
Lost Retransmission Detection for TCP Part 2:
TCP Using SACK Option*

Beomjoon Kim1 , Yong-Hoon Choi2 , Jaiyong Lee3 , Min-Seok Oh1, and
Jin-Sung Choi 1

1 Standardiztion & System Research Group (SSRG) , Mobile Communication
Technology Research Lab., CTO, LG Electronics lnc.,

LG R&D Complex, 533, Hogye1-Dong, Dongan-Gu, Anyang-City, Kyongki-Do,
431-749, Korea, {beom,minoh,jinsungc }lnlge. com

2 RAN SjW Group, System SjW Dept., System Research Lab., Telecommunication
Equipment & Handset Company, LG Electronics lnc.,

LG R&D Complex, 533, Hogye1-Dong, Dongan-Gu, Anyang-City, Kyongki-Do,
431-7 49, Korea, dearyonghoonlnlge . com

3 Department of Electrical & Electronic Engineering, Vonsei University, 134
Shinchon-Dong Seodaemun-Gu, Seoul, 120-749, Korea, jyllnnasla. yonsei. ac. kr

Abstract. The performance of transmission control protocol (TCP) is
largely dependent upon its loss recovery. Therefore, whether packet lasses
may be recovered without a retransmission timeout (RTO) or not is a
very important issue. Although TCP using selective acknowledgement
(SACK) option can recover multiple packet lasses in a window, it can­
not avoid RTO if a retransmitted packet is lost again. In order to cope
with this problem, we propose a simple change to TCP SACK, which
is called TCP SACK+ in simple. We use a stochastic model to evaluate
the performance of TCP SACK+, and analyze its performance compar­
atively in terms of loss recovery probability. Numerical results evaluated
by simulations show that TCP SACK+ can improve the loss recovery
performance of TCP SACK significantly in presence of random lasses.

1 Introduction

Since the specification of Transmission Control Protocol (TCP) is released [1],
implementations of TCP have been enhanced with several mechanisms such as
congestion control [4], [5]. TCP congestion control provides a function to detect
and recover packet losses by retransmissions, which is called loss recovery in
short. If the loss recovery is successful, packet transmission continues without
a retransmission timeout (RTO). The loss recovery function of TCP operates
using two basic algorithms of fast retransmit and fast recovery [2]-[5]. Because
overall TCP performance has close relation to loss recovery efficiency, it has been
a common focus to decrease the number of RTOs invoked if it is failed to re­
cover packet losses by retransmissions [6]. Unnecessary RTOs can be divided into

* This work was supported by grant No.R01-2002-000-00531-0 from the interdiscipli-
nary researchprogram of the KOSEF.

N . Mitrou et al. (Eds.): NETWORKING 2004, LNCS 3042, pp. 88-99, 2004.
@ IFIP International Federation for Information Processing 2004

Lost Retransmission Detection for TCP Part 2: TCP Using SACK Option 89

three dasses. First, if multiple packets are lost in a window at the same time,
then all of these packet losses cannot be recovered without RTO frequently. Re­
cently, selective acknowledgement (SACK) option1 [7], [8] is proposed to avoid
performance degradation for this reason. Using SACK option, thesender can be
informed about all the packets that have arrived successfully, so the sender need
retransmit only the packets that have been lost. Second, if a packet is lost in a
small window, then three duplicate ACKs may not be received to trigger a fast
retransmit. Using Limited Transmit (LT) [10], most of RTOs corresponding to
this dass can be avoided. The third dass of RTOs is caused by retransmission
losses. All of existing TCP implementations induding TCP SACK cannot avoid
RTO when a retransmission is lost again [6], [11]. In order to avoid RTOs belang­
ing to this dass, we propose a simple algorithm that makes it possible for a TCP
SACKsender to detect a lost retransmission and recover it by a retransmission.
The proposed algorithm requires simple changes only to TCP implementation
at the sender and is perfectly consistent with TCP specification such as additive
increase multiplicative decrea.se (AIMD) principle [5]. According to [11], only
4% of the timeouts are due to lost retransmissions. However, it contributes to
make TCP SACKmore robust and perfect in that the final cause of unnecessary
RTOs, which is remairring unsolved, can be avoided with no large modifications.

In order to evaluate the performance of the proposed algorithm, we model
the sender's behavior during loss recovery. From the results of the modeling, the
exact conditions for successful loss recovery can be derived. For derivation of
loss recovery probability and stationary distribution of TCP window in steady­
state, we mainly adopt the analysis using Markov process in [12]. Consequently,
the improvement of the proposed algorithm can be comparatively analyzed with
existing TCP versions in terms of the loss recovery probability that is normalized
to the stationary distribution.

The rest of this paper is organized as follows. Section 2 provides a detailed
presentation of the proposed algorithm with simulation results. In Section 3 the
detailed analysis of loss recovery behaviors of TCP SACK is presented from the
aspect of the loss recovery probability. Section 4 contains the numerical results
and their discussion. Finally, some condusions are summarized in Section 5.

2 Description of the Proposed Algorithm

In this paper, our focus is limited to TCP implementation using SACK option.2

For TCP SACK, the proposed algorithm works for lost retransmission detection

1 In the rest ofthis paper, wederrote TCP implementation using SACKoption by TCP
SACK in simple. We consider "Sackl" presented in [6] as TCP SACK. Recently, the
detailed loss recovery behaviors of Sackl are addressed in terms of maintaining AIMD
principle in [9].

2 We have already proposed an algorithm called duplicate acknowledgement counting
(DAC) which can be applied to TCP Reno and NewReno for lost retransmission
detection. lt cannot be included in this paper due to page Iimitation, and will ap­
pear in another publication as a Part 1 of this paper. Unlike DAC, because SACK
information provides the information of well-transmitted packets, there is no need
to count the nurober of duplicate ACKs.

90 B. Kim et al.

on the basis of the packets transmitted after a retransmission. In the rest of this
paper, TCP SACK using the proposed algorithm is indicated by a plus sign such
as TCP SACK+.

2.1 Description of TCP SACK+

For TCP SACK+ operations, thesender keeps a variable per packet loss when
its retransmission is performed. In the variable, the highest sequence number of
the packets that are outstanding is stored when a lost packet is retransmitted.
We denote the highest sequence number at the time of the retransmission of the
hth packet loss by Sh. If the retransmission of the hth packet loss is successful,
the right edge of the first block within SACK information is always smaller than
or equal to Sh. During fast recovery, every time a duplicate ACK is received,
the sender checks the right edge of the first block. If the sender receives any
duplicate ACK for the hth lost packet indicating that the right edge of the first
block is greater than sh, it determines that the retransmission is lost again and
retransmits it immediately. Consequently, if at least a new packet is transmitted
successfully after a retransmission, then the sender can detect whether its re­
transmission is lost or not. From the aspect of conservativeness, TCP SACK+ is
perfectly consistent with the AIMD principle specified in [5]. As described above,
a lost retransmission is detected based on the packets transmitted after the re­
transmission. It means that if congestion is so heavy that no packets should be
transmitted, TCP SACK+ does not transmit additive packets after detecting a
lost retransmission because t he packets after the retransmission would be likely
to be lost as weil in such a congested situation. However, a lost retransmission
detected assures that there was a quite heavy congestion so that it should be
taken as two indications of congestion, which leads to decreasing cwnd twice as
specified in [5].

2.2 Simulations

Using ns simulations, we implement TCP SACK+ and show the loss recovery
behaviors of a TCP SACK+ sender in fig. 1 and fig. 2. In these figures, the well­
transmitted packet is indicated by a blank square, lost packet by a black-filled
square, and an ACK packet by +. In the simulations, several specific packets are
forced to be dropped as in [6].

In fig. 1, we compare the loss recovery behaviors of TCP SACK+ with TCP
SACK when a single packet and its retransmission are lost. At ab out 0. 7 second,
packets 7- 14 are transmitted with cwnd of 8 and packet 7 is dropped . When the
sender receives three duplicate ACKs at about 0.9 second, thesender retransmits
packet 7 and sets cwndto 4(= l8/ 2J) and pipe to 5(= 8-3). The last duplicate
ACK decrease pipe to one so that three new packets, packet 15, 16, and 17, are
transmitted after the retransmission. Because the retransmission of packet 7 is
lost again, as can be seen in fig . 1-(a), the sender receives the same repetitive
duplicate ACKs per every round-trip time (RTT) until RTO occurs. At about
2.3 second, it can be seen that thesender restarts to transmit in slow-start mode.

Lost Retransmission Detect.ion for TCP Part 2: TCP Using SACK Option 91

40
D

50
D

D
<>

35 D

D
. .

!
_830 D

E a

i12s ;
D

" a
g D

~20 D
D

a

" . D

r/) D

~15 D
D

g D .
0.10 D retransmission timeo .

D

'
.. .

' .
D . .

00 0.5 1.5 2.5
Time (sec)

45

~ 40 ; ~
~35
~ l Z3o g I :
~25 f ..

~ "'20
;;;

§ g15
Q. seoiX'd ratrBT\SIIhSSIOf\ of pac:ket 7

10 I , I
II

0
3 0 0.5 1.5 2.5

Time (sec)

(a) TCP SACK (b) TCP SACK+

Fig.l. Comparison between TCP SACK and SACK+ forasinglepacket lossandlost
retransmission. (+ indicates an ACK packet.)

For TCP SACK+ shown in fig. 1-(b), thesender sets 8 1 to 14 when it retransmits
packet 7. The eighth duplicate ACK includes SACK information indicating that
the first block starts with packet 8 and ends with packet 15. At this time, because
the right edge of the block is greater than the stored value in 82 , the sender
transmits the second retransmission of packet 7 at about 1.3 second. After the
retransmission, the sender halves cwnd again to be 2(= l4/2 J). Therefore, even
if two more duplicate ACKs by packet 16 and 17 decreases pipe to be 2, no
packets cannot be transmitted. At about 1.5 second, the second retransmission
delivers an ACK that acknowledges packets up to packet 17, which brings the
senderout of fast recovery and congestion avoidance starts with cwnd of 2.

We perform the same simulation for two packet losses and the results are
shown in fig. 2. In this simulation, two packets 7 and 12 are lost and the re­
transmission of packet 12 is lost again. After fast retransmit of packet 7, the
fifth duplicate ACK decreases pipe to be 3 so that one packet transmission is
allowed. At this time, the sender can be informed by SACK information in the
duplicate ACK that packet 12 is also lost. The final duplicate ACK decreases
pipe again and packet 15 is transmitted. After a RTT, a partial ACK and du­
plicate ACK for packet 12 are received, which decrease pipe by three, and three
new packets, packet 16, 17, and 18 are transmitted. However, the retransmission
of packet 12 is lost again, the sender cannot complete fast recovery but RTO
occurs eventually at about 2.3 second. For TCP SACK+ shown in fig. 2-(b),
the sender sets D1 = D2 = 14 when it retransmits packet 7 and 12. A partial
ACK after a RTT means that the retransmission of packet 7 is well-transmitted
so that 81 is cleared and two new packets, packet 16 and 17, are transmitted.
After that, the seventh duplicate ACK by packet 15 is received indicating that
the first block starts with packet 13 and ends with packet 15, which is greater
than 82 . Therefore, thesender transmits the second retransmission of packet 12

92 B. Kim et al.

40 . 50 . . ~ 45 35 . .
0 . . 40

~30 0 ~
E 0 ~35
:i 25

. 0
~

0

830 8 0
D

D c . e
~20 0 ~25 .

er
~ . ..

</) D "'20
~15 D

D
..

:;} 0 ~15 .
l Q. 10 0 ratransm1s.sion Dmeoul Q.

0 . 10
~ . . .

5 ' 1 . . .
i

00 0.5 1.5 2 2.5 3 00 0.5

1 f I f
§

1.5 2.5
nme(sec) nme (sec)

(a) TCP S CK (b) TCP SACK+

Fig. 2. Comparison between TCP SACK and SACK+ for two packet Iosses and a
single lost retransmission. (+ indicates an ACK packet.)

instead of packet 18 at about 1.3 second. An ACK that acknowledges packets
up to packet 17 brings the sender out of fast recovery and congestion avoidance
starts with cwnd of 2.

3 Modeling and Probabilistic Analysis

We adopt the concept of 'loss window' and 'round' defined in [12] and [13],
respectively. If we denote a loss window by [l and the ith packet loss in [l
by li, the first packet that [l includes is always l 1 . Additionally, we define Pk
as the number of new packets that are transmitted in the kth round in loss
recovery period. For n packet losses in [l of u packets, Po is always equal to
u - n. For modeling the evolution and obtaining stationary distribution of TCP
congestion window, we mainly follow the procedures presented in [12] under the
same assumptions such as fixed packet size, random packet losses, no ACK loss,
and infinite packet transmission. We also follow some notations in [12] such as
W max for receiver's advertised window and K for slow-start-threshold.

3.1 TCP Reno

The recovery probability of TCP Reno is derived in terms of the number of packet
losses in a loss window in [12]. In [12], it is assumed that the fast recovery of
TCP Reno succeeds only if at most two packets arelost in a loss window. For
[l = u and a single packet loss, h can be recovered without RTO if Po 2: K and
the retransmission is not lost. Therefore, for u 2: K + 1, its probability is given
by

Lost Retransmission Detection for TCP Part 2: TCP Using SACK Option 93

In the same way, l2 can be recovered if iP1 2 K and there is no packet loss during
fast recovery. Since iP1 is equal to the number of new packets transmitted after
the fast retransmission of l1, iP1 = Lu/2J + iPo- u = lu/2J - 2.3 For [l = u,
when it contents l u/2 J - 2 2 K, the recovery probability of 12 is given by

Using LT, a packet loss can be fast retransmitted if only a single duplicate ACK
can be received. Therefore, even if [l does not content u 2 K + 1, a single
packet loss may be recovered by a retransmission. For [l = u and 2 :::; u :::; 3, its
probability, RL(u), is given by

(3)

It means that exactly one packet is lost out of u packets and three packets
including two new packets transrnitted by LT and the retransmission itself should
not be lost. Note that LT works for only a single packet loss or the first packet
loss in case of multiple packet Iosses per window [14]. Therefore, the recovery
probability of TCP Reno using LT is given by RRL(u) = RR(u) + RL(u).

3.2 TCP SACK

For loss recovery of TCP SACK, packet transmission may be stalled in the second
round due to misbehavior of pipe. Suppose that n packet losses are included in
a loss window of u packets. After the send er receives all duplicate ACKs for h, it
sets pipe to n(= u- iPo). If n is equal to or greater than cwnd(= L u/ 2 J), no new
packet can be transmitted in the first round. When the sender receives a partial
ACK by the retransmission of h, it decreases pipe by two so that it is equal to
n- 2. Again, if n- 2 2 Lu/2J, then no morepacket can be transmitted but a
RTO occurs in the end. Therefore, for successful loss recovery of TCP SACK,
the number of packet Iosses is restricted by n :::; l u / 2 J + 1. Consequently, the
loss recovery probability of TCP SACK is given by

(4)

where /-Ll = min(u-K, lu/2J +1) . When LT is used for TCP SACK, its recovery
probability, RsL(u), can be simply derived by replacement (u- K) in /-Ll with
(u- 1).

3 According to our previous work presented in [14], three packet Iosses may be recov­
ered without a RTO under the strict condition that a loss window size u is !arge
enough to content Lu/4J- 3 2: K and there are at least u - Lu/4J + (K -1) packets
between l1 and l2. However, its probability is so small that we do not include the
case in our derivation of the loss recovery probability of TCP Reno.

94 Bo Kim et al.

cl»0 =u-n

EJ und tj nOn tj n u O ~ On tj od I I I c___y=;
TlJ retransmissions cl», new packets

Fig. 3. Loss recovery behaviors of TCP SACK+ when the retransmission of n packet
Iosses is completed in the first roundo

3.3 TCP SACK+

We limit the number of lost retransmissions that the proposed algorithm can
recover in a loss window to one and the same retransmission loss cannot be
recovered twiceo Therefore, the recovery probability of TCP SACK+ is given by

Rs+(u) = Rs(u) + p 0 ..1s(u) (5)

where ..1s(u) is the probability that a lost retransmission is recoveredo The term
p 0 ..1s(u), therefore, means the probability that a retransmission is lost again
and it is recovered by the proposed algorithmo When SACK option is used,
the duration of loss recovery period is dependent on the position as well as the
number of packet losseso For simplicity in the derivations of ..1s(u), we limit our
consideration to the cases that its loss recovery period is completed within a
round or twoo

First of all, as shown in figo 3, we consider the case that loss recovery is
finished at the first round. In this case, all of packet losses are retransmitted
before a partial ACK is received by the retransmission of h. For n packet losses
in n, if we denote the number of retransmissions sent by the decrement of pipe
in the kth round by TJk, then we have

n = TJ1 + 1. (6)

When all of duplicate ACKs for h are received, the values of cwnd and pipe
are equal to l u/2 j and n, respectively. Therefore, for !? = u, total number of
packets that can be transmitted during the first round is given by

TJ1 + 4)1 = lu/2J - n. (7)

For simplicity, as long as pipe permits, a retransmission is assumed tobe always
transmitted first regardless of its position in a loss window. Then, a retransmis­
sion loss out of n retransmissions can be detected if 4)1 2 1. From (6) and (7),
the condition is given by

1::; n::; lu/4J. (8)

If the last packet in a loss window is lost, even if the above condition is satisfied,
the retransmission of n packet Iosses cannot be completed in the first roundo
Hence, we do not include this case in the derivation of ..18 (u)o As a consequence,

the recovery probability of a lost retransmission in the first round, ..1~1) (u), is

Lost Retransmission Detection for TCP Part 2: TCP Using SACK Option 95

~0 =u-n

[3·· ~ ~ ..
~

T/1 retransmissions ,CIJY D)
T/2 retransmissions

I I I
~
~2new packets

Fig. 4. Loss recovery behavior of TCP SACK+ when the retransmission of n packet
losses is completed in the second round.

given by
Lu/4J 2

P · .1~)(u) = P · ~ (~ = 1) (~)Pn- 1 (1- Pt+P1 (9)

where it reflects the following two facts:
i) (n - 1) packets are lost out of (u - 2) packets which do not include the last
packet in [).
ii) A retransmission is lost out of n retransmissions, and <P1 packets and a re­
transmission by SACK+ should not be lost.

If n ::=: l u /4 J + 1, the recovery period continues after the first round as shown
in fig. 4. If it is assumed that the retransmission of n packet losses is to be
completed in the second round, then we have

(10)

Recalling the assumption that a retransmission is always transmitted first, it can
be inferred that all of packets transmitted during the first round are retransmis­
sions; i.e., <P1 = 0. Therefore, thesender is going to receive (ry1 + 1) partial ACKs
in the second round, so that total number of packets that the sender is allowed
to transmit in the second round is given by

TJ2 + <P2 = 2(TJ1 + 1) = 2(Lu/2J - n + 1). (11)

Note that a partial ACK decrements pipe by two [6]. From (10) and (11), the
condition for <P2 ::=: 1 is given by

n::::; 0.75lu/2J + 0.5. (12)

As a consequence, for Lu/4J + 1 ::::; n ::::; 0.75lu/2J + 0.5, the recovery probability
of a retransmission loss in the second round is given by

(13)

where it reflects the following three facts:

96 B. Kim et al.

0.8
2:­
ßo.7
_g
eo.s

Q.

io.s
0

il0.4
a:

' ,

8o3
-' lr_-_~r'""c""'P Reoo=---,

02 _.. TCP Reoo <M>g LT
- • TCP SACK

0 .1 ..t. • TCP SACK•
~- TCP SACK U""l' LT

10. 1

Packel Loss Probability

(b) Wma:>: = 32

',
\

\

Fig. 5. Comparison of the loss recovery probability predicted by the developed model.

i) (n - 1) packets arelost out of (u- 2) packets which do not include the last
packet in [2.

ii) (ry1 + 1) retransmissions should not be lost.
iii) A retransmission is lost out of 112 retransmissions, and <P2 packets and a
retransmission by SACK+ should not be lost.
From (5), (9), and (13), the totalloss recovery probability of TCP SACK+ can
be derived.

4 Results and Discussion

We calculate the loss recovery probability4 that is normalized to the stationary
distribution of the window, which is obtained from Markov process of the window
evolution for packet loss probability as presented in [12]. The x-axis of each graph
indicates packet loss probability, which corresponds to p. We assume that K is
always three. In fig. 5, the loss recovery probability of each TCP is compared for
two different values of W max· When LT is not used, the loss recovery probability
of all TCP starts to drop rapidly when packet loss probability exceeds 10- 2 • For
TCP SACK, the recovery of multiple packet losses would likely be successful if
only the firstlost packet can be recovered by fast retransmit. Therefore, the drop
of the loss recovery probability for packet loss probabilities exceeding w-2 can
be explained by the fact that fast retransmit of the first lost packet cannot be
triggered well due to lack of duplicate ACKs by the small congestion window.
As can be seen in this figure, when LT is adopted, the loss recovery probability

4 Since it has been already proved in [12] that TCP performance such as throughput
or goodput is directly proportional to the loss recovery probability, we do not in­
clude the results of throughput comparison. Also, it can be inferred intuitively by
simulation results presented in Section 2.

Lost Retransmission Detection for TCP Part 2: TCP Using SACK Option 97

0 9 ----
.. _ o

'o.__ .. '-.
o.. .6 ..

",o :",

--~
'~:<

Pac~et Loss Probability

(a) TCP Reno, SACK, and SACK+
(Wrnax = 8)

0.9

~ r8
.. 0.7

f ~0.6

't .. -
' t

.. '
0::

~0.5

Packet Loss Probabrlrty

(b) TCP Reno, SACK, and SACK+
(Wmax = 32)

Fig. 6. Camparisan of the loss recovery probability predicted by the developed model
to the simulated results when the proposed algorithm is applied.

shows a slow decline with the increment of packet loss probability. For packet
loss probability over 10-1, the recovery probability of Reno using LT is rather
higher than that of TCP SACK and SACK+. It is because, for such a large
packet loss probability, the sender cannot keep its size large enough due to the
frequent loss recovery events so that the capability of recovery for multiple packet
lasses makes little difference to the recovery probability. Since LT increases the
likelihood of the first fast retransmit, when it is used with SACK option, the
sender has more chances to recover multiple packet lasses by retransmissions. It
is the reason for the higher improvement when LT is used for TCP SACK than
Reno.

There is a considerable improvement in the loss recovery probability of TCP
SACK compared with TCP Reno. The difference between two lines of SACK and
Reno reflects the capability to handle multiple packet lasses without RTO or not.
The slight difference between TCP SACK and SACK+ reveals the problern of
lost retransmissions. As packet loss probability increases, morepacket lasses may
occur and their retransmissions also tend to be lost again. On the other hand,
as mentioned earlier, the congestion window is not large enough that multiple
packet losses are not likely to be included in a window. That is, the probability
for an event that a retransmission is lost again is quite low, which is the reason
that the overall values of difference in loss recovery probability between SACK
and SACK+ are not quite significant. According to the results measured in
the real Internet presented in [11], the largest portion, about 85%, of timeouts
are caused by small window, about 11% by multiple packet losses, and 4% by
retransmission lasses. The results obtained from our model verifies it again in
that the largest improvement is made by LT, the second largest by SACK option,
and the last by SACK+.

98 B. Kim et al.

0.95

09
;,;.

.. +

~085

~ 0.8

~075
~
~ 0.7

"' §o65

O.ölr:_:-::-_--;Ro;::n::co u=song:::>TLT"'(Mode=lo:o;d]-,l I
.o Reno us•ng lT (Smdat.ed)

0.55 - · SACK us1ng l T (Modeled]
• SACK uolng LT js...,latodJ

0~0'

-- --

Packet LO$$ Probabobly

(a) TCP Reno and SACK using LT
(Wmax = 8)

095 -------

0.9
;,;.
~0.65

l 0.8

~0.75
i5
li 0.7
a:

~065

O.&h-____ -;Rooo;:=-u:::,"''I:::>Tl T~(M;::-;:;:Iod)::;;--,l I
0.55 -A· ~Ku=~gl~T~=~

i SACK usi"g LT i&mul•to'd]

. . --

Packet Loss Pfobabillly

(b) TCP Reno and SACK using LT
(Wmax = 32)

Fig. 7. Comparison of the loss recovery probability predicted by the developed model
to the simulated results when LT is applied.

As shown in fig. 5, further increment of W max to 32 makes no significant
differences to the loss recovery probability. For low packet loss probability, it is
unlikely that there are more than two packet losses in a window. Note that a
single packet loss can be retransmitted if only three duplicate ACKs are received,
namely, the window is equal to or greater than four . Even if multiple packet
losses occur, they can be retransmitted if the first fast retransmit is successful.
Consequently, a large W max may benefit the throughput of TCP but not its loss
recovery performance.

In fig. 6, we evaluate the loss recovery probability of TCP SACK and SACK+
using ns simulations. A sender and a receiver are connected with a long-fat link
of lOMbps and 100msec where packets are dropped in random. Using FTP,
the sender transmits data consist of 104 packets whose size is lkbytes, and the
congestion window can grow up to Wmax· The loss recovery probability is defined
as the ratio of the number of the packets recovered by retransmissions to the
total number of packet losses. It can be seen that the simulated values and the
calculated values of our developed model fit well.

In fig. 7, we also evaluate the loss recovery probability when LT is used.
There is a remarkable difference between the modeled results and the simulated
results. It is because only the number of duplicate ACKs are considered as the
condition for successfulloss recovery in our modeling process. However, even if
three duplicate ACKs are to be received, a RTO occurs if it expires before the
third duplicate ACK arrives. If we suppose the worst case that the second packet
is lost in a window of two in congestion avoidance, it takes about four RTTs to
receive the third duplicate ACK. Therefore, the practical improvement of LT
may be much smaller than the modeled results.

Lost Retransmission Detection for TCP Part 2: TCP Using SACK Option 99

5 Conclusions

In this paper, we have proposed a simple algorithm that enables a TCP send er
using SACK option to detect and recover retransmission Iosses without a RTO.
The analysis in this paper assumes an environment where packets are dropped in
random with probability p and the Iosses are independent to each other. There­
fore, although the proposed algorithm can recover almost all of retransmission
losses, its improvement is not significant since a retransmission loss itself is not
such a common event in this loss model. However, according to queue man­
agerneut schemes such as droptail and with changing Ievels of congestion, the
likelihood of a retransmission loss may have some variation. If it may occur more
frequently than in our model, the change proposed in this paper is of a great
benefit to loss recovery performance of TCP.

References

1. J. Poste!: Transmission Control Protocol. RFC 793, (1981)
2. V. Jacobson: Gongestion Control and Avoidance. ACM SIGCOMM'88, (1988)
3. V. Jacobson: Modified TCP Gongestion Avoidance Algorithm. note sent to

end2end-interest mailing !ist, (1990)
4. W. Stevens: TCP Slow Start, Gongestion Avoidance, Fast Retransmit, and Fast

Recovery Algorithms. RFC 2001, (1997)
5. M. Allman, V. Paxson, and W. Stevens: TCP Gongestion Control. RFC 2581,

(1999)
6. K. Fall and S. Floyd: Simulation-based Comparisons of Tahoe, Reno, and SACK

TCP. ACM Computer Communication Review, vol. 26. (1996) 5- 21
7. M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow: TCP Se!ective Acknowledge­

ment Options. RFC 2018, (1996)
8. S. Floyd, J. Madavi, M. Mathis, and M. Podolsky: An Extention to the Selective

Acknowledgement (SACK) Option for TCP. RFC 2883, (2000)
9. E. Blanton, M. Allman, K. Fall, and L. Wang: A Conservative Selective Acknowl­

edgement (SACK)-based Loss Recovery Algorithm for TCP. RFC 3517, (2003)
10. M. Allman, H. Balakrishan, and S. Floyd: Enhancing TCP's Loss Recovery Using

Limited Transmit. RFC 3042, (2000)
11. Dong Lin and H. T. Kung: TCP Fast Recovery Strategies: Analysis and lmprove­

ments. IEEE INFOCOM'98, (1998) 263-271
12. Anurag Kumar: Comparative Performance Analysis of Versions of TCP in a Local

Network with a Lossy Link. IEEE/ ACM Transactions on Networking, vol. 6. (1998)
485- 498

13. J . Padhye, V. Firoiu, D. F . Towsley, and J. F. Kurose: Modeling TCP Reno Per­
formance: A Simple Modeland lts Empirical Validation. IEEE/ ACM Transactions
on Networking, vol. 8. (2000) 133-145

14. Beomjoon Kim and Jaiyong Lee: Analytic Models of Loss Recovery of TCP Reno
with Packet Losses. LNCS 2662, (2003) 938-947

