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Abstract. The performance of transmission control protocol (TCP) is 
largely dependent upon its loss recovery. Therefore, whether packet lasses 
may be recovered without a retransmission timeout (RTO) or not is a 
very important issue. Although TCP using selective acknowledgement 
(SACK) option can recover multiple packet lasses in a window, it can­
not avoid RTO if a retransmitted packet is lost again. In order to cope 
with this problem, we propose a simple change to TCP SACK, which 
is called TCP SACK+ in simple. We use a stochastic model to evaluate 
the performance of TCP SACK+, and analyze its performance compar­
atively in terms of loss recovery probability. Numerical results evaluated 
by simulations show that TCP SACK+ can improve the loss recovery 
performance of TCP SACK significantly in presence of random lasses. 

1 Introduction 

Since the specification of Transmission Control Protocol (TCP) is released [1], 
implementations of TCP have been enhanced with several mechanisms such as 
congestion control [4], [5]. TCP congestion control provides a function to detect 
and recover packet losses by retransmissions, which is called loss recovery in 
short. If the loss recovery is successful, packet transmission continues without 
a retransmission timeout (RTO). The loss recovery function of TCP operates 
using two basic algorithms of fast retransmit and fast recovery [2]-[5]. Because 
overall TCP performance has close relation to loss recovery efficiency, it has been 
a common focus to decrease the number of RTOs invoked if it is failed to re­
cover packet losses by retransmissions [6]. Unnecessary RTOs can be divided into 
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three dasses. First, if multiple packets are lost in a window at the same time, 
then all of these packet losses cannot be recovered without RTO frequently. Re­
cently, selective acknowledgement (SACK) option1 [7], [8] is proposed to avoid 
performance degradation for this reason. Using SACK option, thesender can be 
informed about all the packets that have arrived successfully, so the sender need 
retransmit only the packets that have been lost. Second, if a packet is lost in a 
small window, then three duplicate ACKs may not be received to trigger a fast 
retransmit. Using Limited Transmit (LT) [10], most of RTOs corresponding to 
this dass can be avoided. The third dass of RTOs is caused by retransmission 
losses. All of existing TCP implementations induding TCP SACK cannot avoid 
RTO when a retransmission is lost again [6], [11]. In order to avoid RTOs belang­
ing to this dass, we propose a simple algorithm that makes it possible for a TCP 
SACKsender to detect a lost retransmission and recover it by a retransmission. 
The proposed algorithm requires simple changes only to TCP implementation 
at the sender and is perfectly consistent with TCP specification such as additive 
increase multiplicative decrea.se (AIMD) principle [5]. According to [11], only 
4% of the timeouts are due to lost retransmissions. However, it contributes to 
make TCP SACKmore robust and perfect in that the final cause of unnecessary 
RTOs, which is remairring unsolved, can be avoided with no large modifications. 

In order to evaluate the performance of the proposed algorithm, we model 
the sender's behavior during loss recovery. From the results of the modeling, the 
exact conditions for successful loss recovery can be derived. For derivation of 
loss recovery probability and stationary distribution of TCP window in steady­
state, we mainly adopt the analysis using Markov process in [12]. Consequently, 
the improvement of the proposed algorithm can be comparatively analyzed with 
existing TCP versions in terms of the loss recovery probability that is normalized 
to the stationary distribution. 

The rest of this paper is organized as follows. Section 2 provides a detailed 
presentation of the proposed algorithm with simulation results. In Section 3 the 
detailed analysis of loss recovery behaviors of TCP SACK is presented from the 
aspect of the loss recovery probability. Section 4 contains the numerical results 
and their discussion. Finally, some condusions are summarized in Section 5. 

2 Description of the Proposed Algorithm 

In this paper, our focus is limited to TCP implementation using SACK option.2 

For TCP SACK, the proposed algorithm works for lost retransmission detection 

1 In the rest ofthis paper, wederrote TCP implementation using SACKoption by TCP 
SACK in simple. We consider "Sackl" presented in [6] as TCP SACK. Recently, the 
detailed loss recovery behaviors of Sackl are addressed in terms of maintaining AIMD 
principle in [9]. 

2 We have already proposed an algorithm called duplicate acknowledgement counting 
(DAC) which can be applied to TCP Reno and NewReno for lost retransmission 
detection. lt cannot be included in this paper due to page Iimitation, and will ap­
pear in another publication as a Part 1 of this paper. Unlike DAC, because SACK 
information provides the information of well-transmitted packets, there is no need 
to count the nurober of duplicate ACKs. 
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on the basis of the packets transmitted after a retransmission. In the rest of this 
paper, TCP SACK using the proposed algorithm is indicated by a plus sign such 
as TCP SACK+. 

2.1 Description of TCP SACK+ 

For TCP SACK+ operations, thesender keeps a variable per packet loss when 
its retransmission is performed. In the variable, the highest sequence number of 
the packets that are outstanding is stored when a lost packet is retransmitted. 
We denote the highest sequence number at the time of the retransmission of the 
hth packet loss by Sh. If the retransmission of the hth packet loss is successful, 
the right edge of the first block within SACK information is always smaller than 
or equal to Sh. During fast recovery, every time a duplicate ACK is received, 
the sender checks the right edge of the first block. If the sender receives any 
duplicate ACK for the hth lost packet indicating that the right edge of the first 
block is greater than sh, it determines that the retransmission is lost again and 
retransmits it immediately. Consequently, if at least a new packet is transmitted 
successfully after a retransmission, then the sender can detect whether its re­
transmission is lost or not. From the aspect of conservativeness, TCP SACK+ is 
perfectly consistent with the AIMD principle specified in [5]. As described above, 
a lost retransmission is detected based on the packets transmitted after the re­
transmission. It means that if congestion is so heavy that no packets should be 
transmitted, TCP SACK+ does not transmit additive packets after detecting a 
lost retransmission because t he packets after the retransmission would be likely 
to be lost as weil in such a congested situation. However, a lost retransmission 
detected assures that there was a quite heavy congestion so that it should be 
taken as two indications of congestion, which leads to decreasing cwnd twice as 
specified in [5]. 

2.2 Simulations 

Using ns simulations, we implement TCP SACK+ and show the loss recovery 
behaviors of a TCP SACK+ sender in fig. 1 and fig. 2. In these figures, the well­
transmitted packet is indicated by a blank square, lost packet by a black-filled 
square, and an ACK packet by +. In the simulations, several specific packets are 
forced to be dropped as in [6]. 

In fig. 1, we compare the loss recovery behaviors of TCP SACK+ with TCP 
SACK when a single packet and its retransmission are lost. At ab out 0. 7 second, 
packets 7- 14 are transmitted with cwnd of 8 and packet 7 is dropped . When the 
sender receives three duplicate ACKs at about 0.9 second, thesender retransmits 
packet 7 and sets cwndto 4(= l8/ 2J) and pipe to 5(= 8-3). The last duplicate 
ACK decrease pipe to one so that three new packets, packet 15, 16, and 17, are 
transmitted after the retransmission. Because the retransmission of packet 7 is 
lost again, as can be seen in fig . 1-(a), the sender receives the same repetitive 
duplicate ACKs per every round-trip time (RTT) until RTO occurs. At about 
2.3 second, it can be seen that thesender restarts to transmit in slow-start mode. 
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Fig.l. Comparison between TCP SACK and SACK+ forasinglepacket lossandlost 
retransmission. ( + indicates an ACK packet.) 

For TCP SACK+ shown in fig. 1-(b ), thesender sets 8 1 to 14 when it retransmits 
packet 7. The eighth duplicate ACK includes SACK information indicating that 
the first block starts with packet 8 and ends with packet 15. At this time, because 
the right edge of the block is greater than the stored value in 82 , the sender 
transmits the second retransmission of packet 7 at about 1.3 second. After the 
retransmission, the sender halves cwnd again to be 2( = l4/2 J ). Therefore, even 
if two more duplicate ACKs by packet 16 and 17 decreases pipe to be 2, no 
packets cannot be transmitted. At about 1.5 second, the second retransmission 
delivers an ACK that acknowledges packets up to packet 17, which brings the 
senderout of fast recovery and congestion avoidance starts with cwnd of 2. 

We perform the same simulation for two packet losses and the results are 
shown in fig. 2. In this simulation, two packets 7 and 12 are lost and the re­
transmission of packet 12 is lost again. After fast retransmit of packet 7, the 
fifth duplicate ACK decreases pipe to be 3 so that one packet transmission is 
allowed. At this time, the sender can be informed by SACK information in the 
duplicate ACK that packet 12 is also lost. The final duplicate ACK decreases 
pipe again and packet 15 is transmitted. After a RTT, a partial ACK and du­
plicate ACK for packet 12 are received, which decrease pipe by three, and three 
new packets, packet 16, 17, and 18 are transmitted. However, the retransmission 
of packet 12 is lost again, the sender cannot complete fast recovery but RTO 
occurs eventually at about 2.3 second. For TCP SACK+ shown in fig. 2-(b), 
the sender sets D1 = D2 = 14 when it retransmits packet 7 and 12. A partial 
ACK after a RTT means that the retransmission of packet 7 is well-transmitted 
so that 81 is cleared and two new packets, packet 16 and 17, are transmitted. 
After that, the seventh duplicate ACK by packet 15 is received indicating that 
the first block starts with packet 13 and ends with packet 15, which is greater 
than 82 . Therefore, thesender transmits the second retransmission of packet 12 
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Fig. 2. Comparison between TCP SACK and SACK+ for two packet Iosses and a 
single lost retransmission. ( + indicates an ACK packet.) 

instead of packet 18 at about 1.3 second. An ACK that acknowledges packets 
up to packet 17 brings the sender out of fast recovery and congestion avoidance 
starts with cwnd of 2. 

3 Modeling and Probabilistic Analysis 

We adopt the concept of 'loss window' and 'round' defined in [12] and [13], 
respectively. If we denote a loss window by [l and the ith packet loss in [l 
by li, the first packet that [l includes is always l 1 . Additionally, we define Pk 
as the number of new packets that are transmitted in the kth round in loss 
recovery period. For n packet losses in [l of u packets, Po is always equal to 
u - n. For modeling the evolution and obtaining stationary distribution of TCP 
congestion window, we mainly follow the procedures presented in [12] under the 
same assumptions such as fixed packet size, random packet losses, no ACK loss, 
and infinite packet transmission. We also follow some notations in [12] such as 
W max for receiver's advertised window and K for slow-start-threshold. 

3.1 TCP Reno 

The recovery probability of TCP Reno is derived in terms of the number of packet 
losses in a loss window in [12]. In [12], it is assumed that the fast recovery of 
TCP Reno succeeds only if at most two packets arelost in a loss window. For 
[l = u and a single packet loss, h can be recovered without RTO if Po 2: K and 
the retransmission is not lost. Therefore, for u 2: K + 1, its probability is given 
by 
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In the same way, l2 can be recovered if iP1 2 K and there is no packet loss during 
fast recovery. Since iP1 is equal to the number of new packets transmitted after 
the fast retransmission of l1, iP1 = Lu/2J + iPo- u = lu/2J - 2.3 For [l = u, 
when it contents l u/2 J - 2 2 K, the recovery probability of 12 is given by 

Using LT, a packet loss can be fast retransmitted if only a single duplicate ACK 
can be received. Therefore, even if [l does not content u 2 K + 1, a single 
packet loss may be recovered by a retransmission. For [l = u and 2 :::; u :::; 3, its 
probability, RL(u), is given by 

(3) 

It means that exactly one packet is lost out of u packets and three packets 
including two new packets transrnitted by LT and the retransmission itself should 
not be lost. Note that LT works for only a single packet loss or the first packet 
loss in case of multiple packet Iosses per window [14]. Therefore, the recovery 
probability of TCP Reno using LT is given by RRL(u) = RR(u) + RL(u). 

3.2 TCP SACK 

For loss recovery of TCP SACK, packet transmission may be stalled in the second 
round due to misbehavior of pipe. Suppose that n packet losses are included in 
a loss window of u packets. After the send er receives all duplicate ACKs for h, it 
sets pipe to n( = u- iPo). If n is equal to or greater than cwnd( = L u/ 2 J ), no new 
packet can be transmitted in the first round. When the sender receives a partial 
ACK by the retransmission of h, it decreases pipe by two so that it is equal to 
n- 2. Again, if n- 2 2 Lu/2J, then no morepacket can be transmitted but a 
RTO occurs in the end. Therefore, for successful loss recovery of TCP SACK, 
the number of packet Iosses is restricted by n :::; l u / 2 J + 1. Consequently, the 
loss recovery probability of TCP SACK is given by 

(4) 

where /-Ll = min(u-K, lu/2J +1) . When LT is used for TCP SACK, its recovery 
probability, RsL(u), can be simply derived by replacement (u- K) in /-Ll with 
(u- 1). 

3 According to our previous work presented in [14], three packet Iosses may be recov­
ered without a RTO under the strict condition that a loss window size u is !arge 
enough to content Lu/4J- 3 2: K and there are at least u - Lu/4J + (K -1) packets 
between l1 and l2. However, its probability is so small that we do not include the 
case in our derivation of the loss recovery probability of TCP Reno. 
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Fig. 3. Loss recovery behaviors of TCP SACK+ when the retransmission of n packet 
Iosses is completed in the first roundo 

3.3 TCP SACK+ 

We limit the number of lost retransmissions that the proposed algorithm can 
recover in a loss window to one and the same retransmission loss cannot be 
recovered twiceo Therefore, the recovery probability of TCP SACK+ is given by 

Rs+(u) = Rs(u) + p 0 ..1s(u) (5) 

where ..1s(u) is the probability that a lost retransmission is recoveredo The term 
p 0 ..1s(u), therefore, means the probability that a retransmission is lost again 
and it is recovered by the proposed algorithmo When SACK option is used, 
the duration of loss recovery period is dependent on the position as well as the 
number of packet losseso For simplicity in the derivations of ..1s(u), we limit our 
consideration to the cases that its loss recovery period is completed within a 
round or twoo 

First of all, as shown in figo 3, we consider the case that loss recovery is 
finished at the first round. In this case, all of packet losses are retransmitted 
before a partial ACK is received by the retransmission of h. For n packet losses 
in n, if we denote the number of retransmissions sent by the decrement of pipe 
in the kth round by TJk, then we have 

n = TJ1 + 1. (6) 

When all of duplicate ACKs for h are received, the values of cwnd and pipe 
are equal to l u/2 j and n, respectively. Therefore, for !? = u, total number of 
packets that can be transmitted during the first round is given by 

TJ1 + 4)1 = lu/2J - n. (7) 

For simplicity, as long as pipe permits, a retransmission is assumed tobe always 
transmitted first regardless of its position in a loss window. Then, a retransmis­
sion loss out of n retransmissions can be detected if 4)1 2 1. From (6) and (7), 
the condition is given by 

1::; n::; lu/4J. (8) 

If the last packet in a loss window is lost, even if the above condition is satisfied, 
the retransmission of n packet Iosses cannot be completed in the first roundo 
Hence, we do not include this case in the derivation of ..18 (u)o As a consequence, 

the recovery probability of a lost retransmission in the first round, ..1~1 ) (u), is 
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Fig. 4. Loss recovery behavior of TCP SACK+ when the retransmission of n packet 
losses is completed in the second round. 

given by 
Lu/4J 2 

P · .1~)(u) = P · ~ (~ = 1) (~)Pn- 1 (1- Pt+P1 (9) 

where it reflects the following two facts: 
i) ( n - 1) packets are lost out of ( u - 2) packets which do not include the last 
packet in [). 
ii) A retransmission is lost out of n retransmissions, and <P1 packets and a re­
transmission by SACK+ should not be lost. 

If n ::=: l u /4 J + 1, the recovery period continues after the first round as shown 
in fig. 4. If it is assumed that the retransmission of n packet losses is to be 
completed in the second round, then we have 

(10) 

Recalling the assumption that a retransmission is always transmitted first, it can 
be inferred that all of packets transmitted during the first round are retransmis­
sions; i.e., <P1 = 0. Therefore, thesender is going to receive (ry1 + 1) partial ACKs 
in the second round, so that total number of packets that the sender is allowed 
to transmit in the second round is given by 

TJ2 + <P2 = 2(TJ1 + 1) = 2(Lu/2J - n + 1). (11) 

Note that a partial ACK decrements pipe by two [6]. From (10) and (11), the 
condition for <P2 ::=: 1 is given by 

n::::; 0.75lu/2J + 0.5. (12) 

As a consequence, for Lu/4J + 1 ::::; n ::::; 0.75lu/2J + 0.5, the recovery probability 
of a retransmission loss in the second round is given by 

(13) 

where it reflects the following three facts: 
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i) (n - 1) packets arelost out of (u- 2) packets which do not include the last 
packet in [2. 

ii) (ry1 + 1) retransmissions should not be lost. 
iii) A retransmission is lost out of 112 retransmissions, and <P2 packets and a 
retransmission by SACK+ should not be lost. 
From (5), (9), and (13), the totalloss recovery probability of TCP SACK+ can 
be derived. 

4 Results and Discussion 

We calculate the loss recovery probability4 that is normalized to the stationary 
distribution of the window, which is obtained from Markov process of the window 
evolution for packet loss probability as presented in [12]. The x-axis of each graph 
indicates packet loss probability, which corresponds to p. We assume that K is 
always three. In fig. 5, the loss recovery probability of each TCP is compared for 
two different values of W max· When LT is not used, the loss recovery probability 
of all TCP starts to drop rapidly when packet loss probability exceeds 10- 2 • For 
TCP SACK, the recovery of multiple packet losses would likely be successful if 
only the firstlost packet can be recovered by fast retransmit. Therefore, the drop 
of the loss recovery probability for packet loss probabilities exceeding w-2 can 
be explained by the fact that fast retransmit of the first lost packet cannot be 
triggered well due to lack of duplicate ACKs by the small congestion window. 
As can be seen in this figure, when LT is adopted, the loss recovery probability 

4 Since it has been already proved in [12] that TCP performance such as throughput 
or goodput is directly proportional to the loss recovery probability, we do not in­
clude the results of throughput comparison. Also, it can be inferred intuitively by 
simulation results presented in Section 2. 
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Fig. 6. Camparisan of the loss recovery probability predicted by the developed model 
to the simulated results when the proposed algorithm is applied. 

shows a slow decline with the increment of packet loss probability. For packet 
loss probability over 10-1, the recovery probability of Reno using LT is rather 
higher than that of TCP SACK and SACK+. It is because, for such a large 
packet loss probability, the sender cannot keep its size large enough due to the 
frequent loss recovery events so that the capability of recovery for multiple packet 
lasses makes little difference to the recovery probability. Since LT increases the 
likelihood of the first fast retransmit, when it is used with SACK option, the 
sender has more chances to recover multiple packet lasses by retransmissions. It 
is the reason for the higher improvement when LT is used for TCP SACK than 
Reno. 

There is a considerable improvement in the loss recovery probability of TCP 
SACK compared with TCP Reno. The difference between two lines of SACK and 
Reno reflects the capability to handle multiple packet lasses without RTO or not. 
The slight difference between TCP SACK and SACK+ reveals the problern of 
lost retransmissions. As packet loss probability increases, morepacket lasses may 
occur and their retransmissions also tend to be lost again. On the other hand, 
as mentioned earlier, the congestion window is not large enough that multiple 
packet losses are not likely to be included in a window. That is, the probability 
for an event that a retransmission is lost again is quite low, which is the reason 
that the overall values of difference in loss recovery probability between SACK 
and SACK+ are not quite significant. According to the results measured in 
the real Internet presented in [11], the largest portion, about 85%, of timeouts 
are caused by small window, about 11% by multiple packet losses, and 4% by 
retransmission lasses. The results obtained from our model verifies it again in 
that the largest improvement is made by LT, the second largest by SACK option, 
and the last by SACK+. 
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Fig. 7. Comparison of the loss recovery probability predicted by the developed model 
to the simulated results when LT is applied. 

As shown in fig. 5, further increment of W max to 32 makes no significant 
differences to the loss recovery probability. For low packet loss probability, it is 
unlikely that there are more than two packet losses in a window. Note that a 
single packet loss can be retransmitted if only three duplicate ACKs are received, 
namely, the window is equal to or greater than four . Even if multiple packet 
losses occur, they can be retransmitted if the first fast retransmit is successful. 
Consequently, a large W max may benefit the throughput of TCP but not its loss 
recovery performance. 

In fig. 6, we evaluate the loss recovery probability of TCP SACK and SACK+ 
using ns simulations. A sender and a receiver are connected with a long-fat link 
of lOMbps and 100msec where packets are dropped in random. Using FTP, 
the sender transmits data consist of 104 packets whose size is lkbytes, and the 
congestion window can grow up to Wmax· The loss recovery probability is defined 
as the ratio of the number of the packets recovered by retransmissions to the 
total number of packet losses. It can be seen that the simulated values and the 
calculated values of our developed model fit well. 

In fig. 7, we also evaluate the loss recovery probability when LT is used. 
There is a remarkable difference between the modeled results and the simulated 
results. It is because only the number of duplicate ACKs are considered as the 
condition for successfulloss recovery in our modeling process. However, even if 
three duplicate ACKs are to be received, a RTO occurs if it expires before the 
third duplicate ACK arrives. If we suppose the worst case that the second packet 
is lost in a window of two in congestion avoidance, it takes about four RTTs to 
receive the third duplicate ACK. Therefore, the practical improvement of LT 
may be much smaller than the modeled results. 
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5 Conclusions 

In this paper, we have proposed a simple algorithm that enables a TCP send er 
using SACK option to detect and recover retransmission Iosses without a RTO. 
The analysis in this paper assumes an environment where packets are dropped in 
random with probability p and the Iosses are independent to each other. There­
fore, although the proposed algorithm can recover almost all of retransmission 
losses, its improvement is not significant since a retransmission loss itself is not 
such a common event in this loss model. However, according to queue man­
agerneut schemes such as droptail and with changing Ievels of congestion, the 
likelihood of a retransmission loss may have some variation. If it may occur more 
frequently than in our model, the change proposed in this paper is of a great 
benefit to loss recovery performance of TCP. 
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