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Abstract. Call Blocking Probabilities (CBP) are the key index of the call-level 
QoS in multirate networks supporting either CBR or elastic traffic. We review 
the Engset Multirate Loss Model, in a single link, for CBR traffic, and for elas
tic traffic we propose the Connection Dependent Threshold Model with finite 
sources (f-CDTM). In f-CDTM, calls may adjust their traffic and bandwidth re
quirements according to sets of thresholds. Furthermore, we present the f
CDTM for a mixture of service-classes of finite and infinite sources. The pro
posed models don't have a product form solution; therefore the CBP calculation 
is based on approximate but recursive formulas used for the link occupancy 
distribution determination. The latter is complex since it requires enumeration 
and processing of the system state space. Simulation results validate our analy
sis. 

1 Introduction 

The classical Erlang Multirate Loss Model (EMLM) analyzes the call blocking be
havior of service-classes with different bandwidth-per-call requirements when they 
are accommodated in a single link loss system. Calls of each service-dass arrive to 
the link according to a Poisson process and compete for the available link bandwidth 
under the Complete Sharing (CS) policy. If the required bandwidth is available, calls 
are accepted and remain in the system for an arbitrarily distributed servicetime [1]; if 
not, calls are blocked and lost. The fact, that the EMLM is described by an efficient 
recursive formula ([1],[2]), not only simplifies the determination of Call Blocking 
Probability (CBP), but also serves as the basis in the analysis of other Ioss models [3]
[5]. 

In [3], single and multi retry models are proposed, in which blocked calls can retry 
(one or more times) to be connected in the system with reduced bandwidth and in
creased service time requirements. In [4], Single and Multi Threshold Models are 
proposed, in which the bandwidth requirement of a new call may depend on one or 
more thresholds, which indicate the occupied link bandwidth, }. In [5] the retry and 
threshold models, as weil as the EMLM, are generalized to the Connection Dependent 
Threshold Model (CDTM); a threshold model, in which the state dependency is indi
vidualized among service-classes. In [6] the EMLM is extended to the Engset Multi
rate Loss Model (EnMLM) where the offered traffic of each service-class k, comes 
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from a finite number of Nk sources. In EnMLM the CBP calculation is based on a re
cursive formula, sirnilar to the EMLM. However, the deterrnination of the link occu
pancy distribution, G(j), which is essential for the CBP calculation, is complex. This 
is because the system state space needs enumeration and processing (in order for an 
equivalent system to be defined) prior to the G(j) calculation. 

In this paper, the EnMLM is extended to the CDTM for finite sources (f-CDTM), 
where each service-dass has its own set of thresholds and calls may reduce their 
bandwidth and increase their service time requirements according to the value of j and 
the thresholds. We generalize the f-CDTM to include a rnixture of service~dasses 
with either finite or infinite sources. In the proposed models the deterrnination of G(j), 
is complex, since the state space requires enumeration and processing. We evaluate 
the accuracy of the proposed models by comparing analytical with simulation CBP 
results. The comparison is based on the Relative Approximation Errors (RAE); as a 
reference point, we use the RAE of the corresponding infinite source models. 

In section 2 we propose the f-CDTM. We present the analytical model and prove 
the recursive formula used for the G(j) calculation (not for the generat case, due to 
Iack of space). We proceed to the generalization to the CDTM to indude a rnixture of 
service-dasses of either finite or infinite number of sources. In section 3 we present 
application examples. We condude in section 4. 

2 The Proposed CDTM for Finite Sources (f-CDTM) 

A call of a service-dass k is accepted in the system with its requirements (bk , 11 c ·1), t 
ct r-tc t 

=1, ... , T(k), when J k < j :::; Jk , where J T(k) = C- bkc and T(k) is the number of 
1· 1 I T(k) 

thresholds (J) and of contingency bandwidth requirements of call k (Fig. 1). 
Eq. (1) is proposed for the G(j)'s calculation. 

G(j} = 

I forj=O 

~I (Nk- nk + l)akbkokU)G(j-bk) + 
} k=I 

I K T 
+-; L L(Nk-(nk+n._ + ... +nkc + ... +nkcr )+I)akc bkc okc (j)G(j-bkc ) forj = l, ... ,C 

j k=l /=I - 1 I I t t I 

0 otherwise 

Capac ily C 
Link c 

Nt sources 

0 

Fig. l. Principle of the f-CDTM 
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• Jk(j)=l when 15} $;C and bk,= 0, or, whenj5Jk +bk and bkc> 0, otherwise Ji})=O. 
I 

• Jk,(j)=l when Jk +bk,~j >lk +b*'' otherwise J~rc(])=O. 
1 t 1 1·1 I I 

The CBP, Bk , that a call k is blocked with its last bandwidth requirement, bk , is 
0 T(k) 0 T(k) 

defined as Bk =Prob{}> bk } and is given by: 
0 T(k) 0T(k) 

c c 
B L,G-1G(j) where G = L,G(j) 

kcT(k) j=C-bkcr(k) +I j=l 

(2) 

To simplify the proof of (1), Jet us consider two service-dasses only with the same 

single threshold, 10, and bandwidth and service-time requirements (b1,b2), ( 11)1, 1121 ), 

respectively. Calls of the 1" service-dass use the pair (b1, , 111~1 ) whenj >10• Although 

this model does not have a PFS, we assume that Local Balance (LB) equations are 
valid for calls of the 1 '' service-dass: 

where: al> a 1c are the offered traffic Ioads per idle source of the 1" service-dass, 
such that a1b1 = a1c b1c, and n1, is the nurober of in-service 1 '' service-dass sources 
(calls) accepted in the system with b1, . 

As far as calls of the 2"d service-dass are concerned, the L.B equation is of the form: 

[N2 - n2 + I]a2b2G(J- b2 ) = E(n 2 b2 !J)G(j) for 1-::;,j-::;, C 

Equations (2) to (4) lead to a system of equations (6) to (8): 

(5) 

[N1-n1 +l]a1b1G(j-b1)+ (N2 -n2 +!]a2b2G(j-b2 ) =E(n1b1 +n2b2Jj)G(j) for 1 $;j $; 10+b~< (6) 

Eqs. (6)-(8) are combined into one for G(j)'s calculation, under two approximations: 

• Migration approximation (M.A) in eq. (6): E(nlcbJcjJ) is negligible in the region 

1 $; j $; ] 0 + b Ic' i.e. calls of the 1" service-dass accepted with b lc are assumed to be 
negligible when 1-::;, j -::;, 10 + blc. 

• Upward rnigration approximation (UA) in eq. (8): E(n1 b1 jJ) is negligible in the re

gion 10 + h 1 < j $; C, i.e. calls of the 1'' service-dass, accepted with bl' are negligi
ble when 10+ b1 < j $; C. The UA induces high RAE in the CBP results (section 3). 

Basedon the M.A and U.A the calculation of G(j)'s is given by: 

(9) 



The Connection Dependent Threshold Model 1417 

Oz(i)=1 for 1 ~j~ lo+h otherwise Oz(j)=O, Ozc(i)=l for j>lo+blc otherwise Ozc(i)=O. 
Consider a single link that accommodates Kfin service-classes of finite sources and 

K,nf service-dasses of infinite sources. Then, the calculation of G(i)' s is as follows 

G(j)= 

I for }=0 

I K fin 
--:I (Nk-nk+l)akbkok(j)G(j-bk)+ 
J k=l 

1 Kfin T(k) 
+--:I L: (Nk-(nk+nkc + ... +nk + ... +nk )+l)akcbk ok (j)G(j-bkc) 

lk=lt=l I ct cT t ct ct t 

I Kinf • . J Kinf T • . • 

+--:- !: akbk'5k(j)G(;- bk) +-: ,L: Iak<,bk<,ok<, (;)G(;- b~<c) for; =I , ... ,c 
J k• l J k=l t=l 

0 otherwise 

(10) 

• ok(j)=1 when 1s'j :s; C and bkc = 0, or, whenj sJ. +b. and bkc > 0, otherwise Jij)=O. 
l 

• okc G)=1 when Jk +b.c"2:.j>Jk +bkc, otherwise okc (]) = 0. This is the gener. f-CDTM. 
I 1 1 t-1 1 I 

3 Numerical Example -Evaluation 

We present an application example to show the performance of the generalized f
CDTM. We compare the CBP approximation errors that appear in the f-CDTM, with 
that of CDTM (with infinite population). The analytical CBP results are compared 
with simulation results (mean values of 7 runs with 95% confidence interval). In 
graphs (Fig. 2), we compare the CBP results obtained by the infinite and finite models 
by using the Mean Relative Approximation Error (MRAE) of CBP: 

K 

'i, RAE k 
MRAE = k = 1 100% 

K (11) 

where RAEk stands for the Relative Approximation Error for each service-dass k: 

RAEk= 
IB - B I k. an Je, sim 

(12) 

B 
k, sim 

where Bk,an ,Bk,sim are CBP obtained by analytical models and simulation, respectively. 
Consider a link of capacity C=50 b.u. and two service-dasses which require b,= 10 

and b2=7 b.u., respectively. Calls of the 1" service-dass arrive to the link according to 
a Poisson process, whereas the offered traffic-load is a 1. Calls of the 2"d service-dass 
arrive to the link according to a quasi-random process, whereas the offered traffic
load per idle source is u2. Calls of the I" service-dass use their reduced bandwidth re-
quirement b1 =8 b.u when j>11 =30, while b1 =6 b.u when j >1, =35. In the first case 

c l 0 c2 I 

the affered traffic Ioad is given by a~c1=a 1b 1 I b1c 1, while in the second by a 1c2= 

a1b1/b1c2• Similarly, calls of the 2"d service-class use their reduced bandwidth require

ment b2 =7 b.u whenj>11 =37. In that case the offered traffic-load of calls of the sec-
~ 0 
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ond service-dass is given by a2c1 =a2b2 I b2c1• Consider four values for the number of 

sources, N2, of the 2"d service-dass. Table 1 shows the various values of N2 and the 
corresponding values of a" a2, a 1c1, a1c2, a2c1. The equivalent system used for the CBP 

calculation is: C=50019, b,=lOOOO, h2=7001, b~c,=8000, b,c2=6000, b2c,= 4005, 110= 
30000, 1, =35000 and 12 =3700 1. Fig. 2 shows the MRAE obtained from the general-

' 0 ized f-CDTM and the CDTM, for the four values of N2• At each point in the horizontal 
axis entitled "offered traffic" a" a1c1, a1c2 are constant, while a2, a2c1 are increased by 

0.41N2 and 0.7/N2 respectively, i.e. point 1 is (a,,a2,alc1,a,c2,azc1)=(0.72, 2.4/N2, 0.9, 

1.2, 4.2/N2), point 2:(aha2,alc1, a~c2,azc1)=(0.72, 2.8/N2, 0.9, 1.2, 4.9/N2), •• • , point 

6:(at.a2,a1cl'a1c2,azc1)=(0.72, 4.4/N2, 0.9, 1.2, 7.7/N2). We present in Tables 2, 3, both 

analytical and simulation CBP results obtained from the generalized f-CDTM and the 
CDTM, for all points (P): 1, ... ,6. 

According to Fig. 2 higher MRAE appear when N2=12. As the number of N2 in
creases the values of the MRAE tend to be reduced, while they approach those of the 
CDTM. A similar behavior is observed in the case of the CBP results; the CBP are in
creased, approaching the CBP results in the CDTM case, when N2 increases. 

Nk 

N1=co, N2=12 
N1==, N2= 60 
IN,==,Nz=600 

Nr=N2=co 

0 ,350 

0 ,325 

0,300 

0 ,275 

~ 
0,250 

w 0,225 
~ 
:ä 0,200 

0,175 

0,150 

0,125 

0,100 

Table 1. Service-dasses characteristics 

Model used a 1 (erl) a2 (erl) 

Gener.f-CDTM 0.72 0.2 (=2.4 I Nz) 
Gener. f-CDTM 0.72 0.04 (=2.4 I N2) 

Gener. f-CDTM 0.72 0.004 (=2.4 I N2) 

CDTM 0.72 2.4 

generalized f-C DTM N 2= 12 
generalized f-C DTM N 2=60 

------ generalized f-CDTM N 2=600 
- -··-· CDTM N 2 =infinite 

... 

«tc (erl) 

0.9 
0.9 
0.9 
0.9 

«tc1 (erl) A2c (erl) 

1.2 0.35 (=4.21N2) 

1.2 0.07 (=4.21N2) 

1.2 0.007 (=4.2/N2) 

1.2 4.2 

····· 

~--------------~-~~~~-=-~~~--
·-··-· -··-··-

2 3 4 5 6 

offe red tra ffic 

Fig. 2. MRAE of the generalized f-CDTM and the CDTM 
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Table 2. Analytical results for the generalized f-CDTM and the CDTM 

Nt=oo,N2=12 Nt==, Nz=60 Nt==, Nz=600 Nt=Nz== 
(gener. f-CDTM) (gener. f-CDTM) (gener. f-CDTM) (CDTM) 

p Btc2 (%) Bzct (%) B1c2 (%) Bzc1 (%) Btc/%) Bzct (%) Btc2 (%) Bzct (%) 

1 2.31 1.31 3.92 2.18 4.43 2.45 4.49 2.48 
2 3.18 1.79 5.76 3.16 6.60 3.60 6.70 3.65 
3 4.20 2.35 8.03 4.36 9.26 5.01 9.39 5.10 
4 5.37 2.99 10.69 5.76 12.36 6.65 12.55 6.74 
5 6.69 3.70 13.69 7.33 15.83 8.49 16.06 8.62 
6 8.14 4.47 16.94 9.06 19.56 10.51 19.84 10.65 

Table 3. Simulation results for the generalized f-CDTM and the CDTM 

Nt==,Nz=12 Nt==, N2=60 Nt==, Nz=600 Nt=Nz= 
(gener. f-CDTM) (gener. f-CDTM) (gener. f-CDTM) (CDTM) 

p Brc2 (%) Bzc1 (%) Btc2 (%) Bzc1 (%) B1c2 (%) Bzc1 (%) Brc2 (%) Bzc1 (%) 

1 1.98±0.09 0.97±0.05 3.10±0.27 1.86±0.0<1 3.66±0.18 2.20±0.11 3.81±0.34 2.25±0.18 
2 2.66±0.15 1.38±0.05 4.34±0.11 2.79±0.0S 5.22±0.17 3.32±0.08 5.29±0.38 3.55±0.27 
3 3.44±0.26 1.82±0.0~ 6.17±0.22 3.95±0.0~ 7.38±0.25 4.60±0.17 7.46±0.57 4.87±0.15 
4 4.35±0.17 2.29±0.0~ 8.34±0.37 5.32±0.1S 9.66±0.40 6.34±0.09 9.80±0.55 6.45±0.23 
5 5.32±0.17 2.85±0.0<1 10.22±0.18 6.94±0.2 12.11±0.31 8.23±0.15 11.87±0.29 8.61±0.67 
6 6.49±0.23 3.48±0.1C 12.66±0.29 8.38±0.23 14.86±0.4( 10.57±0.1~ 15.44±0.45 10.63±0.5~ 

4 Conclusion 

We've proved the f-CDTM and shown its performance together with the generalized 
f-CDTM, by comparing their (numerical) CBP results with simulation results. 
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