
Improving Distributed Firewalls Performance through
V ertical Load Balancing

Olivier Paul

GET/INT, LOR Department,
91000 Evry, France

Olivier.Paul@int-evry.fr

Abstract. In this paper we present an extension to an existing hash based
packet classification technique in order to improve its performance in a distrib­
uted network access control environment. We show that such architecture can
be modified so that flow states can be kept in a distributed fashion thus reduc­
ing the space needed for packet filtering in each component of the architecture.
We also show how such approach can, in some cases, improve the overalltime
complexity of packet filtering operations by reducing the number of packet
classification operations.

1 Introduction

As network architectures become more complex and interconnected, the number of
interconnection devices regularly increases. At the same time, the number of network
devices with security features in general and access control capabilities in particular is
also rising. These capacities are widely used in companies in order to partition net­
works and Iimit the ability of users to interact with each others. The problern of auto­
mating and optimizing the configuration of such distributed access control architec­
tures has recently raised a Iot of interest. However most techniques have either fo­
cused on the optimization of distributed access control policies independently from
packet classification schemes or focused on optimizing packet classification schemes
independently from the distributed nature of distributed firewalls. In this paper we
explore the optimization of a specific (while popular) packet classification scheme [4]
in the context of a distributed access control architecture. We show that such a
scheme can widely benefit from a distributed implementation.
Section 2 provides an overview of existing schemes for access control performance
improvements. Section 3 presents our proposal to improve an hash based stateful
packet classification scheme in a distributed access control environment. W e address
dimensioning issues in section 4 and perform a comparison with the non distributed
approach. We also briefly present an implementation of our architecture with the ns
simulator. Finally section 5 summarizes the pro and cons of our proposal and high­
lights possible extensions.

N. Mitrou et al. (Eds.): NETWORKING 2004, LNCS 3042, pp. 25-37, 2004.
© IFIP International Federation for Information Processing 2004

26 0. Paul

2 Related Work

The management of distributed access control architectures has generated a lot of
work in the last few years [1][2]. The goal is usually to automate the configuration of
a set of access control devices under a single administrative domain. An interesting
aspect regarding these techniques isthat they acknowledge the fact that current access
control architectures are usually made of several "layers" thus leading to the traversal
of multiple redundant filters for most communications. Although this fact is not com­
pletely new, we believe that the integration of access control functions in a wide
range of network devices as weil as a better understanding of insider risks has led to a
wide increase in this redundancy over the last decade. Our architecture takes advan­
tage of this redundancy to distribute parts of the access control functions over several
filters.

Load balancing is another weil known technique to share processing Ioad between
several components. However the Ioad is usually shared by a front device (e.g. DNS
server, Ioad balancer) among several components. Compared to such approaches our
architecture may be considered as a Ioad balancing scheme where the Ioad balancing
occurs between "serial" devices instead of occurring between "parallel" devices as
usual, the distribution function being implemented in each component. Consequently
our scheme does not necessitate more devices than those available in a network while
providing similar benefits in term of processing performance. On the other hand Ioad
balancing architectures often provide fault resilience which is not our case.

Tunneling techniques can be used to bypass packet filters by short-cutting packet
filtering functions or by obfuscating necessary filtering information. A similar result
may be reached by disabling access control or state maintenance functions or limiting
their use to specific communications. However they require some sort of signaling in
order to set up a context in each device which can induce strong performance penal­
ties in particular in the case of short flows. Moreover choosing the right source and
destination for tunnels in order to bypass selected filtering components and making
sure that the filtering policy is still enforced can be a difficult task.

3 A State Distribution Scheme

Stateful packet classification [3) is usually performed in two phases. The "dot" classi­
fication phase occurs first. The goal is to find if the packet can be matched to an ex­
isting connection. When it can, the action specified for the packet can be directly
retrieved from the connection context. In the other case, the whole classification pol­
icy has to be searched for a relevant rule using "rectangle" classification. "dot" classi­
fication is distinguished from "rectangle" classification because it is usually much
faster since it deals with specific values while "rectangle" classification deals with
ranges thus leading to more complex treatments. As a result keeping a state about
connection brings benefits from security and performance points of view. However
"dot" classification is only possible if a connection context has been previously set up
using "rectangle" classification. Several methods exist today to store such a context,

Improving Distributed Firewalls Performance through Vertical Load Balancing 27

however the method we focus on here is an hash based answer. The hash function is
involved in two operations.

After "rectangle" classification, a hash value is computed over a limited number of
fields (i.e. protocol, source and destination addresses, source and destination
ports). This hash value points to a bucket that will be used to store the connection
state.
For "dot" classification, the same fields are extracted from each packet and used to
compute a hash value that points to the bucket used to store the connection state.

In the case where no corresponding connection is found (either because the bucket is
empty or because no matehing connection is found), "rectangle" classification has to
be perforrned in order to fill the hash table with the corresponding connection.
Keeping a state in a single hash table can result in high collision rates thus leading to
a large number of states kept in a single bucket and an increased "dot" classification
time. A way to solve this problern is to use a multiple hash functions [4]. The state
hash table of size m is divided into n smaller hash tables of size rnln where each table
uses a separate hash function. n hash values are now computed over the packet con­
tent and point to a specific bucket in each hash table. In order to Iimit the number of
concurrent states in each bucket, one selects the hash table including the bucket with
the lowest depth. This approach however has two main drawbacks:

n hash functions have now to be computed for each packet after reetangle classifi­
cation and for hash classification.
When performing hash classification, one bucket in each n tables has now to be
searched in order to find the relevant state.

Another point we want to highlight is that contexts are usually memory consuming.
For example keeping one state in pf requires roughly 150 bytes of memory which
means that keeping states for a lOGbits/s Ethernet links would require several giga­
bytes (W e later detail how we reach these numbers).

3.1 State Distribution Problem

Let's now consider a distributed filtering architecture where several filters are avail­
able on the path between any source and destination. Let's also assume that each filter
implements the basic hash classification process described earlier. Each filter has to
compute at least one hash value over the packet content in order to perform access
control functions. Our goal is to take advantage of these hash functions to simulate
the behavior of a single packet filter implementing the multiple hash functions
scheme. This would allows us to keep the improvements brought by a multiple hash
function scheme while avoiding the corresponding drawbacks.

H,(P)~ ~ H',(P~ B

"'"I, H'(P)I 8
(•) H1(P)~ H',(Pi

(b) ,H,CP)~ 1J HiP)~B~ (c) - f--

Fig. 1. Various distributed hash based fittering scenario. (a) represents two single hash filters.
(b) represents two multiple hash filters. (c) represents our proposal

28 0. Paul

Figure 1 illustrate the difference between our proposal and other hash based "dot"
classification methods in a distributed environment. (c) represents the suggested ap­
proach in which tablesthat were previously included in a single device are now scat­
tered over several devices thus reducing the memory requirements for each filter.

Although this approach may seem superior it bears several problems:
1. The selection algorithm cannot be used as is since there is no way for device A to

know how many packets are stored in device B. Packets stored in B may come
from filters others than A. Additionally, A and B may have different resources.

2. When receiving a packet P, B doesn't know if P has been already filtered by A.
Packets with spoofed addresses may reach B, be considered as already treated
without actually going through any access control check.

3. If a corresponding state cannot be found in A when receiving a packet, it is impos­
sible for A to know if the state is rnissing because no packet has been previously
received for this connection or because the state is located on B.

neighbors
identification

Packet
classification

Fig. 2. Overall filtering process

W e address these problems in the three following sections. The overall filtering
process is presented in Figure 2. Given a packet P, we first identify the upward and
downward neighbor filtering components U and D. We then checkthat the packet is
not fraudulent (F) using the upward filtering component identity. Given this informa­
tion, we execute the distributed packet classification algorithm. Finally, we sign the
packet using the downward filter identity and send the packet to its destination.

3.2 Neighboring Filters ldentification

The goal of stateful filtering being to match packets corning back and forth, symmet­
ric routing is mandatory for the operation of our architecture. As a result we expect
that firewalls [1] or at least the firewall management architecture [2] will be able, for
each couple (source, destination) to define which filtering components are on the
path. As routing tables may hold a lirnited view of the network topology (e.g. devices
using adefault route) this information may have to be provided to filtering compo­
nents so that upward (U) and downward (D) components can be identified.

Classical routing structures such as a Patricia trie can be used. However in order to
store filtering components information, we extend each routing entry with the down­
stream fittering component to the destination of the packet. The lookup process in­
cludes two addresses structure Iookups providing the addresses of the upward and
downward components if any.

lmproving Distributed Firewalls Performance through Vertical Load Balancing 29

3.3 Buckets State Estimation

Bocket State Transmission
As mentioned earlier we expect symrnetric routing to be used among our distributed
filtering components. Our approach to estimate the state of a bucket is to transmit this
information between filtering components. In order to do so we define an experi­
mental DSCP value using the first three bits (a,b,c) of the TOS field. This new field
indicates the percentage of state space in use in 118th as indicated in Figure 3. Bit f
indicates if the packet has already been filtered by an upstream component. Finally,
the next two bits indicate an experimental DSCP as specified in [5].

II a I b I c I f II II I , I ,
EX P

Fig. 3. TOS Field

Filtering components maintain a state table indicating the number of states used for
each bucket in each adjacent filtering component. We say that two filtering compo­
nents A and B are adjacent for a comrnunication (Co) and a routing topology when
there is no other filtering component C that Co would cross after going through A and
before going through B and reciprocally. Let's consider the set made of the n filtering
components adjacent to A, S = {B1 •• BJ. A maintains a state table TBJl..SBJ where
TBm indicates the proportion of states used in bucket j for the state table in B, and
SB, represents the number of buckets used in B,.

When a packet P is received, the DSCP value is retrieved after the packet is vali­
dated and used to update the adjacent component Bi, TBr This DSCP value is set to
the value in TA for packet P before the packet gets forwarded.

Packet Treatment
When receiving a packet P, A extracts the set of invariant fields used to build an in­
variant descriptor P'. Note that the way P' is built depends on the direction of the
packet. Depending on P' three cases may happen:
1. P belongs to a flow that is handled locally in which case a bucket in TA should

include the corresponding state.
2. P belongs to a flow that is handled remotely. This flow can be either treated by an

upstream component (2.1) or by a downstream component (2.2).
3. P belongs to a new flow that is not yet treated.

Using the local and adjacent filtering component identifiers A and B,, A generates
hash values H=H(P', A) and H'=H(P', B). In order to test case (1) we Iookup the state
in table TA[l..SA] by going through the states located in bucket TA[H%SA].

Using TB, is unfortunately not sufficient to differentiate cases (2) and (3). We
therefore need an additional table to distinguish flows that are handled remotely from
unknown flows. This table has to allow us to clean connections that have timed out
and therefore has to allow us to keep a timer for each flow. In order to do so we build
a "temporal" bloom filter BF[l..SF] in which each component of the couple
(BF[H%SF], BF[H'%SF]) can take two types of value.

30 0. Paul

- 00 indicates that the corresponding flow is not present in the filter.
- (01, 10, 11) indicates the value of the timer the last time a packet belonging to the

flow was received.

Table 1. Meaning of timer values

(xx,yy) value Meanin~

(00,00) No flow.
(OO,xx), (xx,OO) Partial collision.
(xx,xx) No collision, Total collision with same timer values .

. (xx,yy), (yy,xx) Partial collision, Total collision with different timer values.

The couple (BF[H%SF], BF[H'%SF]) can therefore indicate four types of events as
indicated in Table 1. Note that partial collisions are not problern here since half tim­
ing information is still accurate. Total collisions are more problematic since they can
transform a non existing or timed out flow into a valid one. We later show how the
probability for these collisions can be controlled by rightly designing the bloom filter.

Fora timeout value T we maintain a timer CT that is increased every T/3 and can
take values (01,10,11). Before increasing CT we set to "00" entries that hold a value
equal to the upcoming CT. Note that timers arenot kept here for security purposes but
only to Iimit the number of "foreign" states that have tobe stored locally.

P,U,D,F

Fig. 4. Detailed packet treatment

If (3) applies to P (i.e. BF[H]=OO or BF[H']=OO), we follow the multiple hash
function algorithm [4] to decide where the state should be stored. To do so we com­
pare T A[H%SA] and TBJH'%SBJ
- If TA[H%SA] > TBi[H'%SBi] we store the packet value in the bloom filter (i.e. we

set BF[H%SF] and BF[H'%SF] to CT).
If TA[H%SA] <= TBi[H'%SBi] we perform classical packet classification opera­
tions and store the corresponding state in TA. We also mark the TOS f bit.

Improving Distributed Firewalls Performance through Vertical Load Balancing 31

If (2) applies to P the action depends on the value of BF[H] and BF[H']. If both
carry the same value, we update the bloom filter with the current timer. In the other
case, we update the oldest identifiers. This is aimed to make sure that only one con­
nection gets updated in the case of a partial collision.

Figure 4 provides the whole process followed to distinguish case 1, 2.1, 2.2 and 3.

3.4 Packet Checking

As mentioned earlier, our scheme does not provide a way for B, when receiving a
packet, to know if it has been previously filtered and accepted by A or if it reaches B
because of the state distribution technique. In order to solve this problern we suggest
a weak authentication by overloading the ID field in the IP packet header. The usage
of this field for operations unrelated to packet fragmentation as been suggested for
packet tracking operations one of the reason being the small proportion (i.e. less than
0.5% on average) of fragmented traffic on the Internet [7]. Our scheme is also based
on the ability for adjacent filtering components to share a common secret key K.

When a packet P reaches filtering component U, we use the downward filtering
component identity D to retrieve the corresponding secret key Kou· W e then use the
invariant part of the packet P' and Kou to compute a HMAC value H" and store H" in
the ID field of packet P before sending it toward its destination. When receiving
packet P, a filtering component first identifies the neighboring filter U previously
crossed by P. As routing is expected to be symmetric, this can be performed with an
extension to the neighbor identification. It then retrieves the corresponding key Kou•

theinvariant part P' of P, computes H"' using P' and Kou and checks if H"' matches the
content of the ID field. If the two values match, we perform previously specified
operations. In the other case, we mark the F selector so that P is treated locally.

As the size of the authentication field makes it vulnerable to brute force attack we
need a mechanism to discourage such attempts. The mechanism we present here does
not prevent a determined attacker to find the key but instead gives the security officer
enough time to identify such attempts. To do so, we maintain a counter C0u for each
key K ou indicating the number of failed authentication operations since the last key
change. When the number of tests performed by the attacker passes over 0.1% of the
possible key space (i.e. roughly 65 packets), we reconfigure the filtering process so
that every packet supposedly going through U is treated locally. In order to stop this
local processing, we maintain a counter P ou indicating the number of packets suppos­
edly coming from U. When P0 u passes over 30.R where R is the maximum number of
packets that D can handle per second, we perform a new key exchange and reset
counters. As there is no difference in the filtering process once all packets are filtered,
an attacker cannot Iearn anything from the system after the first 65 packets. He then
has to wait for at least 30 seconds before being able to make another attempt. The
probability for him to succeed to find the key evolves slowly from 10% after 2 hours,
50% after 5 hours to 90% after 20 hours.

Finally, we mention that this weak authentication process can be avoided in some
cases when all communications received by a fittering component go through another

32 0. Paul

filter first. This is in particular the case for filtering components that are collocated
within a single device.

4 Dimensioning Issues and Evaluation

Bocket State/DSCP Code Relationship
As mentioned earlier two filtering components can use hash tables with different
sizes, as a result the DSCP value is not absolute. W e therefore need to define a rela­
tion between the number of states kept in a specific bucket, the number of states kept
by the filtering component and the DSCP value. Given a worst case state Iookup
speed, and the fluid Iimit simulation results provided in [4], we can bound the maxi­
mal number of states expected for a bucket in the state table (Smax). Using this limit
and the number of states S Iocated in bucket TA[H%SA], we define the (a,b,c) DSCP
bits as: DSCP = TA[H%SA] = !(SI Smax) . 2'1 where lxl represents the integer value
for x.

Bloom Filter Dimensions
In order to dimension the bloom filter, we first select the bandwidth for which we
want to dimension the filter (i.e. 10Gbps in our case) and consider that the bloom
filterwill store most of the traffic. We then compute the maximal and average num­
ber of new flows treated during a few selected lengths of time. To evaluate the likeli­
hood of each flow duration we use an approximation of the flow duration probability
distribution provided in [6]. This approximation is provided in Table 2.

Table 2. Distribution of flows

Flow dur. (s) % flows in dass Flows/s (worst/avg)
[c0=0;c1=1] p0=90 [28125.103 ; 351562]
[c1=1;c2=10] p1=9 [28125.102; 35156]
[c2=10;c3=1001 p2=0.9 [281250; 3515]
[c3=100;c4=1000] p3=0.09 [28125; 352]
[c4= I OOO;c5= 1 0000] p4=0.01 [3125; 39]

For the worst case scenario we consider single packet flows where the size of each
packet is minimal (i.e. 40 bytes). For the average case, we use the internet average
packet size (i.e. 320 bytes) and an average of 10 packets per flow. Although we ex­
pect our architecture to be subjected to the worst case scenario during short period of
time (i.e. DDOS attacks), we do not expect these periods to exceed a few seconds as
external mechanisms should be put in place to avoid such traffic conditions.

A point however not considered in Table 2 is the timeout value for the bloom fil­
ter. This value must be sufficiently low to avoid high collision rates and sufficiently
high to prevent active Connections to get cleared. Consequently we compute maximal
collision probabilities for various bloom filter sizes and timeout values. To do so we
first evaluate the number of flows in the filter at time t, Mf(t).

Improving Distributed Firewalls Performance through Vertical Load Balancing 33

Mf (t) = (N ·To) + Nr(t)) (1)

Where N represents the nurober of new flows received each second, To represents
the clearing timeout value and Nr(t) represents the number of flows from previous
timeout periods that arestill active at timet. Nr(t) can be computed as follows:

i=< j=minl 4~g"UII+t) (min(i , c . 1)- c .)
Nr (t) = N · L (1- (Po+ 2... 1+ 1 • P)

i=l j=l (c j + l - c)

(2)

Mf(t) is maxirnized when t > 10000 so that:

Mf max "" N · (To + 2) (3)

As we expect most of the states to be in the current CT time period, we compute a
collision rate as if we were using a classical bloom filter. We give here the maxima~
collision probability (Cmax) in a bloom filter of size 2m after storing Mfmax flows.

C max = (1 - (1 - 1/ m) 2 Mf "'") 2 (4)

Figure 5 provides the maximal false positive probability for several bloom filters
sizes (16Mb, 64Mb), flow rates (average and worst case scenarios) and timeout val­
ues. A 64Mbytes bloom filter with a 30 seconds timeout seems appropriate.

~-­
,, l

l ~W01"111<11M --

01 -~--_;_--I- -- ~ -- ~ -~~.---
: : :---f--r :
l ,_.............

001 _ _.~-:- -- :--- ~ --~--!-
1 I I ' 1 I

I

---~--~-----~--~--~---
1 I I f

I I
I

I I I I I I I I
00001 --,-- - 1- - - ;- - - r - - - -- ,--- 1- - -,- -

I I I I
I

Fig. 5. False positive probability for various bloom filter sizes, flow rates and timeout values

Independently from the timeout value, flows identifiers can be overwritten by
newer flows. In our case, flows under 100 seconds are unlikely to get overwritten
(around 6%). On the other hand flows over 400 seconds are very likely tobe over­
written in the filter (more than 50%). By being overwritten, a terrninated flow will
appear as still active for the duration of the overwriting flow. However, as shown in
Table 2, the likelihood of the overwriting flows to have a long duration is very small.

34 0. Paul

As a result overwriting operations will have a limited impact (around 4 seconds on
average) on the evaluation of long flows.

Another point is that packets generating a collision do not bypass the access con­
trol architecture. As each packet goes through several filtering components the overall
probability to reach the last filtering component and being misclassified in each one
decreases exponentially with the number of filtering component crossed.

Finally if some packets reach the last filter without being treated we expect the
identification process to set mandatory filtering (F) for remaining packets.

Neighbor States Tables Storage
In order to evaluate the size for these tables we need to set a Iimit to the number of
concurrent states that can be stored in a bucket. In order to do so we could have
used formula (1). We instead choose to use indicators computed from real-life packet
traces which allows us to evaluate state numbers and assess the validity of Mf(t) at the
same time. We therefore use indicators of average link utilization (U" 8), average
number of active flow entries (E,.,) and maximum number of active flow entries (E""'.)
computed over 51 long packet traces totaling to more than 900 hours of network
monitoring. These indicators were computed by the Sprint IPMON project [9] on
traces captured in 2002 and 2003 at several locations within Sprint operational net­
work. We use these indicators to define ratios R,., = E,JU, •• (average number of
states per bps) and Rmax = Em,.1U,., (maximum number of states per bps).

Table 3. Number of buckets and memory requirements for various bucket depths

Scenario Num. of buckets Max. Num. of states Memory required
Worst Case 10.106 9 5Mbytes

40.106 6 15Mbytes
Average Case 2.75. 106 9 1.3Mbytes

11.106 6 4.1Mbytes

In our case R,., values remain within [4.104 ; 40.104] with an average value
R,.,=ll.104 (Note that our previous model provides a similar value) while Rm•x values
remain within [7.104 ; 80.104]. In order to compute the number of states kept we use
two indicators:
- The maximal Rmax value (0.0080) models the worst case situation.
- The average R,., value (0.0011) models an average scenario.

Table 4. Memory requirements and gains per filtering component depending on the average
number of filtering components between a source and a destination

Num. filt. comp Max memory A vg memory req. Gain per filter
req.

Original scheme 12GB 1.6GB 1.0/1.0
2 6.2GB 905MB 1.9/1.8
5 2.6GB 425MB 4.6/3.8
10 1.4GB 265MB 8.6/6.1

Improving Distributed Firewalls Performance through Vertical Load Balancing 35

Using these two indicators, we can compute the average and maximal number of
flows. Combined with fluid limit simulation results provided in [4], we estimate the
storage requirement for a component depending on several bucket depths (Table 3).

Assuming an average number of 10 neighbors we estimate the total storage to lie
between 13 and 150 Mbytes depending on the maximum number of states per bucket.
As a consequence the total storage required to implement our scheme stands between
77 and 214Mbytes. Table 4 provides memory requirements, overhead per filter and
gain per filter depending on the number of filters crossed by a communication.

Processing Requirements
In order to evaluate our scheme, we compare the processing requirements to the
original classification scheme [4]. Table 5 provides the number of CPU cycles used
by both approaches in each filter where C represents the cost for "rectangle" classifi­
cation, H the cost for a hash over 40 bytes, M the cost for an HMAC over 40 bytes, L
the cost for an address lookup and N the number of packets per flow.

Table 5. Operations performed by Classical and Distributed architectures

Filter# Classical Distributed
1 C+2HN C+N(2H+2M+2L)
2,3, ... C+2HN N(2H+2M+2L)

Figure 6 shows the difference of time complexity in processor cycles between both
schemes using C=10000 (linear search through 200 rules using 5 fields [3]), H=196,
M=272 (UMAC performance tests [8]), L=250 and several N values. The distributed
scheme is clearly more interesting for short flows (i.e. less than 6 packets per flow)
while the regular scheme is more interesting for long flows (i.e over 15 packets per
flow). It should however be noted that a faster packet classification scheme would
render our scheme less attractive from a processing requirement point of view.

,_., F(a,11-

l ... , F(-..!11 -

1 I I J ~ I ~• . .'01

'"'" f --~ --~ ----~ -_ ~ _-- ~ - ~ --~ ~":' ;-=-
I,.....- I I I I

... , I I I I I I I

L--~--~--~- - ~ - ~--~ --~--~-­
~ ~ ~ -~ ~ ~ ~

I 't----..1 I I I

'____.__ ' ' --,.. --L_ '
I --..... I I I ,____

~0000 --~--~-- ~ --~· -- ~ -- ~ --
'__

"

Fig. 6. Difference in term of processing requirements between distributed and regular ap­
proaches depending on the number of packet filters

36 0 . Paul

Implementation and Tests
This architecture has been implemented under the ns simulator. The goals for the
implementation were twofold, we wanted to check the correct behavior of the archi­
tecture and test its behavior under reallife traffic. The neighbor identification module
as well as the classification algorithm were implemented as an extension to the cur­
rent address classifier class. As ns does not support real IP addresses in packets, we
also extended IP packets allowing us to transpoft the packet header information re­
quired by our scheme as well as protocol specific information. A few modifications to
other parts of the simulator were also performed in order to facilitate our tests. At the
time of this writing only the protocol behavior was tested using generated traffic.

5 Conclusion

W e present in this paper an architecture for connection states maintenance that was
designed to reduce memory requirements as well as Iimit processing requirements in
some specific cases. Our main contribution is to show how an existing state mainte­
nance scheme can be distributed and that such a distribution can bring large im­
provements. Although this paper only focuses on a single state maintenance tech­
nique, we believe that such distribution could apply to other techniques.

On the other hand, our approach makes the implementation of functions like flow
monitoring more difficult and renders functions like diffserv or fragmentation impos­
sible. Additionally our scheme may generate flow interruptions in the case of route
changes when the filter holding the state of the rerouted flows is Ionger part of the
path between the source and the destination. However, this problern would also hap­
pen with a regular access control architecture.

This work is currently continued in two directions. W e currently work on a reallife
implementation that would allow us to perform tests with real life traffic. This would
allows us to compare results with traffic models used in this paper. Another direction
is to explore improved bloom filter structures in order to Iimit collisions by perform­
ing a separation of short and long flows.

References

1. Josbua D. Guttman. Filtering Postures: Local Enforcement for Global Policies. IEEE Sym­
posium on Security and Privacy. Oakland. May 1997.

2. Yair Barta1, Alain Mayer, Kobbi Nissim, Avishai Wool. Firmato, A Novell Firewal! Man­
agement Too!kit. IEEE Symposium on Security and Privacy. Oak!and. May 1999.

3. Daniel Hartmeier. Design and Performance of the OpenBSD Stateful Packet Filter (pf).
Usenix Annual Technical Conference. June 2002.

4. Andrei Broder, Michael Mitzenmacher, Using Multiple Hash Functions to Improve IP
Lookups, In proceedings of IEEE Infocom 2001. Anchorage, Alaska, April 2001.

5. K. Niebols and al. Definition of the Differentiated Services Field (DS Field) in the IPv4 and
IPv6 Headers (RFC 2474). December 1998.

Improving Distributed Firewalls Performance through Vertical Load Balancing 37

6. Yin Zhang and al. On the Characteristics and Origins of Internet Flow Rates. ACM
SIGCOMM 2002. Pittsburgh, USA. August 2002.

7. Colleen Shannon and al .. Beyond Folklore: Observations on Fragmented Traffic".
IEEE/ACM Transactions on Networking. December 2002.

8. John Black et al. UMAC: Fast and Secure Message Authentication. Advances in Cryptology
- CRYPTO '99. Lecture Notes in Computer Science, vol. 1666, Springer-Verlag, 1999.

9. Sprint Labs. IP Monitoring Project. A vailable at http://ipmon.sprint.com/ipmon.php.

