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Abstract. In this work we model the relationship between the capacity 
and the Quality of Service (QoS) offered by the firm in a competitive 
scenario of two firm's working to maximize their profits. Using simple 
queueing theoretic models we study the sensitivity of a firm's market 
share to price, capacity and market size. Our preliminary studies yield 
important properties of the equilibrium solution which may further 
provide important "engineering" guidelines for performance planning 
and pricing strategies. 
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1 Introduction 

The pricing of electronic goods, network bandwidth, and the internet itself has re­
ceived considerable attention in the literaturein the past decade. In this paper we 
arenot concerned with pricing the internet, which generally involves discussions 
of "best effort" classes versus paying customers, and often of shadow-price-based 
schemes which assume marginal cost pricing [4,1]. Rather, we consider pricing 
of, and more generally economic planning for e-commerce services, such as web 
hosting, from the perspective of the major players in the market. 

Many of the preoccupations are the same in modelling e-commerce markets 
as in modelling the internet. Queueing theory and other stochastic relationships 
are vital. Customer behavior, for example, is modelled through distributions, and 
arrivals of customers may be assumed tobe Poisson, exponential, etc. However, 
we are not concerned with marginal cost pricing, or in ensuring that a best 
effort (free) service remains in place. E-commerce services are by definition paid 
services, and the motive of firms in the e-commerce marketplace is quite clearly 
towards profit maximization, rather than towards public service, as much of the 
internet is and will continue to be. 

Nonetheless, pure profit maximization cannot be a representative model, as 
the market allows for competition, and even very large providers can face shifts of 
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their dientele depending upon what happens in the marketplace. In this respect, 
an equilibrium framework is appropriate for modeHing firms' optimal choices. 
Indeed, the equilibrium framework allows us to compute stable price, capacity 
and QoS choices for the firm, in the presence of other firm(s) and a universe 
of customer demand that can shift across firms, as a function of the prices and 
QoS that each one offers. The paradigm that we employ is the Nash equilibrium 
concept, in mixed strategies; that is, the number of users is sufficiently large, 
that fractional quantities are quite justified, and can just as easily represent 
percentages of total demand levels. (Pure strategy equilibria would require each 
user to choose either provider 1 or 2, and the number of users choosing one or 
the other would be a natural number; this restriction on the strategy set leads 
to possible non-existence of a (pure strategy) equilibrium, and does not in our 
setting add any better insight into the model). 

It is however of interest to develop models of pricing/QoS behavior of more 
than one provider in the electronic marketplace. Indeed, in the market for e­
commerce services, other firms can adjust their price schedules rapidly in re­
sponse to that of a competitor. Furthermore, in the On Demand paradigm, 
firms can augment their capacity / QoS levels instantaneously as weil. Then, the 
question for any provider is no Ionger how to set prices or capacities when other 
firms' price choices are given, but rather whether the joint setting of prices by 
all providers will tend towards an equilibrium, and, in the affirmative, what are 
the properties of the equilibrium. 

The basic formulation of the demand and the market, as well as the choice 
mechanisms of the users, is taken from [5]. In that reference, a two-firm market 
(which may represent one large firm, and the rest of t he market as the second 
firm) is considered in a manner similar tothat of [3], but with one very important 
difference. Namely, the Quality of Service (QoS) was introduced and along with 
it, a continuous distribution of price-QoS tradeoff parameters, to describe the 
dispersion of users' choices across the price-QoS frontier. 

Indeed, the incorporation of QoS in the model is vital, and well understood: in 
the commerce of electronic goods, there is generally some product differentiation 
that is naturally present or can easily be introduced. While spatial factors do not 
play a role with respect to the Internet, other variations in the quality of service 
do exist, such as host server and network speeds or response times, availability, 
reliability etc. 

However, if we assume that all users react in the same way to price-QoS 
tradeoffs, we would obtain seriously biased results in terms of the market share of 
each firm. Product differentiation allows firms to increase market share because 
the users are inherently different in their willingness to pay for different levels 
of quality. To use the internet as an example, some users will pay the higher 
price of DSL to have a faster, broadband access to the Web, whereas others 
will not be prepared to pay double the price of a telephone dialup carrier, and 
will experience usually slower service. The distinction is not necessarily binary; 
often DSL providers offer multiple service classes, higher QoS is accompanied 
by higher price. Assuming that the service choices are Pareto optimal · for some 
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user, then each price-QoS service offering will attract a different segment of the 
population, and each segment can be characterized by its own, unique price-QoS 
tradeoff parameter. We model these tradeoff parameters explicitly, as introduced 
in [5] and used in the context of strategic outsourcing in [2], by a continuous, 
general, random distribution. Depending on the particular distribution chosen, 
different results are obtained. It was argued in [5] that forms such as exponential 
(or Pareto, log-normal, etc) are most representative ofthese tradeoffs in practice. 

In this paper, we extend the work of [5] by generalizing the notion of quality 
of service (QoS) ; that is, we concentrate on a particular characterization of QoS 
that is of importance in e-services, namely, response time, or delay, and model 
explicitly the dependence of delay on service capacity. The resulting model is 
significantly more complex than the capacity-independent versions of [5]. Indeed, 
it is achallenge to determine the feasible values of the parameters, price, capacity, 
and QoS ( delay). 

Our contribution in this paper is therefore to formulate this more complex 
model, and to derive an auxiliary problern whose solution gives feasible values of 
the QoS/market share for each firm. In this context, computing a Nash equilib­
rium becomes a complex numerical exercise that makes use of our derivations. 
We leave a study of particular Nash equilibrium, as a function of the input 
parameters, to a future research study, by ourselves or others. 

In such an equilibrium setting, the paradigm would work as follows: Supplier 
1 (for example) determines his capacity vector so as to maximize some objective 
(profit) as a function of prices of his own service and that of his competitor(s), 
and as a function of his competitor's capacity ( which determines then the compe­
tition's delay, or QoS). Prices, however, arenot fixed: for each value of capacity 
that supplier 1 considers, a vector of equilibrium prices (Pl,P2) would be deter­
mined, using the Nash paradigm, described above. Depending on whether the 
overall profit of supplier 1 increases or decreases, he modifies his capacity, and 
so on, until reaching a stationary point (local optimum). This local optimum 
would represent a "good" capacity-price offering for supplier 1, given the market 
context, and the responsiveness of the competition (in its price( s)) and of the 
end user demand (in its patronage of supplier 1 or 2). This paradigm represents 
an instance of a Stackelberg, or leader-follower, game. While we do not compute 
values of the Stackelberg equilibrium here, we provide the necessary machinery 
to formulate and solve that important problem. 

The structure of the paper is as follows. In Section 2, we recall the framework 
of [5], that is the price and QoS hypotheses, and price-QoS tradeoff parameters, 
and how they fit into a Nash equilibrium model. In Section 3 we model the 
explicit relationship between the QoS offered by a firm and its capacity and 
provide conditions for the existence of non-trivial market share of each firm. 
The model is studied for the special case of uniformly distributed price-QoS 
tradeoff parameter and an explicit closed form expression for each company's 
share is obtained in Section 4. We then study the sensitivity of the solution 
to different parameters which provides furt her insight . Finally we conclude in 
Section 5 and present directions for further research in this area. 
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2 The Price-QoS Market Model with Delay-Capacity 
Relations 

Suppose that the e-service affered by firm i = 1, . . . I is characterized by a 2-tuple 
(pi, di(ci)) where Pi is the price charged for use of the service and di(ci) is some 
measure of the quality of service perceived by the customer. Here, as opposed to 
in [5,2], the QoS shall depend upon, among other things, the capacity held by 
firm i. Note that Pi is independent of the usage level of the customer, referred 
to as fiat price in literature. (Usage-dependent prices are treated in [5,2]) . 

The quality of service will be taken in the remainder of this paper to be 
some measure of service performance, namely, the expected delay incurred on a 
typical request. Note that it is possible to extend this framework to more than 
two (possibly usage-dependent) service characteristics. For simplicity of analysis, 
however, we shall continue to refer only to the two QoS characteristics of price 
and capacity-dependent delay. 

Each user is then characterized by a particular value of the variable a that 
models his willingness to pay for a higher quality of service. That is, a gives 
the user's own tradeoff between price and delay. We shall suppose that the 
user tradeoff parameter a is described by a random variable, distributed over 
the population of potential customers and taking values in [0, 1). Let F be the 
distribution of a. Consider one potential customer n. Given his own value of the 
tradeoff parameter, an, the customer will optimize his choice of provider, among 
the I firms , by choosing the one that minimizes his combined cost: 

(1) 

where "( = 1 and is introduced for dimension compatibility (e.g., if Pi is in dollars 
and di in minutes then the unit of "f is dollars/minutes). Observe that a is a 
dimensionless quantity. Taking a to be a random variable is a critical feature; we 
are in effect capturing the universe of users' behaviors with respect to the cost 
vs. quality tradeoff. For example, a user requiring low-priority service, for email 
or file transfer operations, would be characterized by a high value of QoS, a, 
e.g., close to 1, whereas a job requiring more bandwidth, faster service, etc. and 
for which the user is willing to pay for the better quality, would be characterized 
by a low value of a (e.g., close to 0). As has been observed in internet traffic as 
weil as in the population in general, the percentage of low values of QoS is much 
higher than the percentage of high values, across users. This observation has an 
impact on the form of the distribution of the tradeoff parameters, a, as we shall 
discuss later in this paper. 

Note that it is possible to have the tradeoff parameter be dimensionfull, call 
it w -in units of dollars per time, by defining a generalized cost of p + wd(c). It 
is this latter definition that was used in [5,2). Here, t he use of a parameter that 
varies from 0 to 1 facilitates some of our computation and hence the price-QoS 
tradeoff parameter was normalized in the above manner. 

We analyze the case of I = 2 providers. While [5] considered different price 
structures (linear, fl.at, etc. and the different possible combinations of those across 
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providers), we simplify that part of the model here by letting all prices be flat, 
i.e., usage independent, and instead exploit the explicit dependence of QoS on 
the firm's capacity. 

Thus a customer chooses provider 1 if 

(2) 

and chooses provider 2 otherwise. 
Without loss of generality, we can suppose that p 1 > p2 . We can then note 

that if d1 ( cl) 2: d2 ( c2) then no rational user will join the first firm. In other 
words, Va E [0, 1], ap1 + (1- a)'yd1(c1) 2: ap2 + (1- a)'yd2(c2). Therefore, as we 
are interested in the scenario of competitive markets, we suppose that d1 > d2 , 

that is, the supplier 1 offers a better quality of service (lower delay) but as such 
charges a higher subscription price. We will then denote in the following by d 
and p the delays and prices differences respectively: 

In the general setting of usage-based pricing there are thresholds for which 
one or the other supplier is cost-effective for a user. Since in our model, the 
customer pays a one-time subscription fee for both providers the threshold is 
only in a and can be written as a :5. P+~d for choosing supplier 1. Indeed, since 
supplier 1 offers a better QoS (lower delay), users with lower price-QoS tradeoff 
parameters prefer supplier 1. 

The threshold value of the price-QoS tradeoff parameter, w = ~~d deter­
mines the split of users between the two providers. We also introduce tbe notation 
P = 1 - F. Thus the profits of providers 1 and 2 can be expressed as follows: 

(3) 

where ~i are the marginal costs of providing capacity for each of the firms, 
i = 1, 2. This can represent e.g., the amount paid by the provider i to the 
bandwidth agent if he leases capacity. 

3 Modeling Capacity-Related QoS Metries 

The arrival process of customers is a Poisson process with rate .A. To customer 
n we associate a vector (Sn, an) where Sn is the amount of work brought by 
user n and CY.n is the preference parameter which reflects the customer's choice. 
The amount of work brought by a customer has some general distribution with 
mean 1/ f.-t and second moment rY2 . Each customer is processed at the server in a 
particular discipline, e.g. First-In-First-Out (FIFO), Last-In-First-Out (LIFO), 
Processor Sharing (PS), etc. An arriving customer joins the server which min­
imizes its disutility function which we take as a function of the QoS perceived 
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by the user and the price paid by the user. Let us assume that {an} are i.i.d. 
random variables with distribution F. 

Weshall assume that both firms make use of the same service discipline. We 
then have (see e.g. [6]) the following expressions for average delay depending on 
the service disciplines at each firm's servers: 

- Gase I - FIFO ILIFO: Then each server can be modeled as an MI G 11 queue 
with FIFOI LIFO service. The mean delay at server i (i = 1, 2), di is given 
by the classical Pollaczek-Khinchin formula: 

Gase II- PS or LIFO with pre-emption: The mean delay is insensitive to 
the service distribution and is same as the delay in an MIM 11 FIFO queue 
with mean servicerate = 1/J.L. Thus: 

(4) 

Observe that ( 4) is implicit in di, as the right hand side is also a function of di, 
since w = PJd d. We shall next study the sensitivity of delay to capacity for some 
specific distributions for a. We restriet the analysis to the case where delays are 
given by ( 4). 

3.1 Existence of Salutions 

Consider a system in which the two competitors announce prices p1 and p2 

and expected delay d1 and d2 . The custorners arrive and join the queue which 
rninirnizes their disutility function. Thus there is an independent splitting of the 
aggregate arrival process A based on the two portions of the price-QoS tradeoff 
distribution, into A1 = AF( w) and A2 = AF( w) where Ai is the rate of Poisson 
arrivals at firm i, i = 1, 2. Di are the true mean delays (given by (4)) and di are 
the announced delays. We do not consider here cases when the firms can cheat 
the customers by announcing a smaller delay but later not satisfying it, i.e. , 
Di > di, for any i = 1, 2 (because the capacity of the firm rnay not be sufficient 
to provide the announced delay to the custorners). Also we are not interested in 
the case when Di < di, for any i = 1, 2, because this will result in less revenue for 
the firm i. Thus our study is restricted to the scenario where Di = di, i = 1, 2; 
in other words, we are interested in the study of the fixed point equations ( 4). 

Proposition 1. Let Pi and Ci be given, for all i. Then, for any CDF F , the 
system of fixed point equations (4) admits at most one solution. 

Proof. Let us assurne there are two sets of solutions to (4), (d1 , d2 ) and (J1 , d2 ). 

Also, let us suppose that d1 > d1. From equation (4), we can write that dj" 1 + 
d21 = f.J-(c1 + c2) - A = d1 +d2 which is constant for given pararneters. Therefore, 
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- - - - - d 
we have d2 > dz > d1 > d1 Thus d = dz - d1 < d = d2 - d1 , implying PJ-rd > 

-ydd-. Therefore w < JJ and finally, as F is non-decreasing: d1 = 1 > 
P+'Y J.LCt->.F(w) 

~F(") = d1 which is a contradiction. D 
J.LCt- X 

3.2 A General Beta Distribution for Price-QoS Tradeoff a 

We shall suppose throughout that o: follows a Beta distribution with parameters 
a, b. The use of the Beta distribution on a random variable over the interval [0, 1] 
is very natural, and flexible. lndeed, depending on how one sets the two param­
eters, a and b, one can obtain a distribution approaching normal, exponential, 
uniform, etc. over the given, finite interval. 

The probability density f(x) and the cumulative distribution function F(x) 
of the Betadistribution are characterized by (with a, b > 0): 

r(a + b) b-l a-l 
f(x) = F(a)F(b) (1- x) X , (5) 

r(a + b) r a-1 b-1 
F(x) = r(a)F(b) Jo u (1- u) du. (6) 

Remark 1. Most types of market scenarions can be captured by working with 
different values of a and b in the Beta distribution for o:. For example, to char­
acterize the price-QoS-queueing game when the value-of QoS tradeoff param­
eter is not uniform, one can choose parameters a and b so that the form of 
the Beta distribution is skewed towards the origin, much like a truncated log­
normal distribution over [0, 1). This can capture the dynamics of a quality dom­
inant market. Further with a = 3, b = 2, the distribution is skewed towards 
1, making the market predominantly price-dominant and with a = 3, b = 3, 
the market is sort of an average market ( For price-dominant market one 
gets F(w) = 12 J0w(1 - u)u2du = 12w3 (~- tw) and for an average market 

F(w) = 12 J0w (1 - u) 2u2du = 30w3 ( ~ - ~ + W"2 ) .) 

3.3 Feasible Solutions 

Having characterized the distribution of o: we proceed to obtain the solution set 
di, i = 1, 2 of ( 4) . From ( 4) we have 

d= 1 
J.LCz - >..F(w) J.LCt - >..F(w). 

1 
(7) 

We now introduce a variable X to represent the fraction of users joining the 
second operator's system times >.. . Thus X = >..F(w). Also define A = J.LC1 -

>.. and B = J.LCz. Then from (7) we have: 

d = dt - dz 
1 1 

B-X- A+X. (8) 
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Solving for X, we obtain: 

d(B- A) - 2 + qj d2 (A + B)2 + 4 
X = 2d , with E = ± 1. (9) 

The following Lemma allows to constrain the feasible values of X and assures 
that X needs tobe greater than (B-A)/2 and hence E = 1: 

Lemma 1 (Existence of a solution to (4)). Any feasible solution X must 
satisfy 

B-A 
max(O, - A, - 2-) :::; X:::; min(A,B). (10) 

Thus, a necessary condition for the system of fixed point equations (4) to have 
at least one solution is max(O, -A, B2A) :::; min(A, B) , or equivalently that : 

). ). 
- :::; c1 + cz and cz - c1 :::; - . 
J1 J1 

(11) 

That is, together, the two providers can accommodate all the traffic, and the 
capacity of the second provider (with the higher price and lower delay) is not too 
much Zarger than that of the first. 

Proof The constraint 0 :::; X :::; ,\ is given by the definition of X . The constraint 
B;A :::; X results from the fact that d > 0. Finally, the positivity of d1 and d2 

implies that - A :::; X :::; B. 0 

Note that, from Lemma 1 we have B2A :::; X and therefore E = + 1 in 
equation (9). Let us assume that a and b are integers. Then from the definition 
of F(.) in (6), we note that for any pair (a, b) E N 2 , Fis a polynomial of order 
a + b- 1. From (9) we conclude that an acceptable X satisfies: 

2>.wP(w) = (B- A)w - 2 (1 ~ w) + (A + B)Zwz + ( 2(1 ; w) ) 
2 

(12) 

Thus w can be solved as the solution of a 2(a + b) order polynomial from (12). 
Observe that atmost one solution of (12) is acceptable as the feasible solution w. 
Indeed, it is the cut-off value-of-QoS parameter, w, which allows us to compute 
the market share of each firm. 

In the next section, we explicitly solve this quantity when the Beta distribu­
tion parameters are both equal to 1, thereby defining a uniform dist ribution of 
price-QoS tradeoffs on the interval [0, 1]. 

4 Application: Uniformly Distributed Price-QoS Tradeoff 
Parameter a:: 

We consider a special case of our model in which we let the distribution of a be 
uniform on the interval [0, 1] . Then, a = 1, b = 1 in (6) and F(w) = w, and we 
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have X= A.(1- w), which gives r!:. = ;..xx. Equation (12) allows us to write X 
as a solution of a fourth order pofynomial. 

However, by substituting ~ = ;..Xx in (8), we obtain X as the solution of the 
third order polynomial: 

P(X)- R(X) = 0, (13) 

where P(X) = p(A + X)(B - X)(A.- X) and R(X) = X(A- B + 2X). Thus, 
X can be found by examining the intersection of P and R. As P is a third order 
polynomial, there is either one or three possible values for X. However, observe, 
from Lemma 1 that the solutions of (13) may not all be acceptable in our system. 

Proposition 2. In the case of uniformly-distributed price-QoS tmdeoff parame­
ters a, when the conditions {11} are satisfied, {13} has always a feasible solution, 
where feasibility means a solution satisfying (1 0 ). 

Proof We must distinguish three cases, shown in Figs. 1-3. We can checkthat 
that for any values of c1 and c2 , (13) always admits three real roots, that we 
denote by X 1 , X2 and X 3 with X 1 < X2 < X 3 . We can also checkthat the only 
acceptable solution to our system is x2. 

- (A+X)(B-X)(A.-X) 

- (A- B+2X) 

Fig. 1. Case 1: p,c1 < .A. 

- (A+X)(B-X)(A.-X) 

- (A-B+2X) 

Fig. 2. Case 2: p,c1 > .A. and 
ec2-eCJ+A <0 

2 

- Case 1: f.LC1 < A. (i.e., c1 ~ ~) : the first operator does not have a capacity 
large enough to handle all the traffic. In that case, we recall that Lemma 1 
imposes that ~"c2 -icr +;.. ::::; min(A.,f.Lc2)· Also 11c2 - icr+;.. ;::: A.- f.LCl. Then the 
system has exactly one feasible solution (see Fig. 1). 

- Case 2: f.LCl > >. and f.LC2-icd;.. < 0. As A.- f.LCl ::::; 11c2 -ict+;.., the system 
has exactly one solution (see Fig. 2). 

- Case 3: f.LC1 > A. and ~"c2 -ic1 +;.. > 0 (i.e., c1 - c2 ;::: ~ ). Then, the result 

comes from the fact that ~"c2 -ic1 +;.. ::::; min(J..Lc2, A.) (see Fig. 3). 
0 
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- (A+X}(B-X) ( 1.-X) 

Proposition 3. Ij the system satisfies the constraints of Lemma 1 then Car­
dan's formula gives the unique solution X as: 

X*= 
(J..LCl- J..LC2- 2.\)p- 2 

3p 

+ ;p Cos [~(47r + ArcCos(Y)] y'2 + p()2 + 3p1-l + (J..Lc1 - .X)I, (14) 

where, g = (J..Lc2- J..LCI + 2.\)), 1-l = -J..Lc2(1 + p.X), I= (1 + p(J.Lc2 +.X)), and 

Y = - 27(J..Lcl - >..)J..Lc2p3 .X+ 2(2 + p())3 - 9p((p,cl ~>..)p- 1 - I)(1-l + (p,c1 - >..)I) 
2y'(2 + p()2 + 3p1-l + (p,c1 - .X)I)3 . 

Remark 2. Obtaining a closed form equation for X= >..P(w) is of interest since 
the profit functions of each provider arelinear in X (from Equation (3)) . Observe 
further from (8) that d;'s can be directly obtained from X. 

In this section, we have studied the case of a uniform distribution of the 
price-QoS tradeoff parameter. We have shown that if the providers choose their 
capacities so that they can accommodate all the traffic, and the capacity of the 
provider with the higher price and lower delay is not too much larger than that 
of the other then the the price-delay-capacity system admits a unique solution. 
Finally, we gave an analytical formulation of this solution. Additionally, we for­
mulated X as the intersection point of two polynomials. In the next section we 
shall exploit this characterization to obtain qualitative results on the properties 
of X. 

4.1 Sensitivity Analysis 

We would like to determine the infiuence of the parameters c1 , c2 , >.. and the 
price difference, p, on X, the market share of provider 2. One can show that: 
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Proposition 4. The market share of the second pmvider (X = X*) is increas­
ing in c2 , the price difference p and the total arnval mte ..\, and decreasing in 
C}. 

Pmof. Let us define hc1 ,c2 ,>.,p(X) = P(X) - R(X): 

hc1,c2,>.,p(X) = p(p,c1- ..\ + X)(p,c2- X)(..\- X)- X(p,c1- p,c2 - ..\ + 2X). 
(15) 

As seen in the previous section, h is null and locally decreasing at X = X*. 
The local behavior of X with the parameters Ct, c2, ..\ and p is given by the 
sign of the quantities hc~,c2 ,>.,p(X), hc1 ,c2,>.,p1 (X), hc1 ,c2 ,>.' ,p(X) and hq ,c2 ,>.,p1 (X) 
respectively where c~ > c1, c~ > c2 , ..\' > ..\ and p' > p. Aseach of these h function 
is locally decreasing and X is a continuous function of parameters c1 , c2 , p and ..\, 
we conclude that if these quantities are positive, then X is an increasing function 
with their related parameter and decreasing otherwise. 

One can show that: hc1 ,c2 ,>.,pi(X) = X(p,c1- ..\- p,cz + 2X)P1;P. Therefore 
if p' > p, then hq ,c2 ,>.,p1 (X) ;::: 0 and X is an increasing function with p. 

Similarly: l p,cz, c1,c2,>.,p - f.-L 1 JLC2 -X ' { 
'f X =/= h 1 (X) -X( c +X) p.c;-p.c2 

else hc1 ,c2 ,>.,p(X) = p,cz(p,c~- p,cz). 

{
ifX=/=..\-HC}, h1 (X)-X(t~c X)p.q-p.c; 

,- Cl ,c2,)..,p - ,- 2 - JLCl +X 
else hc~,c2 ,>.,p(X) = -p,cz(p,cz + p,c~ - ..\) . 

And: 

We finally study the impact of ..\. Let us suppose that X =/= .A and X =/= ..\-p,c1. 
We can write hcl>c2 ,>.',p(X) = 

[ (..\'-X)(p,cl-..\'+X) , ] 
X (..\ _ X)(p,c1 _..\+X) (p,c1- ..\- p,cz + 2X)- (p,c1- ..\ - p,c2 + 2X) . 

h 
1 

(X)- x [(..\'-X)(p,cl-..\'+X)(p,cl-..\-p,c2 + 2X) 
cv2,>. ,p - (>.-X)(p.c1->.+X) -(..\- X)(p,c1 - ..\ + X)(p,c1 - ..\'- p,c2 + 2X)] 

> X [(p,cl-..\'+X)(p,cl-..\-p,cz+2X) 
- (p.c1- >.+X) - (p,c1 - ..\ + X)(p,c1 - ..\'- p,c2 + 2X)] 

;::: (p.c13_+X) [(..\' - ..\)(p,cz - X)]· 

D 

We note that, while the behavior of x as a function of c1 , c2 and p is int uitive, 
the results obtained for ..\ is quite interesting. It states that in a competitive 
market, an increase in the totalload benefits the provider having a higher delay 
or "poorer" service. 
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5 Conclusions and Suggestions for Further Research 

We have presented an extension of a line of competitive market models of e­
commerce services, such as web hosting, or the internet. The novelty of these 
models is that they employ a randomly-distributed value of tradeoff parameter, 
which captures the way different firms, or individuals, react to a palette of price­
QoS tradeoffs. In this work, we included the explicit dependence of QoS on 
a system's capacity, through queueing models. This allows a good number of 
further generalizations to follow: capacity planning, hierarchical, or Stackelberg, 
equilibrium, Nash equilibrium models in terms of capacity, etc. 

The underlying framework is, however, significantly more complex than with­
out the explicit QoS-capacity relationships. Our contribution is to present the 
derivations needed to make use of this framework, since obtaining a single feasi­
ble point requires the solution of a complex fixed point equation. We provided a 
general representation of the price-QoS tradeoffs that uses the flexible Beta dis­
tribution, as well as an application to uniformly-distributed tradeoff parameters, 
which is a special case of the beta distribution. 

It is clear that it would be of great value to make use of this framework 
and study the resulting Nash equilibrium, under various hypotheses. Indeed, 
several questions are of interest: does the resulting Nash system have a nontrivial 
solution, that is, one in which Pi -=/=- 0, i = 1, 2 for different assumptions on the 
forms of the distribution function F, and, if so, what are the properties ofthat 
equilibrium? For capacity planning, we must go one step further ; supplier 1 is 
interested in optimally setting its capacity, given the capacity of its competitor(s) 
and the equilibrium prices. Therefore supplier 1 formulates a bilevel progmm, over 
c1 and (p1 ,p2), where (p1 ,p2 ) are given by the Nash equilibrium problern across 
both suppliers. This formulation is also known as a Stackelberg equilibrium, in 
which supplier 1 represents the "leader" since he can set his capacity and predict 
the price responses of the competition. Preliminary studies that we have clone 
indicate that, contrary to the constant-delay cases (see e.g., [5]), once capacity­
delay relationships are explicitly taken into account, price wars may ensue in a 
Nash equilibrium. This very preliminary observation requires further study. 

References 

1. M. Bouhtou, M. Diallo, and L. Wynter. Capacitated Network Revenue Management 
through Shadow Pricing. proc. of ICQT, Munich, Germany, 2003. 

2. P. Dube, Z. Liu, L. Wynter , and C. Xia. Outsourcing and price-QoS equilibrium 
for E-commerce and internet firms: IT on demand. Proc of IEEE CDC, Dec. 2003. 

3. P. C. Fishburn and A. M. Odlyzko. Competitive pricing of information goods: 
Subscription pricing versus pay-per-use. Economic Theory, 13:447-470, 1999. 

4. F.P. Kelly, A.K. Maulloo, and D.K.H. Tan. Rate Contra! for Communication Net­
works: Shadow Prices, Proportional Fairness and Stability. Journal of the Opera­
tional Research Society, 49:237-252, 1999. 

5. Z. Liu, L. Wynter, and C. Xia. Usage-based versus Flat Prcing for E-business 
Services with Differentiated QoS. Proc. of IEEE CEC '03, June 2003. 

6. R. W. Wolff. Stochastic modeling and the theory of queues. Prentice-Hall, Inc. , 1988. 


