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Abstract. In characterizing statistical multiplexing models of network 
nodes important QoS measures are often to be estimated such as satu­
ration probability and workload loss ratio. In the two main streams of 
multiplexer models (bufferless and buffered statistical multiplexers) the 
meaning of these measures and their possible estimations are different. In 
this paper, we set up a family of closed-form performance bounds which 
can be used for estimating QoS measures in both multiplexing models. 
The underlying approximation technique in the framewerk of bufferless 
fluid fiow multiplexing model (bffm) is systematically described, and be­
sides the resultant new QoS measure estimates previously known ones 
arealso identified. The bounds in bffm have been analyzed and compared 
based on numerical investigations. The applicability of the performance 
bounds for buffered multiplexers is also briefiy discussed. 

1 Introduction 

Setting and estimating QoS measures play central role in traffic fl.ow control and 
management functions in QoS guaranteed packet-based networks. As regards 
the available resources ( e.g. transmission link capacities, buffers, processing ca­
pacities) at the nodes in the network, an important question is how often such 
resources are overloaded due to high volume of packets arrived. The class of QoS 
measures which quantify these overloading phenomena is often referred to as 
resource-based QoS measures [1]. One representative measure within this family 
is the link saturation probability which corresponds to the fraction of time when 
the sum of the instantaneous (or average over a sufficiently small time interval) 
arrivalrate of traffic fl.ows exceeds the transmissionlink capacity. The use of this 
measure assumes the bufferless fluid flow multiplexing framework which turned 
out to be powerful dimensioning tool in either the case of elastic traffic in certain 
access network seenarios [2] or the case of stream-like traffic [3]. 

Another characteristic member of the family of resource-based QoS measures 
is the buffer saturation ( or buffer overflow) probability. The analysis of this ap­
parently requires a buffered statistical multiplexing model. Several asymptotic 

* This work was supported by the Inter University Centre for Telecommunications 
and Informatics, Hungary. 

N. Mitrou et al. (Eds.) : NETWORKING 2004, LNCS 3042, pp. 1108-1119, 2004. 
@ IFIP Interna tional Federation for Information Processing 2004 



A Family of Performance Bounds for QoS Measures 1109 

and approximate results have been formulated for buffer overfiow probability 
under different assumptions. Recent result in [4] incorporates bounds for buffer 
overfiow probability provided the arrival tra:ffic flows are regulated (the regula­
tion is characterized by arrival curves) and the service offered to the traffic by 
the nodes is described by a so-called service curves. These bounds are based on 
Hoeffding's result on the tail probability estimation of sum of partial backlogs 
as bounded random variables [5]. 

Besides the fraction of resource overload periods, it is also important to iden­
tify quantities (measures) which are based on the amount of traffic becoming un­
conformant due to the resource overload. The dass of these measures is referred 
to as stream-based1 measures. Although the unconformant packets can be ei­
ther downgraded into lower level QoS dass ( e.g. best effort) or simply discarded, 
for simplicity, the ratio between the unconformant tra:ffic and the whole offered 
traffic is called as workload loss ratio ( WLR). In the bffm modeling framework 
WLR corresponds to the fraction of tra:ffic which can not be transmitted due to 
the link saturation. In buffered statistical multiplexers WLR means the fraction 
of packets which can not be placed into the buffer due to buffer overfiow.2 

In this paper, we set up a family of conservative upper bounds for satura­
tion probability and workload loss ratio, which can directly be applied in both 
(bufferless and buffered) multiplexing framework. Forthis purpose, the so-called 
Chernoff-Hoeffding bounding method as an approximation technique has been 
used which enables to treat the estimates for saturation probability and work­
load loss ratio in a common way. This underlying approximation method in the 
framework of bufferless fluid flow multiplexing model (bffm) is systematically de­
scribed, and besides the resultant new QoS measure estimates previously known 
ones are also identified. The very attractive properties of the bounds that they 
are expressed in closed-form formulae and use few characteristic information 
(known a priori and/or measurable) on the tra:ffic flows. 

In Section 2 we introduce the general concept of Chernoff-Hoeffding bound­
ing technique in the context of bufferless fluid flow multiplexing model, which 
originally motivates the design of t he bounds on t he related QoS measures. In 
Section 3 the underlying probability generating function approximations have 
been performed. Previously known and newly developed bounds has been pre­
sented under a common framework in Section 4. After that analysis and com­
parisons based on extensive numerical investigations have been highlighted. The 
applicability of the performance bounds for buffered multiplexers is also briefly 
discussed. 

1 It does not necessarily mean that these measures can be applied only for streaming 
traffic. 

2 In buffered multiplexing models the buffer size is usually assumed to be infinite, 
hence, WLR is often identified as the fraction of workload in the buffer being above 
a certain threshold. 
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2 The Chernoff-Hoeffding Bounding Method 

Bufferless fluid flow multiplexing is often used in the literatme to analyze QoS 
measures, e.g., packet loss probability in a multiplexer [4,1,3]. Because this ap­
proach assumes no buffer at hurst time scales, it is able to provide conservative 
estimates for the QoS measures under question. For modeling purposes under 
bffm, let us assume that we have n fluid flows to be multiplexed on a communi­
cation link with transmission capacity C. Let the instantaneous stationary (that 
is time dependence can be eliminated) arrivalrate of flow i be noted by xi, as a 
random variable. Because every flow has a peakrate Pi we also have 0 ::; Xi ::; Pi· 
Further, let the aggregate flow arrivalrate be X = 2:::::7=1 Xi. 

The link saturation probability can now be defined as 

Psat 'tf JlD( X > C) . 

This probability reflects the fraction of time when the link is overloaded (pro­
vided the system is ergodic), i.e. the frequency that the combined arrival rate 
exceeds the link capacity. This resource-based congestion measure could beim­
portant from network operation point of view. The workload loss ratio can be 
identified as 

WLR 'tr IE[(X- C)+] 
IE[X] ' 

(1) 

where JE[.] stands for the expectation value operator and (X-C)+ = max(X­
C, 0). The estimation of this quantity can provide more accurate loss performance 
analysis. This measure better characterizes the expected loss rate and could also 
contribute to determining the users ' satisfaction. From traffi.c management ( e.g. 
connection admission control) point of view an important question can arise: 
Whether the ongoing session (possibly tagether with a newcomer) satisfies a 
predefined QoS constraint related to some quality of service measure. In a more 
formal way, the inequalities 

JlD(X > C) < e-' IE[(X - C)+] < e-' 
- ' IE[X] -

(2) 

represent the fulfillment of the constraint on saturation probability and workload 
loss ratio, respectively. 

The Chernoff bound of Psat and WLR are as follows [6]: 

JP>(X > C) ::; inf Gxc(s) = inf exp (Ax(s) - sC) , 
s>O e8 s > O 

(3) 

WLR::; exp (Ax(s*)- s*C -log(s* M)) , (4) 

where 
s* = arginf8 (Ax(s)- sC) , (5) 

and G x(s) 'tf IE[exp( sX)] and Ax(s) 'tf log G x(s) are t he probability generating 
function (PGF) and the cumulant generating function (CGF) of X, respectively. 
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The computation of these bounds is usually not possible, because the under­
lying generating functions would require all the moments of X to be known. 
Instead, the CGF's are to be further bounded based on the available informa­
tion (moments) on X and embedded into the Chernoff bound. This is called the 
Chernoff-Hoeffding bounding method. 

3 Approximations of Probability Generating Functions 
(PGF) 

In the previous section we have seen that the cumulant generating function plays 
important role in QoS measure approximation through the Chernoff bounding 
method. In this section, we provide three conservative bounds of the PGF of 
aggregate traffic rate distribution, provided only the following pieces of informa­
tion are available on X: the number of traffic fl.ows multiplexed (n), the peak 

rates of the traffic flows (Pi) and the aggregate mean arrivalrate (M ~f IE[X]). 

3.1 Approximations Based on Hoeffding's Result 

The following lemmas due to Hoeffding (1963), is on the PGF approximation of 
bounded random variables. 

Lemma 1 ([5]). 
Let Xi, i = 1 ... n be independent random variables with X 

M = IE[X] and 0 ::; Xi ::; p. Then, jor s > 0 

( M M )n Gx(s)::; 1--+- exp(sp) 
np np 

(6) 

Lemma 2 ([5]). Let Y be a random variable with IE[Y] = 0, a ::; Y ::; b. Then 
for s > 0, IE[exp(sY)]::; exp ( 82 (b;a) 2

) 

Based on this lemma it can be easily constructed an upper bound for the PGF 
of sums of independent and bounded random variables. 

Corollary 1. Let Xi, i = 1 ... n be independent random variables with X = 
2::~=1 Xi, M = IE[X] and 0 ::; Xi ::; Pi· Then for s > 0, 

(
8 2 z=':_ p2) 

IE[exp( sX)] ::; exp( sM) exp S-l ' (7) 

The PGF bound in (6) is applicable for random variable bounded uniformly 
(but with not necessarily identical distribution), while that in (7) covers a more 
general case with non-uniformly bounded random variables. Nevertheless, the 
latter one does not coincide the former one in the special case of p1 = p2 = ... = 
Pn · This fact motivated the construction of the following upper bound. 
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3.2 An lmproved Hoeffding-Type Approximation 

Applying the Chernoff-Hoeffding bounding method on X in a different way, we 
have obtained the following conservative bound for IE[exp(sX)]. 

Theorem 1 ([1]). Let Xi be independent bounded random variables with 0 :::; 
Xi ::; Pi, X = I;~=l Xi and M = IE[X]. Then for s > 0, 

(8) 

The proof ofthis theorem is not detailed here, it can be found in [1]. Nevertheless, 
an important step in the chain of bounding formulae is worth repeating here: 

Gx(s) = IE[e8 x]::; IJ 1 +mi e '~ , 
n ( sp 1) 

i=l p, 
(9) 

where mi ~f IE[Xi]· 

Corollary 2. The PGF bound on the right-hand side in (9) is the exact gen­
erating function of the sum of heterogeneaus on-off random variables with the 
distribution 

lP' (Xfnoff =Pi) = :i ' lP' (Xfnoff = 0) = 1- :i. 
This is because 

JE [esX~noff] = (1 -mi + mi esp;) . 
Pi Pi 

It can also be seen that the formula on the right hand side in (8) gives back 
the bound in (6) in the case of uniformly bounded random varibales. In this 
way, this improved Hoeffding-type approximation is a consistent extension of 
the result presented in Lemma 1. 

3.3 A PGF Approximation Based on Stochastic Ordering 

In this subsection let us recall the essential definitions and properties of a certain 
type of stochastic ordering of random variables to be applied for PGF approxi­
mation. 

Definition 1 ([4]). Given two random variables X and Y with distribution 
function Fx and Fy, respectively. Then, X is said to be smaller than Y with 
respect to increasing convex ordering, written as 

X <icx Y, 

if the condition L: 4>(x)dFx(x) :::; L: 4>(x)dFy(x) 

holds for all increasing convex function 4>, for which the integral exists. 
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An important consequence of this definition for probability generating functions 
of random variables is the following: 

Lemma 3. Let X and Y be two random variables with the relation X <icx Y. 
Then for s > 0, Gx(s)::; Gy(s) . 

This can be justified by the substitution </J(x) = exp(sx). 
The following results presented in [4]leads us to construct a new PGF bound. 

Lemma 4. Let the random variables Xj_moff, ... , X~noff represent n indepen­
dent heterogeneaus on-off sources with peak rates Pl, ... ,pn and mean rates 
m 1 , ... , mn. Let Y1onoff, . . . , Y~~off be ny independent homogeneaus on-off 
sources with the identical peak rate p = max(pi, i = 1, ... , n), ny = fE~=l Pd p l, 
and identical mean rate m = E~=l mi/ny. Then Xanoff <icx Yanoff, where 

n ny 
X <!!! "\' xonoff d y; <!!! "\' yonoff onoff - L....t i an onoff - L....t i · (10) 

i=l i=l 

Fora proof of Lemma 4 see [4]. 
Now, the PGF bound based on increasing convex stochastic ordering can be 

formulated in the following theorem [7]: 

Theorem 2. Let X1, ... , Xn indicate n independent random variables with 0::; 
xi ::; Pi 'X= E~=l xi and M = IE[X]. Then for s > 0, 

( M M )nv 
Gx(s)::; 1--+ -e8 P 

nyp nyp 
(11) 

Proof of Theorem 2: By Corollary 2 we have Gx(s) ::::; Gxonott(s) , V s > 0. 
Further, by combining Lemma 4 and Lemma 3 the following relationalso holds: 
Gxonorr(s) :S Gyonoff(s) , V s > 0. The two inequalities above give the statement 

of the theorem, because Gy 11 (s) = (1- _M_ + _M_esp)ny. Q.E.D. 
o no nyp nyp 

Let the PGF approximations presented in (7), (8) and (11), be designated 
by Gx,hae(s), Gx,ih(s) and Gx,so(s), respectively. The corresponding cumulant 
generation functions (CGF's) are Ax,hoe(s), Ax,ih(s) and Ax,so(s). 

4 Conservative Upper Bounds Basedon the PGF 
Approximations 

4.1 Bounds for the Saturation Probability P sat 

Applying the Chernoff bound for the saturation probability of uniformly 
bounded random variables with the CGF bound in (6) the following bound 
can be obtained (5]: 
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Theorem 3. Let X;, i = 1 .. . n be independent random variables with X 
2::~=1 X;, M = IE[XJ and 0 :S: X; :S: p. Then, for C > M 

G G 

lP'(X > C) :S: (M)" (np- M)n-" 
C np-C 

(12) 

In this case the optimal s parameter can also be expressed as 

* _ ~l S}_ np-M 
s - ogM C. p np-

(13) 

In the more interesting case of non-uniformly bounded random variables the 
following bounds can be obtained by the Substitution of Xhoe(s), xih(s) and 
Äso(s) into the Chernoff bound of Psat (3). 

Theorem 4 ([5)). Let X; be independent bounded random variables with 0 :s; 
Xi :S: Pi, X = L~=l and M = IE[XJ, then 

( -2(C- M)2 ) 
lP'(X > C) :'S: exp Ln 2 

•= 1 P, 
(14) 

The optimizing parameter s can be formulated here as 

* 4(C-M) 
S = n 2 

Li=l Pi 
(15) 

Theorem 5 ([1)). lf Xt, X2 , ... , Xn are independent (and not necessarily iden­
tically distributed) random variables, for which 0 :'S: X i :'S: Pi holds, then 

•c L..J·=1 s*p · 1 rr es Pk- 1 ( 
M + ..--n ___l!j__ ) n n • 

Jl.D(X;::::C):s;e-s e 1- ---- , 

n k=l Pk 
(16) 

where s* is the solution of the following equation. 

(17) 

Unfortunately, in this case neither the optimizing parameter s* nor the bound 
of Psat can not be expressed in closed form. In [1] closed-form solutions have 
been developed for Psat through finding closed-form suboptimal solutions of the 
equation above with respect to s. One of them is repeated here: 

(18) 

where 
C - M 

(19) 
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As a further new contribution of this paper, applying the CGF approximation 
A80 (s) based on stochastic ordering, inherently a closed form upper bound can 
be obtained for Psat: 

Theorem 6. Let X; be independent bounded random variables with 0 :::; X; :::; 
p;, X= 2:::~= 1 X; and M = E[X]. Further, let p = max(p;, i = 1, . . . , n), ny = 
f.L:1 pi/pl, and m = 2:::~= 1 m;/ny, then 

c c 
IP'(X > C):::; (M)-;; (nyp- M)nv--;; 

C nyp-C 
(20) 

Proof sketch of Theorem 6: Combining the result ofTheorem 2 and Theorem 3 
gives the required statement. 

In this case the optimal s parameter can also be expressed as 

* 1 1 C nyp- M 
s =- og-

P M nyp-C 
(21) 

4.2 Bounds for the Workload Loss Ratio WLR 

Turning to the WLR approximation, here it is worth using formula ( 4)3 , because 
in this case the optimizing parameter s and hence the resulted conservative 
upper bounds can be expressed directly in closed-form (like in the previously 
presented Psat bounds) when the CGF approximations Ax,hoe(s) and Ax,so(s) 
are embedded in (4). When the CGF bound Ax,ih(s) is used similar sub-optimal 
solutions can be obtained as in the corresponding Psat bound in (18). 

In the following theorem we summarize these new closed form conservative 
bounds: 

Theorem 7. Let X; be independent bounded (and not necessarily identically 
distributed) random variables with 0 :::; X; :::; p;, X = 2::::'::1 X; and M = E[X]. 

Further, let K = ~ 2:::~= 1 PT - ~ (M- ~ I:~=l p;) 2 , p = max(p;, i = 1, ... , n), 
ny = f.L~=1 pi/pl, and m = L~=l m;jny, then the following three inequalities 
hold for WLR: 

L~-lPT (-2(C- M)2 ) 
WLR:::; 4(C _-M)M exp L~=lPT ' (22) 

WLR :::; (M + I:?=:e~Pi-1)~~'~ fie~;.• - 1 , 

k=l 
(23) 

WLR< (M)C/p(nyp-M)ny-CJp p 
- C nyp- C Mlog S2 nyp-M M nyp- C 

(24) 

3 A slight improvement of formula (4) would be infs>O exp (Ax(s) - sC - log(sM)), 
but the use of this would require further approximations to arrive closed-form ex­
pression. 
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Proof sketch of Theorem 7 : Substituting the three CGF approximations 
Ax,hoe ( s), Ax,ih ( s) and Ax,so ( s) and the corresponding optimization parameters 
s* performed in equations (15), (19), (21) into the Chernoff bound of WLR (4), 
the three bounds above are obtained. 

Finally, it is worth again emphasizing that in the set of bounds presented 
above the ones in (14) and (18) are already known from [5] and [1], but, to 
the authors best knowledge, the bounds in (20), (22), (23) and (24) are neither 
presented nor analyzed previously. 

5 Performance Analysis 

In this section the performance of the bounds are analyzed and illustrated 
through numerical examples. For this purpose a simple two-class on-off traffic 
mix has been defined. The number of sources within the classes are represented 
by n1 and n2, respectively. The mean arrivalrate and the peakrate of a source 
within a dass are assumed to be identical and indicated by mi, Pi, i = {1, 2}. 
The representative traffic seenarios considered in the paper for illustrating the 
numerical investigations are summarized in Table 1. The first traffic mix (Mix 
1) resembles the aggregation of uncompressed voice and compressed video flows. 
The second (Mix 2) and third one (Mix 3) represent the multiplexing of un­
compressed and compressed voice traffi.c with low and high peak to mean ratio, 
respectively. 

Table 1. Traffic Scenarios 

n1 m1 [kbit/s] P1 [kbit/s] n2 m2 (kbit/s] P2 [kbit/s) ~ 

Mix 1 100 51 64 10 2 X 103 5 X 103 2.24 

Mix 2100 

Mix 3100 

51 

25 

64 

64 

1000 

1000 

4.8 

2.3 

5.8 

5.8 

1.34 

2.54 

In the figures the 10-based logarithm of the exact values of saturation prob­
ability and workload loss ratio and their bounds are drawn in the function of 
the transmission capacity C. Since the bounds presented give reasonable values 

when M < C < P (P ~f L~=l Pi), parts of the interval (M, C) is considered 
in the drawing in such a way that the exact values of Psat and WLR should be 
no smaller than 10-8 . The exact values are drawn with continuous lines, while 
the bounds based on the Hoeffding, improved Hoeffding and stochastic ordering­
based CGF bounds are represented by dotted, dash-dotted and dash-dot-dotted 
lines, respectively. 

Common observations and remarks based on our extensive numerical analysis 
are given, which are partly illustrated by the numerical examples. 
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Fig. 4. Bounds on WLR, Mix 2 

- The bounds (14), (22) based on the CGF approximation (7) has usually the 
poorest performance, due to the underlying coarse bound on the cumulant 
generating function. 

- The differences between the improved Hoeffding and stochastic ordering­
based Psat bounds are usually small, furthermore, it turned out to be neg­
ligible when the number of sources are higher than 100 in each traffic dass 
and the peak rates of the traffic classes are in similar order of magnitude 
( e.g. in Mix2 and Mix 3). 

- The superiority of the stochastic ordering-based WLR bound can be observed 
in several cases, especially when the aggregate peak to mean ratio (PjM) is 
small (e.g. in Mix 2). 

- In case of high peak to mean ratio and high differences between t he peak 
rates of the traffic classes, the improved Hoeffding-based Psat bound can 
outperform (such figures not presented) the stochastic ordering-based Psat 

bound. 
- The horizontal and vertical distances between the curves are usually in­

creases with increasing 1 (with tightening the QoS constraint) . 

Remarks: Although all the bounds presented require the same amount of in­
formation on the the traffic fl.ows, the complexity of their closed-form formulae 
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Fig. 6. Bounds on WLR, Mix 3 

are different. The bounds based on the Hoeffding-based CGF approximation ap­
pear in the simplest way, however, these have the poorest accuracy. Nevertheless, 
these bounds can result in saving considerable amount of capacity compared to 
the plain peak rate reservation scheme ( see the horizontal distances between the 
corresponding curves), and the application of them could be recommended when 
the simplicity is an exclusive criterion. 
The bounds (18), (23) based on the CGF approximation (8) have the most com­
plicated appearance in the formulae, the implementation of their computation 
might encounter serious problems due to the presence of the several exponential­
like terms. The improved Hoeffding-based saturation probability bound can have 
better performance in some cases (not seen in the figures) than the stochastic 
ordering-based one (see Observations), but the gain in capacity savings is not in 
proportion to the higher complexity of implementation. 
The formulae of the stochastic ordering-based bounds are relatively simple, they 
seem to be implementable ( especially the logarithm of the bounds) in a Straight­
forward manner. Consequently, the application of these bounds ( especially the 
WLR bound) is strongly encouraged, also because of the good performance in 
accuracy. 

6 Conclusion 

In this paper a family of bounds on saturation probability and workload loss 
ratio has been set up under the bufferless fluid flow multiplexing framework. 
This family comprises previously known as well as newly developed bounds. 
According to the analysis the stochastic ordering-based bounds have the best 
performance, especially in the case of workload loss ratio approximation. Nev­
ertheless, the simple Hoeffding-based bounds could still form viable alternative 
from implementation point of view. 
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Appendix: lmproved Bounds for Independent Regulated 
Flows Multiplexed into a Service Curve Network Element 

In [8] and [9] performance bounds (bounds on buffer overflow probability) have 
been derived when independent and regulated traffic flows have been multiplexed 
into a buffer with fixed service rate. These bounds have been extended in [10] 
to the case of a more general multiplexer model, i.e. the service is characterized 
by a general service curve 4 . 

All the buffer overfl.ow bounds presented in [8], [9] and [10] relies on the use 
of Hoeffding's inequalities [5], also presented in this paper in equation (12) and 
(14) for the homogeneaus and heterogeneaus case, respectively. Our closed form 
bounds presented in (18) and (20) are also based on and improve (see [1] and 
Section 4) one of the Hoeffding's inequalities (14) , and use the same amount 
of information. Therefore, they can apparently be used for further improving 
the results of Vojnovic and Le Boudec in [10] in the case of heterogeneously 
regulated traffic multiplexed into a service curve network element. For the same 
reason, improved bounds on buffer workload lass ratio can also be set up by the 
use of (23) and (24). The performance evaluation of the improved bounds in the 
buffered multiplexer context is a matter of future work. 

4 In this model the multiplexer is referred to as service curve network element. 


