication and agent replicas
amount. The π-calculus simulation validation results prove that AMFIV is correct and
efficient.

References

1. Fritz Hohl: Time Limited Blackbox Security: Protecting Mobile Agents from Malicious
Hosts. Mobile Agents and Security, Giovanni Vigna (ed.), Springer-Verlag, 1998, pp. 92–
113

2. Fritz Hohl: A Protocol to Detect Malicious Hosts Attacks by Using Reference States.
http://elib.uni-stuttgart.de/opus/volltexte/2000/583/

3. Giovanni Vigna: Cryptographic Traces for Mobile Agents. Mobile Agents and Security,
Giovanni Vigna (ed.), Springer-Verlag, 1998, pp. 137–153

4. William M. Farmer, Joshua D. Guttma, and Vipin Swarup: Security for Mobile Agents:
Authentication and State Appraisal. In: Proceedings of the Fourth European Symposium on
Research in Computer Security, 1996

5. Bennet S. Yee: A Sanctuary for Mobile Agents. In: DARPA Workshop on Foundations for
Secure Mobile Cde, 1997. http://www.cs.ucsd.edu/~bsy/pub/sanctuary.ps

6. Fred B. Schneider: Towards Fault-tolerant and Secure Agentry. Invited paper. In:
Proceedings of 11th International Workshop on Distributed Algorithms, Saarbrücken,
Germany, Sept 1997

7. Paolo Maggi and Riccardo Sisto: Experiments on Formal Verification of Mobile Agent
Data Integrity Properties. www.labic.disco.unimib.it/woa2002/papers/15.pdf

8. R. Milner: The Polyadic π-Calculus: a Tutorial. In. F.L. Bauer, W. Braueer, and H.
Schwichtenberg (eds.), Logic and Algebra for Sepcification. Berlin: Springer-Verlag, 1993,
pp. 203–246.

	Introduction
	A Novel Agent Migration Fault-Tolerance Model (AMFIV)
	Illustration of AMFIV
	The Verification of Agent Integrity in AMFIV
	Make Analysis Based on π-Calculus
	Conclusion

