
A Note on Data-Driven Contaminant Simulation

Craig C. Douglas1,2, Chad E. Shannon1, Yalchin Efendiev3, Richard Ewing3,
Victor Ginting3, Raytcho Lazarov3, Martin J. Cole4, Greg Jones4,

Chris R. Johnson4, and Jennifer Simpson4

1 University of Kentucky, Department of Computer Science, 325 McVey Hall,
Lexington, KY 40506-0045, USA

{craig.douglas,ceshan0}@uky.edu
2 Yale University, Department of Computer Science, P.O. Box 208285

New Haven, CT 06520-8285, USA
douglas-craig@cs.yale.edu

3 Texas A&M University, ISC, College Station, TX, USA
{efendiev,ginting,lazarov}@math.tamu.edu, richard-ewing@tamu.edu

4 Scientific Computing and Imaging Institute, University of Utah, Salt Lake City,
UT, USA

{gjones,mjc}@sci.utah.edu{crj,simpson}@cs.utah.edu

Abstract. In this paper we introduce a numerical procedure for per-
forming dynamic data driven simulations (DDDAS). The main ingredi-
ent of our simulation is the multiscale interpolation technique that maps
the sensor data into the solution space. We test our method on various
synthetic examples. In particular we show that frequent updating of the
sensor data in the simulations can significantly improve the prediction
results and thus important for applications. The frequency of sensor data
updating in the simulations is related to streaming capabilities and ad-
dressed within DDDAS framework. A further extension of our approach
using local inversion is also discussed.

1 Introduction

Dynamic data driven simulations are important for many practical applications.
Consider an extreme example of a disaster scenario in which a major waste
spill occurs in a subsurface near a clean water aquifer. Sensors can now be used
to measure where the contamination is, where the contaminant is going to go,
and to monitor the environmental impact of the spill. One of the objectives
of dynamic data driven simulations is to incorporate the sensor data into the
real time simulations. Many important issues are involved in DDDAS for this
application (see [1,2]).

Subsurface formations typically exhibit heterogeneities over a wide range of
length scales while the sensors are usually located at sparse locations and sparse
data from these discrete points in a domain is broadcasted. Since the sensor data
usually contains noise it can be imposed either as a hard or a soft constraint.
To incorporate the sensor data into the simulations, we introduce a multiscale
interpolation operator. This is done in the context of general nonlinear parabolic
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operators that include many subsurface processes. The main idea of this interpo-
lation is that we do not alter the heterogeneities of the random field that drives
the contaminant. Instead, based on the sensor data, we rescale the solution in
a manner that it preserves the heterogeneities. The main idea of this rescaling
is the use of local problems. This interpolation technique fits nicely with a new
multiscale framework for solving nonlinear partial differential equations. The
combination of the interpolation and multiscale frameworks provides a robust
and fast simulation technique that is employed in the present paper.

We have tested our method on some synthetic examples by considering both
linear and nonlinear cases. We compare the numerical results for simulations
that employ both updating the data at sensor location and the simulations that
do not update the locations. Our numerical studies bear out that simulations
that do not use the update or use it very infrequently produces large errors.
Finally, we discuss the extension of the approach that uses some inversion of the
local data.

In a real field, the sensors are typically in wells at different depths. A nice,
tensor product mesh does not fit the reality of sensor locations. We are forced to
work with unstructured, quite coarse grids if we want the sensors to be nodes on
a mesh. The sensor data comes in the form of telemetry. The sensors can provide
information at specified times, when specific conditions occur, be polled, or any
number of combinations. We have developed a virtual telemetry package that is
now part of SCIRun [1,2,3,4] so that we can simulate a field while computing
remotely, as is typical in a real field simulation.

2 Data Driven Simulations

In this section we discuss the mapping of the sensor data to the finite dimensional
space where the solution is calculated. This procedure is nontrivial in general
since the solution space usually has high dimension while the sensors are located
only at few locations. To demonstrate this in Fig. 1 we schematically plot a gray
scale image of a 121 × 121 heterogeneous field with exponential variogram and
the correlation lengths lx = 0.2 and lx = 0.01. Sensors in Fig. 1 are marked by an
X. Due to uncertainties in the data, the random fields used for the simulations
and the true field can differ significantly. Thus, we must be able to reconcile the
streamed data from the sensors with that produced by our simulations.

Our simplified approach presented in this paper consists of passing the sensor
data to the simulations and its use for the next time step simulations. Since the
sensor data represents the solution only at few coarse locations we have to modify
the solution conditioned to this data. We call this step multiscale interpolation.
It consists of mapping the sensor data to the solution space. Before discussing
the mapping, we demonstrate the main idea of our general approach handling
dynamic data. It is depicted in Fig. 2 and consists of the following: At each time
step the sensor data is received by the simulator. We can treat the data either
as a hard or soft constraint. The latter means the data contains some noise and
need not be imposed exactly.



A Note on Data-Driven Contaminant Simulation 703

−3

−2

−1

0

1

2

3

4

Fig. 1. Permeability field with spherical variogram and correlation lengths lx = 0.2,
lz = 0.02. The locations of the sensors are marked.
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Fig. 2. Schematic description of data driven simulations. C(ti|Mi) designates the quan-
tity of interest, such as the concentration, at time ti, conditioned to some data Mi.
In our basic methodology we consider Mi to be the sensor data. In the extension of
our basic method the local heterogeneous field is also updated at each time based on
sensor readings.

Consider the hard constraint case. At the beginning of each time step the
sensor data needs to be mapped to the discrete solution space. This is performed
using our DDDAS mapping operator, whose main goal is not to alter the hetero-
geneous field, i.e., at each time we update the data while not seeking the error
source.

The proposed mapping for the sensor data is very general and applicable to
various classes of equations. We consider general nonlinear parabolic equations
of the form

Dtuε = div(aε(x, t, uε, Dxuε)) + a0,ε(x, t, uε, Dxuε), in Q0 × [0, T ], (1)
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where Q0 refers to the spatial domain and ε indicates the presence of small scale
heterogeneities. Equation (1) includes various physical processes that occur in
subsurfaces.

Assume the domain is divided into a coarse grid such that the sensor points
are nodal points of the coarse grid. Note that we do not require all nodal points to
be sensor locations. Further denote by Sh the space of piecewise linear functions
on this partition,

Sh = {vh ∈ C0(Q0) : the restriction vh is linear for each triangle K ∈ Πh}.

Note that the K’s are the coarse elements.
Our objective now is to map the function defined on Sh to the fine grid

that represents the heterogeneities. This grid is obtained from a priori informa-
tion about the field using geostatistical packages. Denote by the operator E the
mapping from the coarse dimensional space into the fine dimensional space:

E : Sh → V h
ε ,

which is constructed as follows: For each element in uh ∈ Sh at a given time tn
we construct a space-time function uε,h(x, t) in K × [tn, tn+1] that satisfies

Dtuε,h(x, t) = div(aε(x, t, η, Dxuε,h)) (2)

in each coarse element K, where η is the average of uh. uε,h(x, t) and is calculated
by solving (2) on the fine grid, and thus is a fine scale function.

To complete the construction of E we need to set boundary and initial con-
ditions for (2). We can set different boundary and initial conditions, giving rise
to different maps that only differ from each other slightly. The main underlying
property of our map is that it is constructed as a solution of local problems. The
latter guarantees that the solution is consistent with prescribed heterogeneities.

In our numerical simulations we take the boundary and initial condition for
the local problems to be linear with prescribed nodal values. The nodal values
are obtained from the sensor data, if available. If the sensor data is unavailable at
some location we use the values obtained from the simulations at previous time.
Note that we cannot impose the values of the solutions directly at some locations
since it can cause artificial discontinuities in the solution. See [5] for mathemat-
ical aspects of this interpolation operator, including convergence properties.

Once the solution at time t = tn is computed its values with sensor data at
the sensor locations can be compared. After changing the values of the solution
we interpolate it to the fine grid and use it for the next time step. At the last step
we use a multiscale approach which is computationally efficient. In particular,
the solution at the next time step is calculated based on
∫

Q0

(uh(x, tn+1) − uh(x, tn))vhdx +
∑
K

∫ tn+1

tn

∫
K

((aε(x, t, η, Dxuε,h), Dxvh) +

a0,ε(x, t, η, Dxuε,h)vh)dxdt =
∫ tn+1

tn

∫
Q0

fvhdxdt.

(3)
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Recall that Q0 refers to the spatial domain and the K’s are the coarse elements.
This approach, combined with the interpolation technique, has great CPU ad-
vantages over just a fine scale calculations (see [5]).

3 Numerical Examples

We now present numerical results that demonstrate the accuracy and limitations
of our proposed method. We have explored both linear and nonlinear heteroge-
neous diffusion cases. Due to space limitations here, we only provide a represen-
tative example. We will provide more examples and discussions in a future work.

The systems we consider are intended to represent cross sections (in the x-z
plane) of the subsurface. For that reason we take the system length in x (Lx) to
be five times the length in z (Lz). All of the fine grid fields used in this study are
121 × 121 realizations of prescribed overall variance (σ2) and correlation struc-
ture. The fields were generated using GSLIB algorithms [6] with an exponential
covariance model. In the examples below, we specify the dimensionless correla-
tion lengths lx and lz, where each correlation length is nondimensionalized by
the system length in the corresponding direction. For example, lx = 0.3 means
that the actual correlation length of the permeability field is 0.3Lx.

In our calculations, we consider (1) with a fixed concentration at the inlet
edge of the model (x = 0) and a fixed concentration at the outlet edge (x = Lx)
of the model. The top and bottom boundaries are closed to flow. Initially zero
contaminant concentration is assumed in the domain. For comparison purposes
most results are presented in terms of cross sectional averages and l2 norm errors.
The computations are carried out until the final time t = 0.1 with a different
frequency of updating.

We have tested both linear and nonlinear problems and observed similar
numerical results. Here we will only present numerical results for the nonlinear
case which represents simplified Richards’ equation. Consider

Dtuε = div(aε(x, uε)Dxuε),

where aε(x, η) = kε(x)/(1+η)αε(x). kε(x) = exp(βε(x)) is chosen such that βε(x)
is a realization of a random field with the exponential variogram and with some
correlation structure. αε(x) is chosen such that αε(x) = kε(x) + const with the
spatial average of 2. For the numerical examples we will only specify βε(x).

In all of the figures, solid line designates the true solution, dotted line desig-
nates the solution obtained using our simulations with some number of updates,
and the dashed line designates the solution that has not been updated.

For the first example we consider the true field to be a random field with ex-
ponential variogram and with lx = 0.2, lx = 0.02, and σ = 1. For our simulations
we use the same field with σ = 2. In Fig. 3 we compare the average solutions for
the case with 20 updating, i.e., the simulated solution is updated 20 times dur-
ing the course of the simulations. Fig. 3 demonstrates that the predictions that
do not use the sensor data perform very poorly. The l2-norm of the difference
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Fig. 3. Comparisons of the average solutions across x and z directions for nonlinear
case. The true field is a realization of a random field with lx = 0.2, lz = 0.01, σ = 1,
while the random field used for the simulations has σ = 2.
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Fig. 4. Comparisons of the average solutions across x and z directions for nonlinear
case. The true field is a realization of a random field with lx = 0.2, lz = 0.01, σ = 1,
while random field used for the simulations has σ = 2.

between the solutions for the data that are frequently updated is 2.5% while the
data that is not updated is 14%.

In our next example we ran the same case with less frequent updating. In
particular, we use 4 updates during the simulations. The results are depicted in
Fig. 4. The l2-errors of the solution that is updated is 5.7% while the l2 error of
the non-updated solution is still 14%.

Finally we have considered a case where three different heterogeneous fields
with exponential variograms are used with different probabilities. In particular
the true field consists of lx = 0.1, lz = 0.02 with probability 0.1, lx = 0.2,
lz = 0.02 with probability 0.8, lx = 0.4, lz = 0.02 with probability 0.1. For
all these fields we take σ = 1. For our simulations we use these random fields
with σ = 2 and with different probabilities. In particular, we take the field with
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lx = 0.1, lz = 0.02 with probability 0.3, lx = 0.2, lz = 0.02 with probability
0.4, lx = 0.4, lz = 0.02 with probability 0.3. This is a typical field scenario
when one does not know the probability distributions of the random fields. Our
numerical results showed that the l2 error between true and updated solution is
5%, while the error between the true solution and non-updated solution is 9%.
The numerical results with frequent updates demonstrated higher accuracy.

4 Fixing Error Sources Using Inversion

So far we have presented a numerical method that incorporates the sensor data
from sparse locations into the simulations. Currently we are working on the
possible extension of the methodology that involves some kind of inversion during
the simulations.

In the methodology described previously we only correct the solution without
fixing the error source. One of the error sources is the incorrect heterogeneous
diffusion field.

Consider the linear heterogeneous diffusion model Dtuε = div(aε(x)Dxuε).
Our objective is to compare the misfit of the data from the sensors and the data
from our simulator. If this misfit is larger than a certain threshold for some sen-
sor points we perform an inversion in the neighborhood of the sensor point by
modifying the diffusion field aε(x) in the neighborhood of the sensor point. By
considering the neighborhood of the sensor location as a coarse block we deter-
mine the effective diffusivity, a∗

sim, corresponding to the existing heterogeneous
diffusivity field. This quantity is determined such that the local problem with a
single diffusion coefficient, a∗

sim, will give the same response as the underlying
fine heterogeneous diffusion field.

Our next goal is to find an a∗
true that will give us the same response as the

one from the sensor data. This is done using some classical inversion, such as
parameter estimation. Since we only have to fit one parameter this problem can
be easily handled without extensive computations.

Now we can impose a∗
true both as a soft as well as a hard constraint. For the

hard constraint we must rescale the local heterogeneous field based on the ratio
a∗

sim/a∗
true. Note that the hard constraint does not change the structure of the

local heterogeneities and can be easily implemented since it only requires local
rescaling.

For the soft constraint we use Bayesian framework (see [7]). Assume the a
priori distribution for the local coarse heterogeneous field is given. Our objective
is to generate fine-scale random diffusivity fields conditioned on the coarse-scale
data. Denote ac and af to be coarse and fine scale diffusivity fields respectively.
Using Bayes theorem we obtain

P (af |ac) ∝ P (af )P (ac|af ), (4)

where P (af ) is the probability distribution for the fine-scale field. In (4) P (af )
is a priori distribution of the fine-scale field which is prescribed.
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To impose the coarse-scale data as a soft constraint we take ac = J(af ) + ε,
where J is a local upscaling operator and ε is a random noise, ε ∼ N(0, σ2).
The local upscaling operator involves the solution of the local partial differen-
tial equations similar to (2). A soft constraint assumes that the coarse scale
information is not accurate. Note that letting σ → 0 we get a hard constraint.

The realizations from the posterior distribution (4) is generated using Markov
Chain Monte Carlo (MCMC) [8]. This approach is known to be very general and
can handle complex posterior distributions. The main idea of MCMC is to use
a Markov Chain with a specified stationary distribution. The random drawing
from the target distribution can be accomplished by a sequence of draws from
full conditional distribution. Since the full conditionals have non-explicit form
involving local problems Metropolis-Hastings algorithm is used.

We have tested our methodology with both soft and hard constraint on simple
examples using Markov Random Fields as prior distributions for fine scale fields.
Our numerical results indicated very good correspondence between the true and
simulated diffusion fields on the coarse level. Further research into this area is
warranted.
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