
TCP-DCR: Making TCP Robust to Non-congestion
Events* **

Sumitha Bhandarkar and A.L. Narasimha Reddy

Dept. of Electrical Engineering
Texas A & M University

{sumitha,reddy}@ee.tamu.edu

Abstract. In this paper, we propose and evaluate TCP-DCR. TCP-DCR makes
simple modifications to the TCP congestion control algorithm to make it more
robust to non-congestion events. The key idea here is to delay the congestion
response of TCP for a short interval of time r, thereby creating room for local
recovery mechanisms to handle any non-congestion events that may have occurred.
If at the end of the delay r, the event is not handled, then it is treated as a congestion
loss. We evaluate TCP-DCR through analysis and simulations. The evaluation
is done for three seenarios - a wireless network with channel errors, a wired
network with packet reordering and a network with zero non-congestion events.
The simulation results show that significant performance improvements can be
achieved by using TCP-DCR in the presence of non-congestion events with zero
or marginal impact in the absence of non-congestion events. TCP-DCR remains
fair to the native implementations ofTCP that respond to congestion immediately
after receiving three dupacks. TCP-DCR is a simple, effective scheme providing
a unified solution to several problems with minimal implementation overhead.

1 Introduction

The strength of TCP lies in the fact that it tri es to mitigate congestion in the network by
reducing thesendingrate in response to loss of packets. Historically, using packet loss
as a measure for perceiving congestion has worked quite well. But in the recent past,
the nature of the networks has changed significantly. As a consequence, severe penalty
is paid in terms of degraded performance in networks where the reason for packet loss
is not necessarily network congestion. Recent sturlies [1], [2] have shown that packet
reordering is more prevalent in the current Internet than was assumed earlier rendering
the wait of three dupacks used in TCP, an inefficient heuristic. While this in itself is a good
reason for investigating the robustness of TCP to non-congestion events such as packet
reordering, the authors of [3] present a more compelling reason- the taboo against packet
reordering prevents or restricts the research and deployment of several new, beneficial
schemes on the Internet for providing efficient routing or differentiated services. Another

* This work is supported in part by a grant from The Texas Higher Education Board, by NSF
grant ANI-0087372 and by Intel Corp.

** An extended version of this paper is available in [22]

N. Mitrou et al. (Eds.): NETWORKING 2004, LNCS 3042, pp. 712-724,2004.
© IFIP International Federation for Infonnation Processing 2004

TCP-DCR: Making TCP Robust to Non-congestion Events 713

common situation that has spurred the interest in improving the robustness of TCP to
non-congestion events is the ever increasing use of wireless networks. Wireless networks
are characterized by higher channel error rates than wired networks. When TCP is
used in wireless networks, the Iosses due to channel errors (non-congestion events) are
mistaken for congestion Iosses and the sending rate is unnecessarily reduced, resulting
in degraded performance [7]. Several different solutions have been proposed to improve
the performance of TCP in the face of packet reordering or in wireless networks. In this
paper, we aim to provide a single generalized solution that can be used to improve the
robustness of TCP to all non-congestion events.

Our solution is intuitive and employs two simple ideas: (a) delay the congestion
response ofTCP for a short interval of timeT, creating room to handle any non-congestion
events that may have occurred, and (b) employ "local recovery" techniques to recover
from non-congestion events during this interval. If at the end of the delay T the event
has not been handled, then it is treated as a congestion event. This simple concept fits
into the general philosophy of segregation between the different layers of the network
model. The modifications to TCP do not handle the non-congestion event, but rather,
rely on some lower layer mechanism to do local recovery, if necessary. To distinguish
this flavor of TCP from the original, we call it the Delayed Congestion Response TCP
(TCP-DCR for short). This is a general solution that can be extended to any network
with non-congestion events and an underlying mechanism for recovering from them.

The rest of the paper is organized as follows. Section 2 provides intuition, analyses
and discussion of the TCP-DCR modifications in general. This is followed by discussion
and ns-2 [16] simulation results for three specific cases - wired networks with non
negligible packet reordering (Section 3), wireless networks with non-negligible channel
errors (Section 4) and finally regular networks with no non-congestion events at all
(Section 5). Section 6 concludes the paper by summarising the results and looking at the
future work.

2 Delayed Congestion Response TCP

When a TCP receiver finds an intermediate packet missing, but subsequent packets
are being received, it sends dupacks to the sender. The sender using the standard TCP
algorithms treats the receipt of three consecutive dupacks as an indication that the inter
mediate packet is lost and responds by reducing the congestion window and triggering
the fast retransmit/recovery algorithms. Thesender using TCP-DCR is modified to wait
for an interval ofT after receiving the first du pack to make room for local recovery of the
packet, if possible. The study presented in [17] has shown that even in dynamic network
conditions, slowly responding protocols arefair and safe for deployment. In this section
we present the details of the proposed TCP-DCR modifications.

2.1 Choice of r

The delay in responding to congestion determines the performance ofTCP-DCR and the
choice ofT is a critical aspect for the TCP-DCR modifications. Too !arge a delay would
mean that the protocol responds too sluggishly to congestion in the network. Too small a

714 S. Bhandarkar and A.L.N. Reddy

delay would not allow the lower layer sufficient time to recover from the non-congestion
events. In this section we provide guidelines for choosing reasonable bounds on the
delay T.

Consider first the wireless scenario. Fig. 1 shows a generat case where the TCP
receiver is connected to a base station over a wireless link. In this scenario, for the link
layer to recover a packet lost due to channel error, T should be atleast as large as the
round trip time of the wireless link. On the other hand, to avoid an expensive timeout at
the TCP-DCR sender, T should be smaller than the retransmission timer (RTO) value.
The RTO is usually set to RTT + 4 times the RTT variance, where RTT is the estimated
end-to-end round trip time. A choice of one RTT for the value ofT allows the link layer
sufficient time to recover the packet while at the same time avoiding an RTO. Same
argument holds good even when the sender and receiver are connected directly over a
wireless link, as in the case of an adhoc network.

;;
TCP Qi-___;,;,W::.:ircd:::....:.:.:linc:.:;k'--\Q Win:less link
Sender

.1\
0 TCP

Recei\·er
Base Station

RTI

Fig.l. Analysis ofTCP-DCR in a Wireless Network with no Congestion Losses

In the case of packet reordering, the amount by which the packet is reordered could
be highly variable - the time to recover the lost packet is the time that the reordered
packet takes to reach the receiver. Hence there is no preset lower bound for the delay
T, that will facilitate the recovery of all reordered packets. However, the upper bound is
still decided by the value of the RTO. So, a value of one RTT for T is still a reasonable
choice.

Based on the discussion above, we modify the heuristic for the wait after the sender
starts receiving dupacks (r) to one RTT. Setting T to one RTT, rather than a fixed value,
also provides inherent robustness to ftuctuations in the queuing delays ensuring that we
do not get into RTO timeout even during sudden changes in the network Ioad.

2.2 Steady State Analysis of TCP-DCR

The steady state throughput of TCP-DCR with the assumption of uniform periodic loss
probability model can be shown to be similar to that of TCP (throughput cx jp).
Detailed analysis has been omitted here due to Iack of space. An interested reader may

TCP-DCR: Making TCP Robust to Non-congestion Events 715

find the samein [22]. The main difference however, isthat in the presence of both non
congestion events and congestion lasses, for the standard TCP algorithm p is the sum of
the non-congestion event rate and the loss rate due to congestion, but for TCP-DCR p is
only the loss rate due to congestion. As a result, in the presence of both non-congestion
events and congestion, TCP-DCR can achieve better throughput.

2.3 Receiver Buffer Requirement When TCP-DCR Is Used

When TCP-DCR is used, the receiverwill need to have additional buffer space to ac
commodate the extra packets corresponding to the delay T, when a packet is lost due
to congestion. Having theseextra buffers allows TCP-DCR to achieve the best perfor
mance. In the absence of the additional buffer space, the flow control mechanism ofTCP
Iimits the sending rate, preventing TCP-DCR from achieving the maximum performance
improvement.

2.4 Local Recovery Mechanisms

The performance benefits tobe gained from using the TCP-DCR modifications depend
on the existence of an underlying scheme for recovering the Iosses due to non-congestion
events. In case of packet reordering, nothing needs to be done explicitly to recover the
reordered packet. In case of wireless networks, we assume that the underlying mechanism
isasimple link Ievel retransmission scheme, possibly NACK-based, that does not attempt
in-order delivery. Some of the recent research in the area of networking for multimedia
[18] also advocate the use of link Ievel retransmission schemes that do not attempt in
order delivery. Alternatively, FEC (Forward Error Correction) schemes could also be
used.

2.5 Summary of Modifications

The TCP-DCR modifications need tobe applied only to the sender. The congestion re
sponse is delayed only during the congestion avoidance phase. During the congestion
response delay, the congestion window continues to evolve using additive increase but
only one new packet is transmitted in for each dupack (similar to the proposed standard
limited transmit algorithm [15]). Thus, TCP-DCR remains ack-clocked during the con
gestion response delay period and the sending rate during T remains at best, the same as
when the first dupack was received.

If the congestion response delay timer expires, the fast retransmit/recovery algo
rithms are triggered. The ssthresh and the congestion window are set to half the current
value ofthe congestion window just as it would be in a traditional implementation of
TCP.

The sender can implement the delay either by using a timer or by modifying the
threshold on the number of dupacks to be received before triggering the congestion
recovery algorithms (dupthresh). The timer based implementation however depends on
the clock granularity. To ensure that faulty implementation of the timer does not result in
an RTO, for the timer-implementation the timer should be set to one RTT as indicated by

716 S. Bhandarkar and A.L.N. Reddy

the smoothed_rtt and for the dupack-based implementation, the new value for dupthresh
should be scaled by the factor (smoothed_rtt)!(currenUnstantaneous_rtt).

The TCP-DCR modifications work with most flavors ofthe TCP protocol. However,
in this paper we advocate the use ofTCP-DCR with TCP-SACK [14], ifthe TCP-SACK
option is available. When used with TCP-SACK, the only thing modified by TCP-DCR
is the time at which the fast retransmitlrecovery algorithm is triggered in response to
the first loss within a window of packets. All subsequent Iosses within the same window
(irrespective of whether they are due to congestion or non-congestion events) are handled
in exactly the same way as TCP-SACK would in the absence ofTCP-DCR modifications.

Use of delayed_acks will not intervene with the TCP-DCR modifications, provided
that the implementation of delayed acks follow the guidelines in [19] that the dupacks
(or SACKs) arenot delayed.

3 TCP-DCR and Reordering Robustness

In current networks, packet reordering is observed to be not negligible [1],[2]. Also,
many new design alternatives for routers or network architectures may benefit if there
are no strict restrictions of zero packet reordering. Several different solutions have been
proposed in Iiterature to solve this problem. In [3] and [4] the authors present schemes
for improving the reordering robustness ofTCP that use DSACKs [5] or timestamps [6]
to identify reordering and the possible amount of reordering. TCP-DCR on the other
hand, aims to improves the reordering robustness of TCP without having to identify the
exact amount of reordering in the network or using complex state or algorithms.

3.1 Simulation Topology

We evaluated the performance ofTCP-DCR using the ns-2 simulator [16] (version 2.26).
A simple dumbbell topology is used where n different sources are connected tondifferent
receiversvia a single bottleneck link between routers R1 and R2. The default values for
the bandwidth and delay for the links between the routers and the end nodes is fixed at
10 Mbps and 1 ms respectively. The bandwidth and the delay for the bottleneck link is
varied in accordance with the requirements of the experiment. Each source i performs
bulk data transfer to the receiver i with a packet size of 1000 bytes. DropTail buffer
management scheme is used at the routers and the queue size is set to 50 packets, unless
otherwise specified. Packet reordering is simulated by modifying the errormodel object
of ns-2 suchthat randomly selected packets can be delayed for a random amount of time.

The TCP-DCR agent is implemented by modifying the tcp-sack1 implementation of
TCP-SACK agent in ns-2. Ack-based implementation is used for the congestion response
delay. The TCPSink/Sack1 agent is used for the receivers. FfP sources start sending data
at time 0 and are staggered to avoid synchronization. All simulations are run for 1100
seconds, but data is collected only after the first 100 seconds to ensure that steady state is
reached. The receiver advertises a large window suchthat thesendingrate is not limited
by the receiver dynamics.

TCP-DCR: Making TCP Robust to Non-congestion Events 717

3.2 Performance at Varying Packet Delay Rate

One of the primary reasons for reordering in the network is that some of the packets get
delayed more than others, and hence arrive out of order. In this experiment randomly
selected packets are delayed, with a delay picked from a normal distribution with a
mean of 25ms and a standard deviation of 8ms so that most chosen packets are delayed
in the range 0 to 50ms. This simulates mild but persistent reordering. The bottleneck link
bandwidth is set to 8Mbps and the delay to 50ms. There is no congestion in the network.
The topology consists of a single ftow. The experiment is first run with TCP-SACK and
repeated for TCP-DCR. Fig. 2 shows the results

As can be seen from the graph, the performance of TCP-SACK degrades rapidly,
since persistent reordering keeps the sender congestion window small, reducing the
throughput drastically. TCP-DCR performs significantly better than TCP-SACK. Since
there is no congestion in the network, and the packets are only mildly reordered, most
packets are recovered during the delay in the congestion response.

-

Th1oughpu1 Va Pan:M~Age ol Del•yed PK:ke&s
(Normal"r Cht.lrlbuttd l)kl Otfay, r'l'lf.a;t. 25nta, stddev &rna ,

Na l.M:WII Du. to CMgMtlon)

- I

~ ---r L--+-""

Fig. 2. Throughput V s Percentage of Packets
Delayed (With Single Flow)

Mu~:f1Roo~
Throughpllt Vt CMI11Bmvroii!WI f'la Two Pa11'11

"""'-"·-""')
c:::~,. "-.._

1\ "T-- -.--.
\
\
\ I

0
0 , .. 02 ll2S

Fig. 3. Performance Comparison with Multi
path Routing

3.3 Performance Comparison with Multi-path Routing

One of the situations that can cause packet reordering is when packets are routed over
different paths. Suppose, a router chooses between two different paths for Ioad balancing.
In the worst case, altemate packets get routed over the different routes, causing 50% of
all packets to get delayed. In this simulation we examine such a situation. The x-axis
shows the difference between the RTTs of the two routes. The link delay of the shorter
route is fixed at 50ms. Fig. 3 shows the results. It can be seen from the graph that TCP
DCR performs significantly better than TCP-SACK. When the delay between the two
paths becomes larger than the round trip time of the shorter path, the performance of
TCP-DCR starts todegrade a little. However, the smoothed RIT estimate at the TCP
sender will reflect the average round trip time of the link, and the congestion response
delay is scaled by this value. As a result, the performance degradation is not drastic.

718 S. BhandarkarandA.L.N. Reddy

3.4 Performance Comparison with Congestion in the Network

One of the primary concerns with using TCP-DCR is the effect of delaying congestion
response on other flows in the network. We study that in this experiment. The bottleneck
link has a capacity of 10Mbps and a link delay of 10ms. The number of flows in the
network is 12, with 6 of them using TCP-DCR and the other 6 using TCP-SACK.
Congestion in the network is controlled by varying the buffer size at the router R1 for
the link between R1-R2. Fig. 4 shows the results when 10% ofthe packets are delayed.
Thus, packets are reordered as weil as lost due to congestion in this simulation. When
a packet is lost due to congestion, the sending rate is reduced both in the case of TCP
SACK and TCP-DCR. However, when a packet is reordered, the sending rate is reduced
only in the case of TCP-SACK. As a result at low congestion Ievels, TCP-DCR flows
utilize more link capacity than TCP-SACK flows and show better throughputs. When the
congestion Ievels in the network increases, the link capacity is more and more equitably
shared. It is tobe noted that the reason forTCP-DCR realizing better throughputs (when
packets are reordered) is not due to unfairness, but due to correctly recovering from the
reordering events (without reducing the congestion window). We address the fairness
issue in section 5 when we consider zero non-congestion events.

, .
i :.:
~ ,,
~~..:
.r: o..e

<t ~·
~·

0

lhroughQul v, Ul1k Ofopr11~t:~ Oue to ~O$tlon
(1""'ol lhe Pock ... 0.1•)'0(1)

.........
1--+--0u' r=

Sock

........

.".....

' ' " Unk 0ropta1t Ou•IIO ConQMOon {'%}

Fig. 4. Throughput V s Link Droprate due to Congestion

4 TCP-DCR in a Wireless Network

Wireless networks are characterized by high channel error rates. When TCP is used in
wireless networks, the Iosses due to channel errors are rnistaken for congestion Iosses
and thesendingrate is unnecessarily reduced, resulting in degraded performance [7].
Several solutions have been proposed to improve the performance of TCP over wireless
networks. These solutions fall in one of the following broad categories: (a) Split con
nection approaches (eg. [8]) (b) TCP-aware link layer protocols (eg. [9]) (c) Explicit
loss notification approaches (eg. [10]) (d) Receiver-based approaches (eg. [11]) and (e)
Modifications to TCP (eg. [12]) When both congestion Iosses and Iosses due to the trans
mission errors can occur, a simple solution would be to Iet the link Iayer mechanisms to
recover from Iosses due to transrnission errors, allowing the transport protocol to recover

TCP-DCR: Making TCP Robust to Non-congestion Events 719

from congestion losses. When TCP-DCR is used in wireless networks, a simple link Ievel
retransmission scheme that is not aware ofTCP semantics would suffice to recover from
transmission errors without any explicit notification from the network regarding the type
ofthe loss. Earlier work has shown that local recovery of channel errors is efficient [13].

4.1 Simulation Topology

The network topology used in these simulations is similar to that in the previous section,
except that R2 is the Base station connected to the receivers via wireless links. The
default values for the wired link bandwidth and delay is fixed at 100 Mbps and 5 ms
respectively. The wireless link bandwidth is kept fixed at 1 Mbps and the delay is varied
in accordance with the requirements of the experiment.

The TCP-DCR agent in these simulations uses the timer-based implementation of
the congestion response delay. Link Ievel retransmission is simulated by using the error
model and the queue object provided by ns-2. The error model is exponential, and
the corrupted packets are buffered at the base station and retransmitted after a delay
corresponding to the round trip time of the wireless link, thus simulating link Ievel
retransmission. The packet to be retransmitted is added at the head of the queue that
holds the packets awaiting transmission. The TCPIIP and MAC layer headers are ignored
in the throughput calculations.

4.2 Perfonnance at Different Channel Error Rates

First, we present the results for the simulation showing the performance improvement
offered by TCP-DCR at various channel error rates in Fig. 5. The workload consists
of a single flow in this case. The wireless link bandwidth and delay are set to 1Mbps
and 45ms respectively, so that the total round trip time is comparable to the simulation
in section 3.2. There is no congestion in the network. As can be seen from the graph,
TCP-DCR performs better than TCP-SACK. Since there is no congestion in the network,
most of the packet Iosses can be recovered using the link layer retransmission scheme
making a window reduction unnecessary. Thus, the performance of TCP-DCR even at
high channel error rates stays close to the performance that can be obtained when there
is no channel errors at all . On the other hand, TCP-SACK treats the Iosses due to channel
errors as congestion loss and hence the throughput stays below 0.5 Mbps.

T~V.O...W!mll'"-.. -~

'

J··
-......_ , .. "-..... ~ ---- -..

I ..
I . . ' ' , . . . ' . I

c:tww.IEII!r~~

Fig. 5. Throughput V s Channel Error Rate Fig. 6. Throughput V s Wireless Link Delay

720 S. Bhandarkar and A.L.N. Reddy

4.3 Performance at Different Wireless Delays

Wireless networks have highly varying delays ranging from few rniliiseconds to few tens
of rniliiseconds for a LAN to several hundred of rniliiseconds for sateliite links[20,21]. In
this section we show the effect of the wireless delay on the perfonnance of the different
protocol flavors. The topology is sirnilar to that in the previous section. Fig. 6 shows
the results. It can be seen from the graph that as the wireless link delay is increased,
the throughput of the TCP-SACK flows degrades significantly. This is because when the
window is reduced incorrectly due to a packet lost by channel errors, it takes a Ionger
time for the protocol to increase the window to the correct value again.

4.4 Performance with Congestion in the Network

In this set of simulations, the workload consists of 24 flows, half of which use TCP-DCR
and the other half use TCP-SACK. The different Ievels of congestion are obtained by
varying the buffersize at the router R 1. The bottleneck link capacity is set to I OMbps and
the delay to 5rns. The wireless link bandwidth and delay are lMbps and 20ms. Fig. 7
shows the results. In the graph, congestion loss rates of less than 1% are Iabelied as
low error, in the range of 2.5-3.5% are Iabelied as moderate congestion and greater than
3.5% are Iabelied as high congestion.

It can be seen from the figure that when the congestion loss rate is low, the aver
age throughput of the TCP-DCR flows is far more than that of TCP-SACK flows. The
throughput achieved by TCP-DCR flows is inversely proportional to the congestion loss
rate in the network, whereas the throughput of the TCP-SACK flows is inversely pro
portional to the sum of the congestion loss rate and the channel error rate. So, as the
congestion loss rate in the network increases, the difference in the average throughput of
the TCP-DCR flows in the network compared to that of the TCP-SACK flows becomes
narrower.

Joo ----=:=-- -=__, ··~··=.o-
J- 0.5 _...--.-- • •0 •·=~

lt4f.":C"'"" ··.,)-··~~4·
··::.·· · ~· ··;· ... I•• ···•··,.,. . ~'""""""""

l · ~. .. - -t 0.2 - • • •• • • ----TcP·OCI'I (UO.W

••· · -:;~ I.
~-------~ 1 ••

Fig. 7. Throughput V s Channel Error Rate with
Congestion in the Network

~ Vs l.ril: Dropare Due., Congalien
(No Non~sbcn E'W81'U}

' f 09 :::::u -08

07
~ --o•

~ !os
l 0~

l
03
02 .J-+-0.:.

0' ---0

0 ' 2 3 . 5 • 7
lJ,. Drnowe 0ue to Congl!:ibon (%)

Fig. 8. Throughput comparison with Zero Non
congestion Events.

TCP-DCR: Making TCP Robust to Non-congestion Events 721

5 TCP-DCR with Zero Non-congestion Events

The earlier two sections have shown that TCP-DCR provides a simple, but effective
mechanism for tolerating non-congestion events in networks that cause packet reorder
ing or have significant channel errors. The natural questions that arise: what is the conse
quence of employing TCP-DCR in networks that do not experience any non-congestion
events? Does TCP-DCR impact the throughput realized by individual ftows? Is it fair to
other ftows that respond to congestion immediately? Does it impact queue Iengths? We
exarnine such question in this section.

5.1 Fairness

The results in section 3.4 and section 4.4 show that in the presence of non-congestion
events, TCP-DCR utilizes the network bandwidth better than TCP-SACK fiows at lower
congestion, and the bandwidth is shared more equitably as congestion Iosses become
the major contributing factor towards the total losses. In this section we evaluate the
faimess ofTCP-DCR when there are no non-congestion events at all in the network.

The simulation set up is similar to that in section 3.4. The graph shows the average
throughput realized by DCR and SACK ftows. From Fig. 8 we see that the average
throughput achieved by the DCR ftows is very close to the average throughput of the
SACK ftows, even at fairly high Ievels of congestion. The throughput of each individual
ftow does not vary too much from the average as indicated by the confidence intervals.
These results indicate that TCP-DCR does not behave more aggressively than TCP
SACK, when T is set to one RTT.

5.2 Packet Delivery Time and RTT Estimates

Since TCP-DCR delays the congestion response by one RTT, it takes a Ionger time to
recover a packet lost due to congestion when compared to SACK. In order to evaluate
the extent of the additional time taken by DCR, we conducted this experiment. For the
network topology chosen, majority of the packets for both the ftavors are delivered in
0.05seconds. For packets lost due to congestion and recovered using TCP retransrnission,
the averagepacket delivery time for case 1 (100% ftows use TCP-DCR) is 207ms, for case
2 (100% ftows use TCP-SACK) it is 178ms and for case 3 (50% of the fiows use TCP
DCR and 50% use TCP-SACK), it is 201 ms for TCP-DCR and 182ms for TCP-SACK.
TCP-DCR does not affect the packet delivery time when there is no congestion. However,
when a packet is lost due to congestion, the time to recover it could be higher by about
one RTT. Also, according to Karn's algorithm used by most standard implementations
of TCP, a retransmitted packet is not used in estimating the round trip time. Thus the
delayed congestion response ofTCP-DCR does not affect the rtt estimation ofTCP. Our
simulation results agree with the discussion above. An interested reader may find the
detailed results in [22].

5.3 Response to Sudden Increase in Traffic

In this experiment we study the response of TCP-DCR to sudden increase in the traffic
on the network. Forthis experiment, we first allowed six ftows to run for 50 seconds until

722 S. Bhandarkar and A.L.N. Reddy

they reached steady state. At the end of 50 seconds, an additional six TCP-SACK flows
were added. We compared the response of TCP-DCR with that of TCP-SACK for this
sudden increase in traffic. Fig. 9 shows the results. It can be seen from the graph that the
response of TCP-DCR is sirnilar tothat of TCP-SACK. The time to reach (55%, 45%)
allocation for TCP-SACK was 3.1 seconds and for TCP-DCR, it was 3.67 seconds.

12

I1o+-----------------------~
! ·~~~~------------~
j • t---+--~:---:--:-:--~-i
~
J•r----w~~~~~WJ~ 1 2 +------+------
·~----~----~----~----~

so 100 ISO
nme (sO«>ndtl

ReaponM of TCP·DCA 1o SuOden lncro;u;• tn Tr.t.lllc

11·~--------------------~
l • '+-lt+.'+-11

l·r---r-----~----1
i .
('_ ·~----+---------------~

so 100 1SO 200
11me !Seeonda)

Fig. 9. Response to Sudden Increase in Traffic

5.4 Summary of Other Observations

We conducted several other experiments to evaluate the queue lengths, the timeouts, the
perflow droprates, and the link utilization to understand the impact of DCR flows on the
network characteristics. We summarize these results for three cases- case 1 (100% flows
use TCP-DCR), case 2 (100% flows use TCP-SACK) and case 3 (50% ofthe flows use
TCP-DCR and 50% use TCP-SACK) - in Table 10. As seen from these results, DCR
flows do not drastically alter the observed network characteristics compared to a network
with only SACK flows.

Case Protocol Avg.Flow Avg.Flow Avg.Flow Avg.que
of flow throughput Droprate timeouts Length

Mbps % % Pkts
I OCR 0.801 2.72 0.0 44
2 SACK 0.801 2.27 0.009 44
3 OCR 0.748 2.77 0.0 45

SACK 0.852 2.13 0.02

Fig.lO. Summary of Observations with Zero Non-congestion Events.

We also conducted several simulations with the sudden increase in background traffic
due to several short term TCP flows simulating web-traffic. The results were sirnilar to
those in Fig. 9.

TCP-DCR: Making TCP Robust to Non-congestion Events 723

6 Conclusions and Future Work

In this paper, we proposed TCP-DCR that employs delayed congestion response and
local recovery to recover from non-congestion events. We studied DCR's handling of
non-congestion events in two specific scenarios, namely, packet reordering and wire
less channel errors. In both the scenarios, results from simulations have shown that
DCR offers significantly better performance by simply delaying congestion response
for one RTT. We then studied the impact of employing DCR in networks with zero non
congestion events. Several other simulations were conducted the results of which have
not been included here due to lack of space. An interested reader can find them in [22].
Our evaluation at multiple levels - individual flows, TCP characteristics and network
characteristics - has shown that DCR does not significantly impact other flows or the
network even when all the packet losses are due to congestion alone. Based on these
results, DCR seems to offer a simple, unified solution to handle non-congestion events
safely. We have also implemented DCR on a Linux platform and the preliminary results
(available in [22]) look promising. We plan to continue with the tests under different
scenarios.

Acknowledgements. Nauzad Sadry and Nitin Vaidya have contributed to the work
reported in the wireless network section. Comments from Sally Floyd on an earlier draft
have helped the paper.

References

I. Jon Bennett, Craig Partridge, and Nicholas Shectman, "Packet Reordering is Not Pathological

Network Behavior," IEEEIACM Transactions on Networking, December 1999.

2. Sharad Jaiswal, Gianluca Iannaccone, Christophe Diot, Jim Kurose, and Don Towsley, "Mea
surement and Classification of Out-of-Sequence Packets in a Tier-1 IP Backbone," Proceed
ings of IEEE INFOCOM, 2003.

3. M. Zhang, B. Karp, S. Floyd, and L. Peterson, "RR-TCP: A Reordering-Robust TCP with
DSACK," JCSI Technical Report TR-02-006, Berkeley, CA, July 2002.

4. E. Blanton and M. Allman, "On Making TCP More Robust to Packet Reordering," ACM
Computer Communication Review, January 2002.

5. Sally Floyd, Jamshid Mahdavi, Matt Mathis and Matt Podolsky, "An Extension to the Selective
Acknowledgement (SACK) Option forTCP," RFC 2883, July 2000.

6. R. Ludwig and M. Meyer, ''The Eifel Detection Algorithm for TCP," RFC 3522, April 2003.

7. H. Balakrishnan, V. Padmanabhan, S. Seshan, and R. H. Katz, "A Comparison of Mecha

nisms for Improving TCP Performance over Wireless Links," IEEEIACM Transactions on
Networking, 1997.

8. K. Brown and S. Singh, "M-TCP: TCP for mobile cellular networks," ACM Computer Com

munications Review, vol. 27, no. 5, 1997.

9. H. Balakrishnan, S. Seshan, E. Arnir and R. Katz, "Improving TCPIIP performance over

wireless networks," Proc. of ACM MOBICOM, Nov. 1995.

10. H. Balakrishnan and R. H. Katz, "Explicit Loss Notification and Wireless Web Performance,"

Proc. of IEEE GLOBECOM, Nov. 1998.

724 S. Bhandarkar and A.L.N. Reddy

11. N. H. Vaidya, M. Mehta, C. Perkins and G. Montenegro, "Delayed Duplicate Acknow1edge
ment: a TCP-unaware Approach to lmprove Performance of TCP over Wireless," Journal
of Wireless Communications and Mobile Computing, special issue on Reliable Transport
Protocols for Mobile Computing, February 2002.

12. S. Mascolo, C. Casetti, M. Gerla, M. Sanadidi and R. Wang, "TCP Westwood: Bandwidth
Estimation for Enhanced Transportover Wireless Links ;• Proceedings of ACM MOBICOM,
2001.

13. D. Eckhardt and P. Steenkiste, "lmproving Wireless LAN Performance via Adaptive Local
Error Control," Proceedings of IEEE ICNP, Austin, TX, 1998.

14. M. Mathis, J. Mahdavi, S. Floyd andA. Romanow, ''TCP selective acknowledgement options,"
Internet RFC 2018.

15. M. Allman, H. Balakrishnan, and S. Floyd, "Enhancing TCP's Loss Recovery Using Limited
Transmit," RFC 3042, Proposed Standard, January 2001 .

16. ns-2 Network Simulator. http://www.isi.edu/nsnam/
17. D. Bansal, H. Balakrishnan, S. Floyd and Scott Shenker, "Dynarnic Behavior of Slowly

Responsive Congestion Control Algorithms," Proceedings of ACM S1GCOMM, Sep. 2001.
18. R. Han and D.G. Messerschrnitt, "A Progressively Reliable Transport Protocol For Interac

tive Wireless Multimedia", ACM/Springer-Verlag Multimedia Systems Journal, vol. 7, no. 2,
March 199 9.

19. M. All man, V. Paxson and W. Stevens, ''TCP Congestion Control," RFC 258I , April 1999.
20. M. Allman, D. Glover and L. Sanchez, "Enhancing TCP Over Satellite Channels using Stan

dard Mechanisms," RFC 2488, January 1999.
21. J. Border, M. Kojo, J. Griner, G. Montenegro and Z. Shelby, "Performance Enhancing Proxies

Intended to Mitigate Link-Related Degradations," RFC 3135, June 2001.
22. Surnitha Bhandarkar, Nauzad Sadry, A. L. N. Reddy and Nitin Vaidya, ''TCP-DCR: A Novel

Protocol for Talerating Wireless Channel Errors" Tecnhical Report TAMU-ECE-2003-01,
February 2003.

