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Abstract. In this paper, we propose a low overhead replication scheme 
for the fault-tolerant mobile agent system. In the proposed lazy replica­
tion scheme, execution of a primary agent and migration of its replicas are 
concurrently processed . Also, the primary agent perforrns asynchronaus 
consensus with fixed consensus agents so that the consensus step and the 
replica migration step can concurrently be processed. As a result, the pri­
mary agent should not wait for the completion of the replica migration 
step unless any of the consensus agents fails. The proposed scheme has 
been implemented on top of the Aglet system and its performance has 
been measured. 

1 Introduction 

A mobile agent is a software program which moves from a site to another site 
to execute a task assigned by a user [1 J. As the mobile agent system has drawn 
attention as a new distributed computing paradigm, the importance of reliable 
agent execution is more emphasized. Reliable execution of a mobile agent is 
to guarantee the exactly-once execution of an agent even in case of a system 
failure [11]. Many fault-tolerance schemes for the mobile agent system have been 
proposed and they are categorized into the replication schemes [3,7,8,11] and the 
checkpointing schemes [2,10,12] . 

Replication schemes show a high degree of fault tolerance since a replication 
scheme with 2k + 1 replicas can tolerate up to k failures. On the other hand, 
checkpointing schemes may cause a severe delay in recovery even after a single 
failure. However, considering the execution time, checkpointing does not require 
much overhead, while the time to replicate an agent and migrate the replicas 
and the timetoperform the consensus among replicas are not negligible. 

To reduce the replication cost, we have suggested asynchronous agent repli­
cation schemes and measured the performance [5 ,6]: In the asynchronous repli­
cation scheme, agent replicas are migrated to the designated sites in an asyn­
chronous manner so that the primary can begin its execution without waiting 
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for the migration of other replicas. With this optimization, we have achieved 
up to 37% reduction of the replication cost compared to the synchronaus agent 
replication. However, there is still a performance gap between the systems using 
the asynchronaus replication scheme and no fault-tolerance scheme. 

In this paper, to fill the performance gap, we propose a scheme for lazy 
replication and asynchronaus consensus. In the proposed scheme, execution and 
consensus of an agent may proceed asynchronously with the agent replication. 
For a new stage, the first replica of a current agent is migrated to the new 
execution site and begins the execution, while the rest of replicas are sent to the 
designated sites. Since an agent begins its execution without waiting for the other 
replicas, it is sometimes possible that the agent ends the stage before its replicas 
are ready for the consensus. In order to proceed the consensus without waiting 
for the late replicas, we use fixed consensus agents. Since an agent performs the 
consensus with fixed consensus agents instead of waiting for the late replicas, 
there is no delay in consensus unless the primary replica or one of consensus 
agents fails. To validate the correctness of the proposed scheme and evaluate 
its performance, we have implemented the lazy replication with asynchronous 
consensus on top of the Aglet system and measured the performance. 

The rest of this paper is organized as follows: Section 2 describes the Aglet 
system 1;1nd the failure model. Existing replication and consensus schemes are pre­
sented in Section 3 and Section 4 presents the proposed lazy replication scheme 
with asynchronaus consensus. Section 5 describes the experimental environment 
and discusses the experimental results. Section 6 concludes the paper. 

2 The Aglet System 

A mobile agent system consists of a number of system sites connected by the 
communication network. Each of the sites, to support execution and migration 
of agents, provides one or more places. An agent executes its task on the place 
and migrates between the places. While residing in a place, the agent performs 
an assigned task. The execution of an agent in a place and the migration of the 
agent into the next place are called a stage. In other words, the computation of 
an agent is denoted by a sequence of stages. Figure 1 shows the execution of a 
mobile agent, MAi, consisting of four stages. In the figure, SGi,cx denotes the 
a-th stage of MAi. The task execution and the migration of a stage, SGi,cx, are 
denoted by Ei,cx and Mi,cx, respectively. 

Fig.l. Stagesofa Mobile Agent, MA; 
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The Aglet [4] is a Java-based mobile agent system. To support execution, 
migration and communication of agents, the system provides the AgletContext 
environment. The agents in the Aglet system inherit the properties and the 
methods from the AgletClass and perform event-driven activities. For the inter­
agent communication, a message-passing mechanism is used in the Aglet system 
and the AgletProxy is provided to support the location transparency of the agent. 
The AgletProxy is an interface to an Aglet object and every message is sent to 
the Aglet object through the AgletProxy, regardless of its location. 

Failures considered in the system are the agent failure, the place failure and 
the system failure. For all of these failure types, the fail-stop [9] model is assumed; 
that is, once a component fails, it stops its execution and does not perform any 
malicious actions. 

3 Replication and Consensus 

3.1 Synchronaus Replication 

For the fault-tolerant execution of an agent, one execution stage consists of three 
steps, which are the task execution step, the replication step, and the consensus 
step. Figure 2 shows an example of these three steps where one primary agent 
and two replicas are used. 

Fig. 2. Synchronaus Agent Replication 

• Agent Replication: Before a stage, SGi,a, begins, the primary agent, P i,o. - 1, 

of the previous stage, SGi,a - 1. makes its replicas. A primary agent is the one 
responsible for the initial task execution of a stage and at the end of the stage, 
it is also responsible for the agent replication for the next stage. During the 
replication step, Pi,o.-1 makes 2k replicas and migrates them to 2k different 
sites. Pi,o.-1 then migrates itself to the next execution site and becomes a new 
primary Pi,a for the next stage, SGi,a· Every replica, Ri,a, observes the task 
execution step and the replication step of Pi,a. In case that a replica suspects 
the failure of a primary, it may become a new primary after a consensus step. 

• Task Execution and Consensus: The primary, Pi,a, begins the task execu­
tion step for the stage, SGi,a, as soon as it arrives in a new execution site. When 
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the primary successfully completes the task, it begins the consensus step. The 
consensus step is to confirm the task completion of the primary and to prevent 
any redundant execution by false failure detection of a replica. For example, 
due to slow execution or communication, a replica may suspect the failure of a 
primary and try to become a new primary. In such a case, two primary agents 
may execute the same task, which violates the exactly-once execution property. 

The primary begins the consensus by sending out the consensus_begin mes­
sage to every replica, Ri,a. Every Ri,a replies with the consensus_ack message 
unless it has already sent out the message for the same stage. When the primary 
receives the majority of consensus_ack messages, it sends out consensus_confirm 
messages to the replicas and completes the consensus step. If the primary fails to 
obtain the majority of consensus_ack messages, it gives up the current stage and 
undoes the executed task. In the consensus step, only one primary can obtain 
the majority votes for a stage and complete the task. 

• Failure Handling: A replica Ri,a is made to detect any failure of the primary 
for the stage SGi,a· For the failure detection, the time-out is often used. If 
Ri,a cannot receive any consensus_begin message within a time-out period, it 
suspects the failure of the primary during the task execution step. Also, if Ri,a 
cannot receive the majority of the success ful_migration messages within a time­
out period, it suspects the failure of the primary during the replication step. For 
this, the successful_migration of every replica Ri,a+l is acknowledged not only 
to the primary Pi,a but also to every Ri,a· When a failure of the primary is 
suspected, the replica Ri,a becomes a new primary through its own consensus 
and begins an alternative task execution step for the stage SGi,a· 

Any replica which first detects the failure of the primary can initiate the 
consensus step and take over the execution as proposed in [11]. Or as in [8], the 
priority of every replica is predetermined and only the replica with the highest 
priority can initiate the consensus step when a primary fails. In this scheme, the 
(j + 1 )-th replica can take over the task execution step of the current stage, when 
up to the j-th replica fails. In either case, the agent can keep alive as long as 
k + 1 replicas survive failures. Among them, one replica is for the task execution 
and k replicas are for the majority voting. Therefore, the replication scheme with 
one primary and 2k replicas can tolerate up to k failures. 

3.2 Asynchronous Replication 

To reduce the replication and migration cost of the synchronaus scheme, we 
have proposed an asynchronaus agent replication scheme [5], in which the replica 
migration proceeds asynchronously with the primary execution. 

• Asynchronaus Agent Replication: In the replication step, the primary, Pi,a, 
makes 2k + 1 replicas and transfers them as in the synchronaus replication 
scheme. However, every replica in the asynchronaus replication scheme has a 
predetermined priority and the replica with the highest priority becomes the 
new primary Pi,a+l when it arrives in the next site for the stage, SGi,a+l · Since 
the new primary, Pi,a+l, is the first replica migrated by the previous primary, 
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Fig. 3. Asynchronaus Agent Replication 

Pi,a, and Pi,a may still process the migration of the other replicas, the task exe­
cution step of Pi,a+l and the replication step by Pi,a may proceed concurrently 
as shown in Figure 3. Pi,a terminates itself when it completes the replication 
step. Because of this asynchronaus replication, the time for the replication step 
by Pi,a can fully or partially be masked by the task execution step of Pi,a+l· As 
a result, the total execution time of the agent can be reduced. 

• Failure Handling: The failure detection during the task execution step and 
the replication step is processed in the same way as in the synchronaus replication 
scheme. One difference is that the primary Pi,a in the asynchronaus scheme 
may finish the task execution step before some replicas arrive in their execution 
sites. In this case, Pi,a should wait so that every replica can participate in the 
consensus step. Another problern may happen when Pi,a fails before replicating 
and migrating the majority of the replicas for the next stage. Note that in this 
case, any replica Ri,a becomes a new primary and re-processes the task execution 
step of the stage SGi,a, while the next primary Pi,a+l may have already begun 
its task execution step for the stage SGi,a+l· However, even in this case, Pi,a+l 
cannot obtain the majority of votes during the consensus step and therefore it 
can be discarded anyway. 

4 Lazy Replication and Asynchronous Consensus 

Asynchronaus agent replication can reduce the total execution time of an agent 
as much as the overlapped time of the replication step of a primary, Pi,a, and 
the task execution step of the next primary, P i,a+l · However, Pi,a+l still has 
to wait before the consensus step unless the execution step of Pi,a+l is Ionger 
than the replication step of Pi,a· In the Aglet system, for a primary agent to 
communicate with its replicas, it has to obtain the proxy of the replicas first. 
In the synchronous scheme, the primary migrates with the proxy information of 
its replicas, since it migrates after all the replicas. However, in the asynchronaus 
scheme, the primary, Pi,a, should send the proxy information of the replicas, 
Ri,a+1s, to the next primary, P i,a + l , after it completes the replication step. As a 
result, Pi,a+l cannot begin the consensus step until the replica proxy information 
arnves. 
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• Fixed Consensus Agents: To eliminate the waiting time for late replicas, we 
propose to use fixed consensus agents. The replication scheme with one primary 
and 2k replicas is designed to talerate up to k failures. This means that only 
the majority of replicas have a chance for the alternative task execution and the 
others are made just for attending the consensus step. Assuming the consensus 
algorithm using the predetermined priority [8], the k replicas with lower priorities 
are sure to attend only the consensus step. Therefore, in the proposed scheme, 
we replace the k lower priority replicas with fixed consensus agents. 

A consensus agent contains simple codes to perform the consensus step. In 
the first stage of agent execution, k consensus agents are created and sent to 
k different sites. Therefore, the primary agent in any stage is sure to know 
the location of consensus agents and have their proxy information. Now, for 
the consensus, a primary or any replica suspecting the failure of the primary 
sends consensus messages to the consensus agents. To differentiate the consensus 
messages of different stages, consensus related messages should carry the stage 
number. Consensus agents then reply with the consensus_ack or consensu_nak 
messages according to the consensus algorithm. 

Using fixed consensus agents, we can take the following advantages: First, a 
primary makes only k + 1 replicas and the time to make k more replicas can 
be eliminated. Also, a primary no longer waits for the late replicas. As soon as 
the primary completes the task execution step, it can begin the consensus step 
with fixed consensus agents. As a result, there is virtually no blocking of primary 
agent execution when there is no failure. 

I 

'-------': 
I 
I 

', __ --------------~~iJ----------__ \ ________________ ~_ --~~~~---------_) 

Fig. 4. Lazy Agent Replication and Asynchronaus Consensus 

• Lazy Replication and Asynchronaus Consensus: In the proposed scheme, a 
primary Pi,a performs the asynchronaus replication as described in the previous 
section. Therefore, while Pi,a processes the replication step, the next primary, 
Pi,a+l, may complete the task execution step for the stage, SGi,a+l · When 
Pi,a+l completes the task execution step, it can begin the consensus step by send­
ing out the consensus_begin messages to the consensus agents. In case t hat all 
the consensus agents are alive, Pi,a+l can obtain the majority of consensus_ack 
messages from fixed consensus agents and then proceed the replication step for 
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the next stage, sai,a.+2· Using fixed Consensus agents whose location information 
is known, the primary agent can complete the consensus step without waiting 
for the migration of all the other replicas. 

Figure 4 shows an example of lazy replication and asynchronaus consensus 
with one primary, one replica and one fixed consensus agent, Ci. As it can be 
noticed from the figure, a primary Pi,a.+2 can begin the task execution step 
while the previous primaries, Pi,a.+l and Pi,a., still perform the replication step. 
However, for the proposed scheme to be complete, the replication step of each 
stage should be performed in a very lazy manner. One responsibility of a primary, 
Pi,a., is to notify every replica, Ri,a, of the successful completion of the consensus. 
Also, each of the next replicas, Ri,a.+l, made by Pi,a. should know the location 
information of their previous replicas, Ri,a.s, to inform the successfuLmigration 
message. 

To handle these processes without blocking the agent execution, the primary, 
Pi,a., proceeds with the replication step and migrates the first replica for the next 
stage, SGi,a.+I, after it successfully completes the consensus step with consensus 
agents. Pi,a. then waits for the location information of the late replicas of the 
current stage. The rest of the consensus step and the replication step can be con­
tinued when it receives the necessary location information of the other replicas. 
To complete the consensus step, Pi,a. sends the consensus_confirm message to 
every Ri,a. instead of consensus_begin message and continues the migration of 
the replicas for the next stage. As a result, in the proposed scheme, the consen­
sus step of a stage can be overlapped with the replication step for the next stage 
and also the replication step of several stages can be overlapped. 

• Failure Handling: The role of the replica agent in the lazy replication 
scheme is the same as in the other replication schemes. A replica Ri,a. may 
suspect the failure of its primary if it cannot receive any consensus_begin or 
consensus_confirm message within a time-out period. It also suspects the fail­
ure during the replication step, if it cannot receive the majority of success­
ful_migration messages. In the lazy replication scheme, when a primary, Pi,a., 
ends the replication step, it informs the fixed consensus agents of the beginning 
of the next stage. The location information of current replicas, Ri,a.S, is also 
carried in that information. 

On the receipt of that information, consensus agents act as the replicas of 
the next stage, Ri,a.+I, and send successful_migration messages to the previous 
replicas, Ri,a.· Therefore, even if any new replica may fail on the arrival of a new 
site, previous replicas can receive the majority of successful_migration messages 
as long as more than k + 1 agents among the primary, replicas and consensus 
agents survive. The failure of a consensus agent may affect the performance of the 
agent execution, since a primary cannot asynchronously complete the consensus 
step if a consensus agent fails. However, in such a case, the primary can wait for 
the location information of any replica and process the consensus step with that 
replica. Therefore, even in case of the consensus agent failure, the primary can 
complete the consensus step, while the execution time may slightly be longer. 
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5 Performance Study 

5.1 Experimental Setup 

To validate the correctness of the lazy replication scheme and evaluate its perfor­
mance, we have implemented the lazy replication and asynchronaus consensus 
scheme ( the LazyRep scheme) on top of the Aglet system. The Aglet system is a 
Java-based mobile agent system and for our experiments, Aglet DSK 1.1b2 has 
been used. The synchronaus replication scheme (the SyncRep scheme) and the 
asynchronaus replication scheme (the AsyncRep scheme) have also been imple­
mented for the performance comparison. 

A duster of five Pentium IV 1 GHz PCs connected by a 100 Mbps Ethernet 
was used for experiments. Each machine supported one place. An agent traversed 
the places in a predetermined order and the replicas were also sent to the pre­
determined places. To obtain a stable performance, we used an agent consisting 
of twenty stages. For each experimental data, ten runs of the agent execution 
were measured and then eight measured values were averaged out, excluding the 
lowest and the highest ones. In each stage, the agent sleeps for T milliseconds, 
instead of performing any task. To observe the influence of the agent size, an 
N X N integer array is included in the agent so that we can control the size of 
the agent by varying the size of the array. 

5.2 Experimental Results 

Figure 5(a) first compares the agent execution time of three schemes when the 
replica number is 3, 5 and 7. This number includes the primary, replicas and 
consensus agents of one stage. The size of the agent is 100 KBytes and the task 
execution time of one stage is 1000 milliseconds. 

Considering the time for the replication step and the consensus step, the 
SyncRep scheme shows 184% increase as the replica number changes from 3 to 
7. Compared to this, the LazyRep scheme shows only 75% increase when the 
replica number changes. Since the increase of the replication time in the SyncRep 
scheme is proportional to the number of replicas, the total execution time sharply 
increases when the replica number is increased. However, the replication time of 
the LazyRep scheme is not affected by the replica number. Only the consensus 
time can be Ionger when the replica number is large, since the primary has to 
wait for consensus_ack messages from more number of consensus agents. 

Compared to the LazyRep scheme, the performance of the AsyncRep scheme 
is somewhat disappointing. When the replica number is three, the AsyncRep 
scheme achieves 31.6% reduction of the replication and the consensus time, com­
pared to the SyncRep scheme. However, it does not show much reduction when 
the number of replicas are seven and the performance is even worse for five 
replicas. One possible explanation is that the stage execution time of 1000 mil­
liseconds may be too short to mask the replication time for a large number of 
replicas. 
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To confirm this, we have measured the performance of two extreme cases as 
shown in Figure 5.(b). For the Case 1, we have reduced the task execution time 
of one stage into 100 milliseconds where the agent size is 100 KBytes and the 
replica number is five. In this case, the AsyncRep scheme is much worse than 
the SyncRep scheme and this worse performance is due to the time to make 
replicas. In the AsyncRep scheme, a primary makes 2k + 1 replicas instead of 2k 
replicas. Since copying of one agent takes about 20 milliseconds in this case, the 
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marginal performance gain obtained by asynchronaus replication should be lost 
to copy one more replica. 
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For the performance ofthe Case 2, we have reduced the agen size to 10 KBytes 
where the t ask execution time of one stage is 1000 milliseconds and· the replica 
number is five. By reducing the agent size, the time to make one more replica can 
be reduced and also the replica migration time can be reduced. Because of this 
reduction, the AsyncRep scheme can show the slight performance gain compared 
to the SyncRep scheme. This disappointing performance of the AsyncRep scheme 
is only for the cases where the replication time is much longer than the task 
execution time. When the task execution time becomes long enough to mask 
the replication step and the consensus step, the performance of the AsyncRep 
scheme is close to the LazyRep scheme as shown in Figure 5.(c). 
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The performance of Figure 5.( c) was obtained when the agent size is 100 
KBytes and the replica number is five. As shown in the figure, the time for the 
replication step and the consensus step of the SyncRep scheme is not affected 
by the task execution time of one stage. However, as the task execution time 
increases, the replication step and the consensus step of the AsyncRep and the 
LazyRep schemes can concurrently be processed with the task execution step. 
As a result, the total execution time of an agent can significantly be reduced. 

Figure 6.(a) shows the execution time of three schemes, when the agent size 
varies from 200 KBytes to 1000 KBytes. The replica number is five and the task 
execution time of one stage is 1000 milliseconds for this result. A large agent 
requires more time to make replicas and to migrate them. Therefore, the perfor­
mance of the SyncRep scheme is heavily influenced by the agent size. The perfor­
mance of the AsyncRep scheme is also affected a lot by the agent size, however, 
nonnegligible performance gain can be achieved with asynchronaus replication. 
Compared to this, the LazyRep scheme shows very desirable performance and 
also very stable performance. 

Figure 6. (b) and 6. ( c) show the impact of failures on the agent execution 
time of three schemes. For these results, it is assumed that any agent, includ­
ing the primary, replicas and consensus agents, can fail on each stage with the 
probability of 0.1 and the time-out to detect a failure is three seconds. As shown 
in Figure 6.(b), the LazyRep scheme now achieves only 30%-54.6% reduction of 
the migration time under the various number of replicas. It also achieves 54.6%-
56% reduction of the replication time under the various agent size as shown in 
Figure 6. ( c). Even though re-execution caused by a failure partially takes off the 
benefit of the LazyRep scheme, Figure 6.(b) and 6.(c) show that the LazyRep 
scheme is still under the less influence. 

6 Conclusions 

In this paper, we have proposed a lazy replication and asynchronaus consensus 
scheme for the fault tolerant mobile agent system. In the proposed scheme, the 
replication step, the consensus step and the task execution step of an agent pro­
ceeds asynchronously. To process the consensus step without waiting for the late 
replicas, we have introduced fixed consensus agents and an agent can perform 
the consensus step with fixed consensus agents. As a result, there is practically 
no delay in the consensus step unless the primary or one of consensus agents fails. 
To evaluate the performance of the proposed scheme, we have implemented the 
proposed scheme on top of the Aglet system. The performance results show that 
the lazy replication with asynchronaus consensus scheme can achieve much re­
duction of the replication and the consensus cost, compared to earlier replication 
schemes. Also, the lazy replication scheme shows very stable performance. 
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