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Abstract. BGP, the de facto inter-domain routing protocol, is the core 
component of current Internet infrastructure. BGP traffic deserves thor­
ough exploration, since abnormal BGP routing dynamics could impair 
global Internet connectivity and stability. In this paper, two methods, 
signature-based detection and statistics-based detection, are designed 
and implemented to detect BGP anomalaus routing dynamics in BGP 
UPDATEs. Signature-based detection utilizes a set of fixed patterns to 
search and identify routing anomalies. For the statistics-based detec­
tion, we devise five measures to model BGP UPDATEs traffic. In the 
training phase, the detector is trained to learn the expected behaviors 
of BGP from the historicallong-term BGP UPDATEs dataset. lt then 
examines the test dataset to detect "anomalies" in the testing phase. An 
anomaly is flagged when the tested behavior significantly differs from 
the expected behaviors. We have applied these two approaches to exam­
ine the BGP data collected by RIPE-NCC servers for a number of IP 
prefixes. Through manual analysis, we specify possible causes of some 
detected anomalies. Finally, comparing the two approaches, we highlight 
the advantages and limitations of each. While our evaluation is still pre­
liminary, we have demonstrated that, by combining both signature-based 
and statistics-based anomaly detection approaches, our system can ef­
fectively and accurately identify certain BGP events that are worthy of 
further investigation. 

1 Introduction 

As the size, complexity, and connectivity of the Internet increase, the analysis of 
operational BGP dynamics becomes more and more challenging. First, because a 
huge amount of BGP UPDATE traffic is generated in a single domain everyday, 
operators are not able to conduct thorough analysis on the whole logged BGP 
dataset. Second, even for a single BGP event, the root cause analysis could be 
extremely hard. Sometimes, an experienced network administrator needs to, if 
possible, access the information in the core of the service networks, even from 

N. Mitrou et al. (Eds.): NETWORKING 2004, LNCS 3042, pp. 259-270, 2004. 
© IFIP International Federation for Information Processing 2004 



260 K. Zhang et al. 

different administrative domains, in order to identify potential faults or config­
uration problems. Since the process of problern and fault analysis can be highly 
expensive, it is critical to put our focus on a small set of valuable network events. 
In other words, given a large set of BGP update messages, can we accurately cat­
egorize them as "normal" or "abnormal"? With this categorization, we can then 
spend our precious resources mostly on the "abnormal" ones. Two criteria jointly 
define an anomaly. One criterion is related to BGP performance. For example, 
slow convergence for a router to reach a stable view of the Internet's available 
routes [1] belongs to this type, because the router announces many invalid routes 
to downstream BGP routers during the convergence process. The other criterion 
refers to a statistical anomaly (also called "relative anomaly" )-the significant 
deviations of current routing behavior from expected routing behavior. 

However, in practice, to our best knowledge, we do not have a systematic 
approach to consistently label a set of BGP events as normal or abnormal. 
Borrowing the techniques from intrusion detection area, we develop two ap­
proaches to detect BGP anomalaus routing dynamics-signature-based detec­
tion and statistics-based anomaly detection. For signature-based detection, we 
devise a set of anomalaus BGP routing update patterns to search formatehing 
incidents in BGP UPDATEs data. For statistics-based anomaly detection, the 
long-term historical BGP UPDATEs datasets are used to train the detector to 
learn the statistical properties. Thereafter, we perform the anomaly detection 
on the short-term testing UPDATEs datasets. Following detection, we examine 
the anomalaus routing incidents and explain why they should be categorized as 
anomalies and specify possible root causes of some incidents. 

Analyzing the root causes for BGP dynamics is a very challenging task. Our 
work moves the first step towards this problern by providing the approaches 
to automatically locate the anomalaus routing updates. Due to limited rout­
ing information we can acquire, the anomalies discussed in the paper are still 
speculative ones. However, results from manual examination show that these 
anomalies are worthy of further investigation. Thus, we believe the approaches 
are valuable in that they drastically reduce the search space from a large amount 
of BGP data to a small set of "abnormal" BGP events. Moreover, the signatures 
and statistics developed in these approaches can be used to analyze BGP data 
and quantitatively evaluate the "normality" of each BGP UPDATE. 

The rest of the paper is organized as follows. Section 2 introduces the concepts 
of signature-based detection and statistics-based detection, and briefl.y reviews 
related work. Section 3 describes the BGP UPDATE dataset that we have used in 
the experiments. Section 4 and 5 present signature-based detection and statistics 
based detection respectively. Section 6 compares these two approaches, followed 
by conclusions in section 7. 

2 Related Work 

Signature-based detection and statistics-based detection are two major ap­
proaches in modern intrusion detection area. Signature based detection systems, 
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such as the Snort IDS, report an attack when a set of symptoms corresponding 
to a predefined attack signature is observed. Statistics-based intrusion detection 
fl.ags as attacks any traffic that is unusual for that system. Several research has 
been carried out on BGP routing behavior. Labovitz et al. [2] showed that around 
1996 unstable and pathological routing behaviors dominated the Internet. Later, 
they presented possible explanations for these anomalies [3]. Other BGP routing 
problems, such as slow convergence [1], persistent MED oscillation [4,5], have 
also been well examined. Also concerning abnormal BGP route changes, Wang 
et al. [6] proposed a path-filtering approach to validate the correct raute changes 
for DNS prefixes. Teoh et al. developed an interactive visualization process to ex­
plore BGP data [7]. These works are complementary to our approaches described 
in this paper. 

3 Dataset 

The dataset we examine in the paper consists of BGP UPDATE messages col­
lected by the Routing Information Service of RIPE [8]. The collector has multi­
hop BGP sessions with 9 peer ASes located at different countries. 

We examine BGP updates for a set of networks (IP prefixes) in different 
peers. Different prefixes may show different behaviors. Even for a single prefix, 
routing behaviors may be different from different observation points. As an initial 
step, we choose the following prefixes as samples. We choose 8 prefixes of either 
root DNS servers or gTLD servers because of the critical role of DNS service. 
4 prefixes from Korean and China are selected because we attempt to examine 
the impact of SQL worm attack. Similar to previous work [9,10], we also select 
4 prefixes of popular destinations and 4 prefixes from Department of Defense 
(DoD). 

In addition, we removed duplicated updates due to known implementation 
problern in some vender's router [3], although duplicate updates are anomalous. 

4 Signature-Based Detection 

4.1 Patterns of Anomalous BGP Dynamics 

A route announced by a BGP router is generally the bestraute at that moment. 
Comparing the consecutively announced routes, we can infer the route changes 
in that router's BGP routing table. In order to compare the consecutively an­
nounced routes, we assign a value corresponding to the preference of each raute 
based on BGP raute selection pracess, which is described in [11] . Based on the 
relative preference values of two consecutive routes, we define four terms. 1 

1 Since the BGP updates are collected through the EBGP sessions, we cannot acquire 
information on the following four aspects: LOCAL_PREFERENCE, source of the 
route(EBGP or IBGP), the IGP cost to the NEXT_HOP, and router ID. We can 
assign relative preference value by comparing the AS_PATH length, origin type and 
MED value of each consecutive route announcement. 
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Table 1. Signatures of BGP Update Burst 

noma y in community attri utes or 
aggregation or same length AS path 
oscillation OR Normal route changes 

UP: if the second route is more preferahle than the previous one, we lahel the 
second route as UP. 

DOWN: if the second route is less preferahle than the previous one, we lahel 
the second route as DOWN. 

FLAT: if two routes have the same preference value, we lahel the second route 
as FLAT. 

WD: if the second announcement is a route withdrawal, we lahel the second 
route as WD. 

We define BGP update hurst as a sequence of updates within a short time 
window. Formally, BGP update hurst is K consecutive updates for the same 
prefix that space close together. The time interval hetween update messages is 
less than T and the average update rate > a . In the experiments, we empirically 
set K = 4, T = 240s, and a = 1/ 90. Examining different parameters is part of 
our future study. 

Given a BGP update hurst, we map the updates into a {UP, DOWN, FLAT, 
WD} sequence. We define 7 patterns for update sequences. Due to the limited 
space, we only show 3 types in the following. Other types are descrihed in [12]. 

Type-B: If the update hurst has a WD in the middle, it indicates a transient 
failure followed hy a fast fail-over. 

Type-C: If the update hurst does not consist of WD and has only one < UP, 
DOWN> or < DOWN, UP> in the middle (the preference fluctuation only 
happens once in the sequence of updates), it indicates either a transient 
failure ( or congestion) followed hy a fast fail-over , or normal route changes. 

Type-F: If the update hurst consists of all the routes with the same prefer­
ences, it might he anomalous. These routes have the same length AS_FATH, 
the same origin types and the same MED values. Difference might lies in 
the content of AS_pATH or other attrihutes, such as community attrihutes, 
ATOMIC_AGGREGATE and AGGREGATOR. Since we cannot get t he lo­
cal preference of each route, these route changes might he legitimate. How­
ever, from discovered incidents(presented later in this paper), we helieve this 
type of incident is speculative. 

4.2 Experiment Results for Signature Detection 

We have performed signature det ection on 20 prefixes over the period from Feh. 
2002 to Jan. 2003. We demonstrate here detected anomalies for four represen-
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tative prefixes. Other prefixes have similar results. For each prefix, we choose to 
present results from 5 ASes (AS2914, AS3333,AS13129, AS3549, AS3257) out 
of 9 observed ASes. These four prefixes are the prefix for Yahoo.com, the DNS 
root Server-A prefix, a prefix for Department of Defense and a prefix from a 
University of China. 

Figure 1 plots the number of the each type of incidents at five ASes. We 
notice that B,C,F are three major types of abnormal incidents. Through further 
analysis, we identify three different speculative incidents in type F. 

We notice that the DoD prefixes has a total of 69 type-F incidents observed 
from 5 ASes. The pattern capturing these special sequences is frequent substitu­
tions of AGGREGATOR. Due to limited information, we cannot verify whether 
or not this special behavior is normal BGP Operation. However, the high rate 
of AGGREGATOR substitution, once per minute on average, deserves more 
attention from the operators. Since local AGGREGATOR changes should be 
restricted in the local area, and not be propagated to the outer networks. These 
anomalies indicate BGP operation in DoD networks violates this desired prop­
erty. 

AS3549 and AS3257 have more type-F sequences t han other three ASes. We 
find that some Type-F update bursts for prefix 166.111/16 are due to community 
attribute changes. The change rate is very high. For example, in one case, AS 
3549 changed the community attribute 4 times in 6 seconds. These frequent 
changes of community attributegenerate a lot of BGP updates in a short period 
of time. If the downstream BGP router performs BGP raute fiap damping, the 
raute announced by AS3549 would be suppressed. We performed BGP route fiap 
damping (using default CISCO router's damping parameters) on t he Jan. 2003 
updates data. We find t hat 17 4 out of 250 effective updates would be suppressed, 
and the total suppression time in that month is 7.3 hours. 

In addition, from AS3257, we observe that the DNS root server-A prefix 
has 17 type-F incidents, 7 out of which are oscillations of two routes. The two 
routes, {AS3257, AS1 , AS10913, AS19836} and {AS3257, AS3356, AS10913, 
AS19836} have the same AS path length, the same origin type and t he same 
MED value. They replace each other at least three times in a short time window. 
The possible root cause might be link fiap, or t ransient link congestion or even 
other unknown reasons. Although we do not know the root cause, we believe 
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Table 2. Five Measures 

Intensity Measure BGP Updates Message Arrival Frequency 
Number of AS paths in a period 

Categorical Measure BGP Updates Type 
AS path Occurrence Frequency 

Counting Measure AS path Difference 

this kind of incident should be anomalous because the frequent route changes 
can degrade packet forwarding. 

5 Statistics-Based Anomaly Detection 

We apply a statistics-based anomaly detection method, NIDES/STAT [13]. The 
NIDES/STAT algorithm monitors a subject's behavior on a computer system, 
and raises alarm when the subject's current (short-term) behavior deviates sig­
nificantly from its expected behavior, which is described by its long-term profile. 
A subject's behavior is described by a set of detection measures. Foreach individ­
ual measure, there is a corresponding Q statistic. The historical profile records 
the frequency distribution of Q. Foreach measure, the corresponding S, derived 
from Q, is indicative of the degree of abnormality of the behavior with respect to 
that measure. T 2 summarizes the abnormality of many measures, refl.ecting the 
degree to which recent behavior is similar to the historical profile. Large values 
indicate abnormal behavior. 

5.1 Measures 

Like NIDES/ STAT, we define 3 types of measures listed in Table 2. 

BGP updates message arrival frequency (Ml). This measure is one of 
activity intensity measures. It measures the inter-arrival time of BGP update 
messages sent by a router for a single prefix. We devise this measure to detect 
BGP update hurst. BGP updatehurst most likely indicates abnormal operations. 
Moreover, the hurst itself may impair the network because a huge number of 
update messages can occupy the overall resource of a BGP router, or even cause 
a router crash. 

Forthis measure, the Q value corresponding to the current update message 
represents the number of update messages that have arrived in the recent past. In 
exponentially weighed sums scheme, whenever a new update arrives, the system 
will assign a Q value based on the following formula. 

where r is the decay factor, Llt is the inter-arrivaltime between the current and 
the previous update. 
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Fig. 2. BGP Update Class Hierarchy 

Number of AS paths (M2). This measure isanother intensity measure. Due 
to link failure or router crash, BGP will suffer slow convergence problem. During 
convergence process, BGP router inay receive a number of potential AS paths 
that are seldom seen in the past. Therefore, the number of AS path in that period 
may drastically increase. This measure is devised to monitor the variation of the 
number of AS paths. The Q value is calculated by the following formula 

where current Q is the number of new AS paths detected in the current audit 
record plus decayed previous Q. 
BGP update type (M3). Similar to [14], we classify BGP update messages 
into 7 types in a hierarchical structure (Fig 2). At the top of the class hierarchy 
are two major classes: announcements and withdraws. Announcement is fur­
ther classified into three sub-classes. Duplicate announcement indicates that the 
consecutive updates contain exactly the same information. (However, note that 
because we remove all the duplicate updates, this category does not exist in the 
experiments.) If the new route contains the same AS path as the current route, 
it is labeled as SPATH. Due to MED oscillation problem, we further distinguish 
SPATH by checking if the MED value is different. DPATH indicates that the 
current route is replaced by a different AS path. Because the length of AS path 
is a key factor in the BGP route selection process, we divide this sub-class into 
3 more specific groups: same length AS path, Ionger AS path, Shorter AS path. 
The leaf nodes in this classification tree are the types of BGP update messages. 
Currently, we use these six types. If necessary, we can still sub-classify these 
types. 

AS path occurrence frequency (M4). According to the observation that 
only asmall number of different AS paths are announced, we define a categorical 
measure to capture the frequency distribution of AS paths occurrence. Each 
individual category within this measure is a different AS path. We calculate the 
frequency of each AS path occurrence. Since a new AS path will appear in the 
future, we utilize the "new path" category to denote the new path. 

The Q computation for the categorical measure is: 

M 

Qn = L [(9m,n - fm) 2 / Vm] 
m =l 

where 
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fm = the relative frequency with the mth AS path has occurred in the history. 
gm,n = the relative frequency with which the mth AS path has occurred in 

the recent past (which ends at the nth received UPDATE message). 
Vm = the approximate variance of the gm,n 
For detailed computation of these variables, please refer [13). 

AS path difference (M5). In order to compare the current AS path with his­
torical dominant AS path, we employ this measure. We use a Simi(path1,path2) 
function to calculate the difference between two AS paths. First, we define the 
AS path as a string in which each character is an AS number. Then we calculate 
the edit distance of two strings. In Simi function, pathl is the current AS path, 
path2 is the historical dominant AS path which is usually the most stable path. 
The edit distance of two paths denotes their difference. The larger the distance, 
the greater the difference. 

Combination of five measures. The NIDES /STAT algorithm defines another 
variable S which is "normalizing" transformation of Q statistics so that the 
degree of abnormality for different measures can be added on a comparable 
basis. S has a half-normal distribution. Since each individual measure has a S 
value for each BGP update message, the anomaly detector can generate a single 
score value T 2 by the following formula: 

The details of transformation from Q to S can be found in [12). 
Because the value of S ranges from 0 to 3.9, T 2 can range from 0 to 15.2 

theoretically. In practice, we set the threshold of T 2 to be 2.5, since chances are 
very small for T 2 to have greater values based on our past experience. 

5.2 Experiments for Statistics-Based Anomaly Detection 

Experiments overview. Our experiments consist of two major parts, histor­
ical profile training and detecting process. Long term historical profile training 
is the process by which the anomaly detector learns the past behaviors of a sub­
ject. Detecting process examines the testing data by comparing current routing 
behaviors with the historical behaviors. If the deviation score is above the prede­
fined threshold, a warning will be fiagged. Otherwise, the data will be considered 
normal and incorporated into historical profile. 

Experiments parameters. The decay factor has a significant impact on our 
detector. According to [1), most convergence time is about 3 minutes. Thus, 
in the case of inter-arrival time measure, the decay factor is set to be 1/300, 
which corresponds to the half-life of 300 seconds. Piease note that convergence 
time is a function of the topology, MRAI timer, route fiap damping, and routing 
policy. We cannot prove that this decay value is optimal. However, based on 
the distribution of the inter-arrival time for each prefixes we observed, most 
of inter-arrival time is less than 300 seconds or greater than 3000 seconds. We 
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Time IASYATH 
01:51:37 3333 3356 1239 9405 4538 
02:08:07 3333 3356 1239 9407 9407 4538 
02:09:55 3333 286 209 1239 9407 9407 

4538 
02:10:22 3333 12859 13237 1299 701 1239 

9407 9407 4538 
02:11:17 Path Withdrawal 

Fig.3. 166 Fig. 4. Anomalaus Update Sequence 

choose 300 seconds as half-life value to capture the frequent route changes. For 
the categorical measure, we set the half-life decay to 20 BGP update messages, 
corresponding to an r = 0.05. 

Experiment results. We test our statistical anomaly detector on the BGP 
UPDATE data to see whether it is able to effectively detect the BGP routing 
anomalies and whether it can help users analyze BGP routing dynamics. We 
conduct our test in two directions. On one hand, we perform the test on the 
BGP UPDATEs data during SQL worm attack. Although SQL worm does not 
intent to attack BGP protocol, BGP has been impacted during worm attack. We 
test our detector to see if the detector can find out the anomalies in that period. 
On the other hand, in order to compare the results with those from signature 
detection, we perform the test on the same prefixes. 

Table 3. S and T 2 values 

Detecting SQL warm. SQL worm attacked the Internet on Jan 25, 2003. Al­
though SQL worm did not intent to attack the Internet routing architecture, a 
!arge increase of the number of BGP routing updates have been observed dur­
ing that period. We apply t he anomaly detection on the BGP updates and find 
that the warnings have been flagged for some prefixes from DoD, Korean and 
China, while the prefixes for popular destination and root server appear nor­
mal. Through the comparison of the prefixes from DoD, Korean and China, we 
can infer that their abnormal behaviors are similar in essence, while their BGP 
update sequences are different. Table 3 lists the S and T 2 values of t he most 
abnormal update for each prefix . From the table, we observe some similarities 
inS distribution among t hese prefixes- all three assigned S values (SM2 , 8M3 , 

and SMs) are abnormallylarge (greater than 1.96, indicating that t he probabil-
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ity for the update message occurrence is less than 5%). This similarity leads us 
to further manually examine the BGP traffic of the three prefixes. 

Figure 3 plots the T 2 values for the prefix 166.111/16 that is the address 
block for a university in China. The X-axis denotes the index of each update. 
All updates were recorded from Sept 1, 2002 to Jan 31, 2003. The highlighted 
updates (between the arrow "begin" and "end" in the figure) were recorded on 
Jan 25, 2003 when SQL worm attacked the whole Internet. Observing many UP­
DATEs with large T 2 values (statistically significant deviation) on that day, we 
can easily infer that BGP routing has produced many highly abnormal behaviors. 
One of BGP update sequences was shown in Fig 4. The last BGP withdrawal 
message flags a warning. The corresponding S and T 2 values are listed in the 
first row of table 3. The large SM2 and SM5 value were due to the previous two 
updates. Large SM2 value indicates the arrival of new pathes (third and fourth 
ASYATH). large SM5 value indicates that the pathes are significantly different 
from the dominant path. This is a classical case of slow convergence (1]. Possible 
root cause could be that huge amount of traffic generated by SQL worm con­
gested the link between AS1239 and AS9407 and tore down the BGP session. 
This example demonstrates that our detector can detect BGP slow convergence 
effectively, and the statistical information learned from the detector can help 
analyze what causes a anomaly. 

Comparison with signature detection. We apply statistics-based anomaly detec­
tion on the same prefixes examined by signature-based anomaly detection. Com­
pared with signature detection, the number of anomalaus incidents identified by 
statistics-based detection is much smaller. 

For example, we examined BGP updates for the prefix 166.111/ 16 from 
AS3257 in the dataset of Jan. 2003. The detector did not flag warning dur­
ing the SQL worm attack, because of the imperfection of our training dataset. 
However, it did flag a warning for one type B incident that is worthy of more 
investigation than the incidents caused by the worm. The abnormal in that 
type B incident is a brand new fail-over path, {3257, 3356, 12013, 3681, 20080, 
11537, 9405, 4538}. This path has never appeared before and remains for only 
500 seconds. In addition, the new path is very different from the primary path 
{3257,1239,9405,4538}. Moreover, the three transit ASes (3681,12013 and 20080) 
are ASes of two universities in Florida. It is highly abnormal that the networks 
of two American universities provide transit service for a university in China. 
Thus, we believe this incident is more interesting than other type B incidents 
because it may indicate some routing policy misconfiguration. 

6 Discussion 

For signature-based BGP detection, if the patterns of anomalies are well de­
fined and persistently updated , this method should be very efficient in terms of 
false rate. However, in the BGP scenario, it is very hard to accurately define 
signatures. In this paper, the parameters (K = 4,T = 240s) are set empirically. 
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We may miss some anomalaus incidents with only three close updates, or may 
incorrectly treat two consecutive updates as two different events. 

Statistics-based BGP anomaly detection does not require knowledge about 
patterns of anomalies in advance. It can assign BGP updates with different de­
viation scores, providing an objective measure telling which incident is more 
abnormal and deserves more attention. In addition, statistics-based detector can 
provide information on the detected anomalies and help network operators in­
vestigate what may have triggered a warning. In our detection system, whenever 
an alarm is raised, detector provides both expected distributions and observed 
distributions (an example is shown in [12]). With this additional information, 
operators might be able to speculate what could have accounted for the statis­
tically significant deviation. 

Limitations also exist in statistics-based method. In our experiments, 
anomaly detector appears to have a relatively higher false rate compared to 
signature-based detector, because we do not have a clean training dataset in 
advance. The expected behaviors learned by the detector may have included 
problematic BGP UPDATE sequences. 

Through comparison, we find that while both approaches are capable of iden­
tifying BGP routing anomalies to some extent, the list of detected anomalies 
is not exhaustive. Experiments demonstrate that combination of the two ap­
proaches can generate more comprehensive results. 

At the current stage, we are unable to evaluate the identified anomalies, be­
cause evaluation is based on root cause analysis which is still an open question. 
The major barrier for root cause analysis is that we cannot acquire t he neces­
sary information from real operational network. Further, root cause analysis for 
BGP anomalies may need cooperations among ASes, because under some cir­
cumstances, identification of certain causes is extremely hard for an individual 
AS. Thus, the goal of our current work is not to provide accurate root causes 
analysis for speculative anomalies. In stead, we aim to devise an approach to 
identify possible anomalies, which is the first step towards solving the root cause 
analysis problem. 

7 Conclusion and Future Work 

In this paper, two approaches, signature-based detection and statistics-based 
detection, are proposed to search for anomalaus BGP routing dynamics. The 
value of our work lies in the following aspects: First, we develop two system­
atic approaches to detect abnormal BGP UPDATE traffic. In current network 
management, they can help operators and researchers to filter out the trivial 
events and focus mainly on the most important BGP events. Second, through 
our experiments, we identify advantages and limitations of both methods. A 
feasible way to overcome the weakness of each is through combination of both. 
Third, these two detection approaches can be further used in monitaring and 
analyzing the real-time BGP traffic. In particular, statistics-based approach can 
quantitatively measure the "abnormality" of each BGP UPDATE. 
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The limitation of our work lies in the lack of information from real BGP 
run-time environment. At this stage, we are not able to thoroughly evaluate the 
identified anomalies. Root causes for most of the anomalies are still our conjec­
tures. However, in our future work, we plan to attack this problern by building 
a large scale BGP testbed [15]. In this simulated BGP operational environment, 
we can generate various fully-controlled network failures and attacks. Applying 
the detection approaches to examine the simulated BGP traffic, we can provide 
a more extensive evaluation of the detectors' performance. 
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