
Lazy Agent Replication and Asynchronaus
Consensus for the Fault-Tolerant Mobile Agent

System

Taesoon Park1 , Ilsoo Byun1 , and Heon Y. Yeom2

1 Department of Computer Engineering, Sejong University,
Seoul 143-747, KOREA

{tspark,videpis}~sejong.ac.kr
2 Department of Computer Science, Seoul National University,

Seoul151-742, KOREA
yeom~snu.ac.kr

Abstract. In this paper, we propose a low overhead replication scheme
for the fault-tolerant mobile agent system. In the proposed lazy replica­
tion scheme, execution of a primary agent and migration of its replicas are
concurrently processed . Also, the primary agent perforrns asynchronaus
consensus with fixed consensus agents so that the consensus step and the
replica migration step can concurrently be processed. As a result, the pri­
mary agent should not wait for the completion of the replica migration
step unless any of the consensus agents fails. The proposed scheme has
been implemented on top of the Aglet system and its performance has
been measured.

1 Introduction

A mobile agent is a software program which moves from a site to another site
to execute a task assigned by a user [1 J. As the mobile agent system has drawn
attention as a new distributed computing paradigm, the importance of reliable
agent execution is more emphasized. Reliable execution of a mobile agent is
to guarantee the exactly-once execution of an agent even in case of a system
failure [11]. Many fault-tolerance schemes for the mobile agent system have been
proposed and they are categorized into the replication schemes [3,7,8,11] and the
checkpointing schemes [2,10,12] .

Replication schemes show a high degree of fault tolerance since a replication
scheme with 2k + 1 replicas can tolerate up to k failures. On the other hand,
checkpointing schemes may cause a severe delay in recovery even after a single
failure. However, considering the execution time, checkpointing does not require
much overhead, while the time to replicate an agent and migrate the replicas
and the timetoperform the consensus among replicas are not negligible.

To reduce the replication cost, we have suggested asynchronous agent repli­
cation schemes and measured the performance [5 ,6]: In the asynchronous repli­
cation scheme, agent replicas are migrated to the designated sites in an asyn­
chronous manner so that the primary can begin its execution without waiting

N. Mitrou et al. (Eds.): NETWORKING 2004, LNCS 3042, pp. 1060-1071, 2004.
@ IFIP Internationa l Federation for Information Processing 2004

Lazy Agent Replication and Asynchronaus Consensus 1061

for the migration of other replicas. With this optimization, we have achieved
up to 37% reduction of the replication cost compared to the synchronaus agent
replication. However, there is still a performance gap between the systems using
the asynchronaus replication scheme and no fault-tolerance scheme.

In this paper, to fill the performance gap, we propose a scheme for lazy
replication and asynchronaus consensus. In the proposed scheme, execution and
consensus of an agent may proceed asynchronously with the agent replication.
For a new stage, the first replica of a current agent is migrated to the new
execution site and begins the execution, while the rest of replicas are sent to the
designated sites. Since an agent begins its execution without waiting for the other
replicas, it is sometimes possible that the agent ends the stage before its replicas
are ready for the consensus. In order to proceed the consensus without waiting
for the late replicas, we use fixed consensus agents. Since an agent performs the
consensus with fixed consensus agents instead of waiting for the late replicas,
there is no delay in consensus unless the primary replica or one of consensus
agents fails. To validate the correctness of the proposed scheme and evaluate
its performance, we have implemented the lazy replication with asynchronous
consensus on top of the Aglet system and measured the performance.

The rest of this paper is organized as follows: Section 2 describes the Aglet
system 1;1nd the failure model. Existing replication and consensus schemes are pre­
sented in Section 3 and Section 4 presents the proposed lazy replication scheme
with asynchronaus consensus. Section 5 describes the experimental environment
and discusses the experimental results. Section 6 concludes the paper.

2 The Aglet System

A mobile agent system consists of a number of system sites connected by the
communication network. Each of the sites, to support execution and migration
of agents, provides one or more places. An agent executes its task on the place
and migrates between the places. While residing in a place, the agent performs
an assigned task. The execution of an agent in a place and the migration of the
agent into the next place are called a stage. In other words, the computation of
an agent is denoted by a sequence of stages. Figure 1 shows the execution of a
mobile agent, MAi, consisting of four stages. In the figure, SGi,cx denotes the
a-th stage of MAi. The task execution and the migration of a stage, SGi,cx, are
denoted by Ei,cx and Mi,cx, respectively.

Fig.l. Stagesofa Mobile Agent, MA;

1062 T. Park, I. Byun, and H.Y. Yeom

The Aglet [4] is a Java-based mobile agent system. To support execution,
migration and communication of agents, the system provides the AgletContext
environment. The agents in the Aglet system inherit the properties and the
methods from the AgletClass and perform event-driven activities. For the inter­
agent communication, a message-passing mechanism is used in the Aglet system
and the AgletProxy is provided to support the location transparency of the agent.
The AgletProxy is an interface to an Aglet object and every message is sent to
the Aglet object through the AgletProxy, regardless of its location.

Failures considered in the system are the agent failure, the place failure and
the system failure. For all of these failure types, the fail-stop [9] model is assumed;
that is, once a component fails, it stops its execution and does not perform any
malicious actions.

3 Replication and Consensus

3.1 Synchronaus Replication

For the fault-tolerant execution of an agent, one execution stage consists of three
steps, which are the task execution step, the replication step, and the consensus
step. Figure 2 shows an example of these three steps where one primary agent
and two replicas are used.

Fig. 2. Synchronaus Agent Replication

• Agent Replication: Before a stage, SGi,a, begins, the primary agent, P i,o. - 1,

of the previous stage, SGi,a - 1. makes its replicas. A primary agent is the one
responsible for the initial task execution of a stage and at the end of the stage,
it is also responsible for the agent replication for the next stage. During the
replication step, Pi,o.-1 makes 2k replicas and migrates them to 2k different
sites. Pi,o.-1 then migrates itself to the next execution site and becomes a new
primary Pi,a for the next stage, SGi,a· Every replica, Ri,a, observes the task
execution step and the replication step of Pi,a. In case that a replica suspects
the failure of a primary, it may become a new primary after a consensus step.

• Task Execution and Consensus: The primary, Pi,a, begins the task execu­
tion step for the stage, SGi,a, as soon as it arrives in a new execution site. When

Lazy Agent Replication and Asynchronaus Consensus 1063

the primary successfully completes the task, it begins the consensus step. The
consensus step is to confirm the task completion of the primary and to prevent
any redundant execution by false failure detection of a replica. For example,
due to slow execution or communication, a replica may suspect the failure of a
primary and try to become a new primary. In such a case, two primary agents
may execute the same task, which violates the exactly-once execution property.

The primary begins the consensus by sending out the consensus_begin mes­
sage to every replica, Ri,a. Every Ri,a replies with the consensus_ack message
unless it has already sent out the message for the same stage. When the primary
receives the majority of consensus_ack messages, it sends out consensus_confirm
messages to the replicas and completes the consensus step. If the primary fails to
obtain the majority of consensus_ack messages, it gives up the current stage and
undoes the executed task. In the consensus step, only one primary can obtain
the majority votes for a stage and complete the task.

• Failure Handling: A replica Ri,a is made to detect any failure of the primary
for the stage SGi,a· For the failure detection, the time-out is often used. If
Ri,a cannot receive any consensus_begin message within a time-out period, it
suspects the failure of the primary during the task execution step. Also, if Ri,a
cannot receive the majority of the success ful_migration messages within a time­
out period, it suspects the failure of the primary during the replication step. For
this, the successful_migration of every replica Ri,a+l is acknowledged not only
to the primary Pi,a but also to every Ri,a· When a failure of the primary is
suspected, the replica Ri,a becomes a new primary through its own consensus
and begins an alternative task execution step for the stage SGi,a·

Any replica which first detects the failure of the primary can initiate the
consensus step and take over the execution as proposed in [11]. Or as in [8], the
priority of every replica is predetermined and only the replica with the highest
priority can initiate the consensus step when a primary fails. In this scheme, the
(j + 1)-th replica can take over the task execution step of the current stage, when
up to the j-th replica fails. In either case, the agent can keep alive as long as
k + 1 replicas survive failures. Among them, one replica is for the task execution
and k replicas are for the majority voting. Therefore, the replication scheme with
one primary and 2k replicas can tolerate up to k failures.

3.2 Asynchronous Replication

To reduce the replication and migration cost of the synchronaus scheme, we
have proposed an asynchronaus agent replication scheme [5], in which the replica
migration proceeds asynchronously with the primary execution.

• Asynchronaus Agent Replication: In the replication step, the primary, Pi,a,
makes 2k + 1 replicas and transfers them as in the synchronaus replication
scheme. However, every replica in the asynchronaus replication scheme has a
predetermined priority and the replica with the highest priority becomes the
new primary Pi,a+l when it arrives in the next site for the stage, SGi,a+l · Since
the new primary, Pi,a+l, is the first replica migrated by the previous primary,

1064 T. Park, I. Byun, and H.Y. Yeom

,--, , ' , : \

!------!Consensus

' ' ' '

' ' ' : ' .____ _ __.:
\ SGi, 1 ~ SGi,2)
'-------------------------------~-------------------------------~

Fig. 3. Asynchronaus Agent Replication

Pi,a, and Pi,a may still process the migration of the other replicas, the task exe­
cution step of Pi,a+l and the replication step by Pi,a may proceed concurrently
as shown in Figure 3. Pi,a terminates itself when it completes the replication
step. Because of this asynchronaus replication, the time for the replication step
by Pi,a can fully or partially be masked by the task execution step of Pi,a+l· As
a result, the total execution time of the agent can be reduced.

• Failure Handling: The failure detection during the task execution step and
the replication step is processed in the same way as in the synchronaus replication
scheme. One difference is that the primary Pi,a in the asynchronaus scheme
may finish the task execution step before some replicas arrive in their execution
sites. In this case, Pi,a should wait so that every replica can participate in the
consensus step. Another problern may happen when Pi,a fails before replicating
and migrating the majority of the replicas for the next stage. Note that in this
case, any replica Ri,a becomes a new primary and re-processes the task execution
step of the stage SGi,a, while the next primary Pi,a+l may have already begun
its task execution step for the stage SGi,a+l· However, even in this case, Pi,a+l
cannot obtain the majority of votes during the consensus step and therefore it
can be discarded anyway.

4 Lazy Replication and Asynchronous Consensus

Asynchronaus agent replication can reduce the total execution time of an agent
as much as the overlapped time of the replication step of a primary, Pi,a, and
the task execution step of the next primary, P i,a+l · However, Pi,a+l still has
to wait before the consensus step unless the execution step of Pi,a+l is Ionger
than the replication step of Pi,a· In the Aglet system, for a primary agent to
communicate with its replicas, it has to obtain the proxy of the replicas first.
In the synchronous scheme, the primary migrates with the proxy information of
its replicas, since it migrates after all the replicas. However, in the asynchronaus
scheme, the primary, Pi,a, should send the proxy information of the replicas,
Ri,a+1s, to the next primary, P i,a + l , after it completes the replication step. As a
result, Pi,a+l cannot begin the consensus step until the replica proxy information
arnves.

Lazy Agent Replication and Asynchronaus Consensus 1065

• Fixed Consensus Agents: To eliminate the waiting time for late replicas, we
propose to use fixed consensus agents. The replication scheme with one primary
and 2k replicas is designed to talerate up to k failures. This means that only
the majority of replicas have a chance for the alternative task execution and the
others are made just for attending the consensus step. Assuming the consensus
algorithm using the predetermined priority [8], the k replicas with lower priorities
are sure to attend only the consensus step. Therefore, in the proposed scheme,
we replace the k lower priority replicas with fixed consensus agents.

A consensus agent contains simple codes to perform the consensus step. In
the first stage of agent execution, k consensus agents are created and sent to
k different sites. Therefore, the primary agent in any stage is sure to know
the location of consensus agents and have their proxy information. Now, for
the consensus, a primary or any replica suspecting the failure of the primary
sends consensus messages to the consensus agents. To differentiate the consensus
messages of different stages, consensus related messages should carry the stage
number. Consensus agents then reply with the consensus_ack or consensu_nak
messages according to the consensus algorithm.

Using fixed consensus agents, we can take the following advantages: First, a
primary makes only k + 1 replicas and the time to make k more replicas can
be eliminated. Also, a primary no longer waits for the late replicas. As soon as
the primary completes the task execution step, it can begin the consensus step
with fixed consensus agents. As a result, there is virtually no blocking of primary
agent execution when there is no failure.

I

'-------':
I
I

', __ --------------~~iJ----------__ \ ________________ ~_ --~~~~---------_)

Fig. 4. Lazy Agent Replication and Asynchronaus Consensus

• Lazy Replication and Asynchronaus Consensus: In the proposed scheme, a
primary Pi,a performs the asynchronaus replication as described in the previous
section. Therefore, while Pi,a processes the replication step, the next primary,
Pi,a+l, may complete the task execution step for the stage, SGi,a+l · When
Pi,a+l completes the task execution step, it can begin the consensus step by send­
ing out the consensus_begin messages to the consensus agents. In case t hat all
the consensus agents are alive, Pi,a+l can obtain the majority of consensus_ack
messages from fixed consensus agents and then proceed the replication step for

1066 T. Park, I. Byun, and H.Y. Yeom

the next stage, sai,a.+2· Using fixed Consensus agents whose location information
is known, the primary agent can complete the consensus step without waiting
for the migration of all the other replicas.

Figure 4 shows an example of lazy replication and asynchronaus consensus
with one primary, one replica and one fixed consensus agent, Ci. As it can be
noticed from the figure, a primary Pi,a.+2 can begin the task execution step
while the previous primaries, Pi,a.+l and Pi,a., still perform the replication step.
However, for the proposed scheme to be complete, the replication step of each
stage should be performed in a very lazy manner. One responsibility of a primary,
Pi,a., is to notify every replica, Ri,a, of the successful completion of the consensus.
Also, each of the next replicas, Ri,a.+l, made by Pi,a. should know the location
information of their previous replicas, Ri,a.s, to inform the successfuLmigration
message.

To handle these processes without blocking the agent execution, the primary,
Pi,a., proceeds with the replication step and migrates the first replica for the next
stage, SGi,a.+I, after it successfully completes the consensus step with consensus
agents. Pi,a. then waits for the location information of the late replicas of the
current stage. The rest of the consensus step and the replication step can be con­
tinued when it receives the necessary location information of the other replicas.
To complete the consensus step, Pi,a. sends the consensus_confirm message to
every Ri,a. instead of consensus_begin message and continues the migration of
the replicas for the next stage. As a result, in the proposed scheme, the consen­
sus step of a stage can be overlapped with the replication step for the next stage
and also the replication step of several stages can be overlapped.

• Failure Handling: The role of the replica agent in the lazy replication
scheme is the same as in the other replication schemes. A replica Ri,a. may
suspect the failure of its primary if it cannot receive any consensus_begin or
consensus_confirm message within a time-out period. It also suspects the fail­
ure during the replication step, if it cannot receive the majority of success­
ful_migration messages. In the lazy replication scheme, when a primary, Pi,a.,
ends the replication step, it informs the fixed consensus agents of the beginning
of the next stage. The location information of current replicas, Ri,a.S, is also
carried in that information.

On the receipt of that information, consensus agents act as the replicas of
the next stage, Ri,a.+I, and send successful_migration messages to the previous
replicas, Ri,a.· Therefore, even if any new replica may fail on the arrival of a new
site, previous replicas can receive the majority of successful_migration messages
as long as more than k + 1 agents among the primary, replicas and consensus
agents survive. The failure of a consensus agent may affect the performance of the
agent execution, since a primary cannot asynchronously complete the consensus
step if a consensus agent fails. However, in such a case, the primary can wait for
the location information of any replica and process the consensus step with that
replica. Therefore, even in case of the consensus agent failure, the primary can
complete the consensus step, while the execution time may slightly be longer.

Lazy Agent Replication and Asynchronaus Consensus 1067

5 Performance Study

5.1 Experimental Setup

To validate the correctness of the lazy replication scheme and evaluate its perfor­
mance, we have implemented the lazy replication and asynchronaus consensus
scheme (the LazyRep scheme) on top of the Aglet system. The Aglet system is a
Java-based mobile agent system and for our experiments, Aglet DSK 1.1b2 has
been used. The synchronaus replication scheme (the SyncRep scheme) and the
asynchronaus replication scheme (the AsyncRep scheme) have also been imple­
mented for the performance comparison.

A duster of five Pentium IV 1 GHz PCs connected by a 100 Mbps Ethernet
was used for experiments. Each machine supported one place. An agent traversed
the places in a predetermined order and the replicas were also sent to the pre­
determined places. To obtain a stable performance, we used an agent consisting
of twenty stages. For each experimental data, ten runs of the agent execution
were measured and then eight measured values were averaged out, excluding the
lowest and the highest ones. In each stage, the agent sleeps for T milliseconds,
instead of performing any task. To observe the influence of the agent size, an
N X N integer array is included in the agent so that we can control the size of
the agent by varying the size of the array.

5.2 Experimental Results

Figure 5(a) first compares the agent execution time of three schemes when the
replica number is 3, 5 and 7. This number includes the primary, replicas and
consensus agents of one stage. The size of the agent is 100 KBytes and the task
execution time of one stage is 1000 milliseconds.

Considering the time for the replication step and the consensus step, the
SyncRep scheme shows 184% increase as the replica number changes from 3 to
7. Compared to this, the LazyRep scheme shows only 75% increase when the
replica number changes. Since the increase of the replication time in the SyncRep
scheme is proportional to the number of replicas, the total execution time sharply
increases when the replica number is increased. However, the replication time of
the LazyRep scheme is not affected by the replica number. Only the consensus
time can be Ionger when the replica number is large, since the primary has to
wait for consensus_ack messages from more number of consensus agents.

Compared to the LazyRep scheme, the performance of the AsyncRep scheme
is somewhat disappointing. When the replica number is three, the AsyncRep
scheme achieves 31.6% reduction of the replication and the consensus time, com­
pared to the SyncRep scheme. However, it does not show much reduction when
the number of replicas are seven and the performance is even worse for five
replicas. One possible explanation is that the stage execution time of 1000 mil­
liseconds may be too short to mask the replication time for a large number of
replicas.

1068 T. Park, I. Byun, and H.Y. Yeom

350000

"' 300000 iil
<:
"' 250000 .,_
:5 u)
u.S 200000

""" c "' 150000 "' " c-E
0"'
~6 100000

15. 50000
" a:

0

(a)
450000---------------.....,

400000 h-::=-:o---::c--,-------1

:; 350000

~ 300000 j-L!!.!.!!~~J--r--v;;"---
! 250000 1------l
§ 200000 H - 1----1
~ 150000

t:i 100000

50000

0 '-'--'"""'

3
Number of Replicas

,;
.s 400000

" E
,:: 300000
g
B 200000

" t:i
100000

100 500

(b)

Case 1 Case 2

(c)

1000 2000 3000
Stage Execution Time (ms .)

Fig. 5. Experimental Results I

4000 5000

To confirm this, we have measured the performance of two extreme cases as
shown in Figure 5.(b). For the Case 1, we have reduced the task execution time
of one stage into 100 milliseconds where the agent size is 100 KBytes and the
replica number is five. In this case, the AsyncRep scheme is much worse than
the SyncRep scheme and this worse performance is due to the time to make
replicas. In the AsyncRep scheme, a primary makes 2k + 1 replicas instead of 2k
replicas. Since copying of one agent takes about 20 milliseconds in this case, the

Lazy Agent Replication and Asynchronaus Consensus 1069

marginal performance gain obtained by asynchronaus replication should be lost
to copy one more replica.

250000

.; 200000
g .,

150000 E
i=
c:
.!2 100000
'5
0 .,
X

50000 w

0

(a)

7000000

6000000
.;
g 5000000

Q)

E 4000000
i=
c 3000000 .Q
'5
0 2000000 Q)
X

UJ
1000000

0

200 400 600 800

Agent Size (KBytes)

(b)

300000

- 250000
.;

g 200000
Q)

E
i= 150000
c:
0

5 100000
0 .,
ill 50000

0

3 5

Number ol Replicas

Fig. 6. Experimental Results II

1000

(c}

100
Agent Size (KBytes)

For the performance ofthe Case 2, we have reduced the agen size to 10 KBytes
where the t ask execution time of one stage is 1000 milliseconds and· the replica
number is five. By reducing the agent size, the time to make one more replica can
be reduced and also the replica migration time can be reduced. Because of this
reduction, the AsyncRep scheme can show the slight performance gain compared
to the SyncRep scheme. This disappointing performance of the AsyncRep scheme
is only for the cases where the replication time is much longer than the task
execution time. When the task execution time becomes long enough to mask
the replication step and the consensus step, the performance of the AsyncRep
scheme is close to the LazyRep scheme as shown in Figure 5.(c).

1070 T . Park, I. Byun, and H.Y. Yeom

The performance of Figure 5.(c) was obtained when the agent size is 100
KBytes and the replica number is five. As shown in the figure, the time for the
replication step and the consensus step of the SyncRep scheme is not affected
by the task execution time of one stage. However, as the task execution time
increases, the replication step and the consensus step of the AsyncRep and the
LazyRep schemes can concurrently be processed with the task execution step.
As a result, the total execution time of an agent can significantly be reduced.

Figure 6.(a) shows the execution time of three schemes, when the agent size
varies from 200 KBytes to 1000 KBytes. The replica number is five and the task
execution time of one stage is 1000 milliseconds for this result. A large agent
requires more time to make replicas and to migrate them. Therefore, the perfor­
mance of the SyncRep scheme is heavily influenced by the agent size. The perfor­
mance of the AsyncRep scheme is also affected a lot by the agent size, however,
nonnegligible performance gain can be achieved with asynchronaus replication.
Compared to this, the LazyRep scheme shows very desirable performance and
also very stable performance.

Figure 6. (b) and 6. (c) show the impact of failures on the agent execution
time of three schemes. For these results, it is assumed that any agent, includ­
ing the primary, replicas and consensus agents, can fail on each stage with the
probability of 0.1 and the time-out to detect a failure is three seconds. As shown
in Figure 6.(b), the LazyRep scheme now achieves only 30%-54.6% reduction of
the migration time under the various number of replicas. It also achieves 54.6%-
56% reduction of the replication time under the various agent size as shown in
Figure 6. (c). Even though re-execution caused by a failure partially takes off the
benefit of the LazyRep scheme, Figure 6.(b) and 6.(c) show that the LazyRep
scheme is still under the less influence.

6 Conclusions

In this paper, we have proposed a lazy replication and asynchronaus consensus
scheme for the fault tolerant mobile agent system. In the proposed scheme, the
replication step, the consensus step and the task execution step of an agent pro­
ceeds asynchronously. To process the consensus step without waiting for the late
replicas, we have introduced fixed consensus agents and an agent can perform
the consensus step with fixed consensus agents. As a result, there is practically
no delay in the consensus step unless the primary or one of consensus agents fails.
To evaluate the performance of the proposed scheme, we have implemented the
proposed scheme on top of the Aglet system. The performance results show that
the lazy replication with asynchronaus consensus scheme can achieve much re­
duction of the replication and the consensus cost, compared to earlier replication
schemes. Also, the lazy replication scheme shows very stable performance.

Acknowledgments. This work was supported by grant No. R04-2002-000-
20102-02003 from the Basic Research Program of the Korea Science & Engi­
neering Foundation.

Lazy Agent Replication and Asynchronaus Consensus 1071

References

1. Baumann, J ., Hohl, F., Rothermel, K., Strasser, M.: Mole- Concepts of a Mobile
Agent System. World Wide Web Journal, Vol. 1, No. 3 (1998) 12-137

2. Gendelman, E., Bic, L.F., Dillencourt, M.B. : An Application-Transparent,
Platform-lndependent Approach to Rollback-recovery for Mobile Agent Systems.
Proc. of the 20th lnt'l Conf. on Distributed Computing Systems (2000)

3. Johansen, D., Marzullo, K., Schneider, F.B., Jacobsen, K.: NAP: Practical Fault­
Tolerance for ltinerant Computations. Proc. of the 10th lnt'l Conf. on Distributed
Computing Systems (1999)

4. Karjoth, G., Lange, D.B., Oshima, M.: A Security Model for Aglets. IEEE Internet
Computing (1997)

5. Park, T., Byun, 1., Kim, H., Yeom, H.Y.: The Performance of Checkpointing and
Replication Schemes for Fault Tolerant Mobile Agent Systems. Proc. of the 21st
Symp. on Reliable Distributed Systems (2002) 256-261

6. Park, T., Byun, 1.: Low Overhead Agent Replication for the Reliable Mobile Agent
System. Lecture Notes in Computer Science, Vol. 2790. Springer-Verlag, Berlin
Heidelberg New York (2003) 1170-1179

7. Pleisch, S., Schiper, A.: Modeling Fault-Tolerant Mobile Agent Execution as a
Sequence of Agreement Problems. Proc. of the 19th Symp. on Reliable Distributed
Systems (2000) 11-20

8. Pleisch, S., Schiper, A.: FATOMAS- A Fault-Tolerant Mobile Agent System Based
on the Agent-Dependent Approach. Proc. of the lnt'l Conf. on Dependable Systems
and Networks (2001) 215-224

9. Schlichting, R..D., Schneider, F .B.: Fail-stop Processors: An Approach to Designing
Fault-tolerant Computing Systems. ACM Transactions on Computer Systems, Vol.
1, No. 3 (1983) 222- 238

10. Silva, L., Batista, V., Silva, J.G. : Fault-Tolerant Execution ofMobile Agents. Proc.
of the lnt'l Conf. on Dependable Systemsand Networks (2000)

11. Strasser, M., Rothermel, K. : Reliability Concepts for Mobile Agents. International
Journal of Cooperative Information Systems, Vol. 7, No. 4 (1998) 355-382

12. Strasser, M., Rothermel, K.: System Mechanism for Partial Rollback of Mobile
Agent Execution. Proc. of the 20th lnt'l Conf. on Distributed Computing Systems
(2000)

