
Network-Embedded Programmahle Storage
and Its Applications

Sumeet Sobti1 , Junwen Lai1 , Yilei Shao1 , Nitin Garg1 ,

Chi Zhang1 , Ming Zhang1 , Fengzhou Zheng1 ,

Arvind Krishnamurthy2*, and Randolph Y. Wangh

1 Department of Computer Science, Princeton University, Princeton, NJ 08544, USA.
{sobti, lai, yshao, nitin, chizhang, mzhang, zheng,

rywang}~cs.princeton.edu.
2 Department of Computer Science, Yale University, New Haven, CT 06520, USA.

arvind@cs.yale.edu

Abstract. We consider the utility of two key properties of network
embedded storage: programmability and network-awareness. We describe
two extensive applications, whose performance and functionalities are
significantly enhanced through innovative combination of the two prop
erties. One is an incremental file-transfer system tailor-made for low
bandwidth conditions. The other is a "customizable" distributed file sys
tem that can assume very different personalities in different topological
and workload environments. The applications show how both properties
are necessary to exploit the full potential of network-embedded storage.
We also discuss the requirements of a general infrastructure to support
easy and effective access to network-embedded storage, and describe a
prototype implementation of such an infrastructure.

1 Introduction

For wide-area distributed services, network-embedded storage offers optimization
opportunities that are not available when storage resides only at the edges of
the network. A prime example of this is content-distribution networks, such as
Akamai, that place storage servers at strategic locations inside the network and
direct dient requests to servers that are "close" to them, thus achieving reduced
access latency for the clients and better load balance at the servers.

Given the desirability of network-embedded storage, a natural question to
ask is this: What is a good "access model" for network-embedded storage that
allows services to realize its full potential? By access model, we mean mechanisms
through which diverse services can use the network-embedded storage resources
to satisfy their diverse needs.

One simple access model is what can be referred to as the fixed-interface
model. In this model, each embedded storage element exports a fixed set of high
level operations (such as caching operations). Service-specific code is executed

* Krishnamurthy is supported by NSF grants CCR-9985304, ANI-0207399, and CCR-
0209122, and Wang is supported by NSF grants CCR-9984790 and CCR-0313089.

N. Mitrau et al. (Eds.): NETWORKING 2004, LNCS 3042, pp. 1143- 1155, 2004.
© IFIP International Federation for Information Processing 2004

1144 S. Sobti et al.

only at edge-nodes. This code manufactures service-specific messages and sends
them into the network to manipulate the embedded storage elements through
the fixed interface. An example of this model is the Internet Backplane Protocol
(IBP) proposed in the "Logistical Networking" approach [1].

Although the fixed-interface model does benefit a certain dass of services,
it has two main limitations. First, it does not have sufficient flexibility. Due to
the extremely diverse needs of distributed services, it may be difficult to arrive
at an interface that caters well to all present and future services. Second, the
restriction that service-specific code executes only at the edges of the network,
and not at the embedded storage elements, imposes a severe limitation, both on
the functionalities provided by the services and the optimization opportunities
available to them. For example, for application code executing at the edges, it
is often difficult to gather information about changes in the load and network
conditions around an embedded storage element, and then to respond to such
changes in a timely fashion.

These limitations point to the need for the following properties. (1) Pro
gmmmability: the services should be able to execute service-specific code of some
form at the embedded storage elements. (2) Network-awareness: the code exe
cuting at these elements should be able to use dynamic information about the
resources at and around them. We do not claim that any of these properties is
novel by itself. We, however, do believe that it is the combination of the two
that is necessary to realize the full potential of embedded storage.

To support this hypothesis, this paper presents qualitative and quantitative
evidence in the form of two applications of network-embedded storage. One
is an incremental file-transfer service tailor-made for low-bandwidth conditions
(Section 2). The other is a "customizable" distributed file system that can assume
very different personalities in different topological and workload environments
(Section 3). In these applications, we explicitly point out how the absence of
any one of the two properties would significantly limit their power, both in
terms of functionality and performance. These applications also show that the
combination of programmability and network-awareness is useful in a diverse
set of environments, including both local and wide area networks. A general
theme of our work is that in any system configuration or service, if a storage
element is in a position to exploit its location advantage intelligently, it should
be programmed to do so.

We also discuss the requirements of a general infrastructure to support easy
and effective access to programmable network-embedded storage, and describe
a prototype implementation (Section 4). We refer to such an infrastructure as a
Prognos (PROGrammable Network Of Storage), and to each embedded storage
element in it as a Stone (STOrage Network Element). As long as the Stones have
access to network information, the making of t he Stones and the links among
them can be quite flexible. One possibility is to construct a Prognos on top of
an overlay network. The overlay links used should approximate the underlying
physical topology and the Stones can simply be general-purpose computers. The

Network-Embedded Programmabte Storage and Its Applications 1145

X: AB C D E F G H I J K L M N 0
L_____...j L-----J L___.1 L________j L----J

AB I GPHI / Q /
,-----, ,--, ,__

Y: AB D E F G P H I J K L Q MN 0

Fig. 1. A simple rsync example.

other potentially more efficient possibility is to co-locate a Stone with a router
and the links among the Stones would largely be physical.

We refer to the systems-support module of a Prognos as SOS (Stone Op
erating System). SOS is responsible for managing the physical resources at the
participating Stones, and for allowing services to inject service-specific code into
the Stones in a secure fashion. A collaboratively supported platform, such as
PlanetLab [2] (www.planet-lab.org), can be turned into a Prognos by loading
the participating machines (also referred to as Stones) with the SOS module.

2 Incremental File Transfer

We now describe a service intended to facilitate transfer of incrementally chang
ing, large files. An example usage scenario of this service is one where a producer
periodically releases new versions of the Linux kernel file, and multiple consumers ·
update their versions at different times.

The basic idea is to use network-embedded storage elements (or Stones) to
optimize these file transfers. As data flows through a sequence of Stones during a
file transfer, there is an obvious caching opportunity to benefit subsequent trans
fers. If, however, the Stones are capable of executing complex service-specific
code, more sophisticated optimizations become possible. Our service, which we
call "Prognos-based rsync" (or Prsync), programs the Stones to use the rsync
protocol to propagate files.

2.1 The rsync Protocol

The rsync protocol [3] (rsync.samba.org) is a tool for updating an old version of
a file with a remotely-located new version. The protocol seeks to reduce network
usage by not transferring those portians of the new version that are already
present in the old version. A checksum-search algorithm is used to identify such
portions when the two versions are not located on the same machine.

As a simple example, suppose that nodes X and Y have two versions of a file
with contents shown in the top and bottom rows of Figure 1, and X wants to
get Y's version. X first partitions its version into fixed size blocks and sends the
checksums ofthose blocks to Y. In the example shown, X sends five checksums to
Y. Using the checksums, Y is able to identify portians that are common between
the two versions. Y then sends to X a description of its version referencing the

1146 S. Sobti et al.

blocks at X wherever possible. The middle row of letters shows the description
Y sends to X. X is then able to reconstruct Y's version from this description.
If the two versions share several blocks, then there is significant saving in the
number of bytes transferred.

2.2 Prsync

We examine four aspects of Prsync relating to the programmability and network
awareness of the Stones. First, we show how programmability of Stones enables
rapid deployment of Prsync-like services, even when one does not have full co
operation of edge machines. Second, we describe how Stones can themselves
use pair-wise rsync exchanges to improve end-to-end performance. Third, we de
scribe how Prsync adapts to its environment by exploiting the network-awareness
of Stones. Fourth, we describe how network information can be combined with
service-specific state in a service-specific manner to achieve good performance.

Interaction with Legacy Protocols. Consider a scenario where a producer
and a consumer want to engage in a file update, but they lack the ability to
participate in rsync exchanges. Assurne that the Stones have been programmed
to cache files, execute checksum-search algorithms, and participate in the Prsync
protocol. The system can still be used to transfer files efficiently. The file is first
copied from the producer to a nearby Stone using a legacy protocol. The file is
then efficiently propagated using Prsync to a Stone that is located close to the
consumer. As the last step, the file is copied from this Stone to the consumer
using a legacy protocol. This is an example of an end-to-end legacy protocol that
benefits from programmable network-embedded storage.

Hop-by-Hop Interaction. In the above scenario, the Prsync protocol is ex
ecuted between two Stones that are potentially separated by a weak wide-area
connection. The performance could be further improved if we were to enlist in
termediate Stones to decompose a long-distance rsync into a sequence of short
distance hop-by-hop rsyncs. First, intermediate Stones may already have a ver
sion that is very close to the fresh version being propagated. In such cases, fewer
bytes will have to be transferred along some portians of the path. Second, after
a sequence of hop-by-hop rsync exchanges, all the intermediate Stones also end
up receiving the fresh version and can satisfy future requests without requir
ing end-to-end interactions. The hop-by-hop protocol demonstrates that simple
caching in particular, or any hardwired storage interface in general, on interme
diate Stones is not sufficient-instead, the programmability of Stones is needed
to allow them to participate in a sophisticated protocol.

Adapting to Changing Environments. The rsync program employs a com
putationally expensive checksum and compression algorithm. Its use may in fact
be counterproductive in cases of abundant link bandwidth, drastic file content
changes, or high CPU load on participating nodes. In order for Prsync to adapt
to these environmental factors in a timely fashion, the programmability and the

Network-Embedded Programmahle Storage and lts Applications 1147

network-awareness of Stones become indispensable. When an upstream node X
starts to send fresh data to a downstream node Y, the two nodes begin with the
checksum-based rsync algorithm. Node X monitors two quantities dynamically:
(1) the ratio (r) between the number ofbytes that has been actually transferred
and the size ofthe content that has been synchronized, and (2) the physical band
width achieved (B). If r exceeds a threshold, which in turn is a pre-determined
function of B (implemented as an empirical table lookup), then the commu
nicating nodes would abandon the checksum-based rsync and revert to simply
transmitting the literal bytes of the fresh file. Note that such adaptive optimiza
tions need tobe performed on a hop-by-hop basis within the network-they are
difficult, if not impossible, to replicate at the edge. An additional optimization
to further reduce rsync overhead is to compute the per-block checksums off-line
and store them along with the file in the Stone's persistent store.

Selecting Propagation Paths. In seenarios where there exists path diversity
and pairs of Stones are connected by multiple paths (as in overlay networks),
Prsync can select propagation paths for hop-by-hop synchronization based on
application-specific metrics. We have experimented with two specific methods of
doing this. In the tree-based method, an overlay tree spanning all the Stones is
constructed. The tree is constructed using a minimum-spanning tree algorithm
on a graph where the nodes are Stones and the edges are weighted with the
inverse of pair-wise bandwidth. The tree construction uses heuristics for con
straining the node degree and diameter of the resulting tree. The resulting tree
thus contains high bandwidth paths between all pairs of Stones, and only these
paths are used for hop-by-hop rsync exchanges. The mesh-based method main
tains an overlay graph in which each Stone is adjacent to a certain number of
other Stones to which it has high-bandwidth links. When selecting a path be
tween a pair of Stones, all paths in this overlay graph are considered. Note that
the time taken for a pair-wise rsync exchange is determined by the link band
width and the difference between the file versions at the two Stones. Prsync
can maintain estimates of the differences between the file versions at different
stones and also monitor pair-wise bandwidths. By using these estimates, a best
path (i.e., one for which the expected time for hop-by-hop propagation of data
is minimized) can be selected in the mesh. This is an instance where information
about the network characteristics is combined with service-specific state in a
service-specific manner to improve performance.

2.3 Summary of Prsync Experimental Results

We have experimentally validated the Prsync design. The experiments were per
formed on two testbeds- one constructed in our laboratory, and another imple
mented on a set of PlanetLab machines distributed across the wide-area. Due to
lack of space, we refer the reader to [4] for details.

Here, we only provide a brief summary of the results as they relate to the
four aspects of Prsync described in the previous section. (1) The rsync protocol
is observed to perform more than 5 x better than simpler legacy protocols for

1148 S. Sobti et al.

copying files, especially in low bandwidth conditions. (2) Hop-by-hop use ofrsync
can improve upon end-to-end rsync by an additional factor of 2. These results
demonstrate the utility of executing complex service-specific code (e.g. , rsync) at
the embedded storage elements for functionality and performance gains. (3) The
adaptive nature of Prsync allows it to perform well in a diverse range of network
conditions. Lack of adaptivity can degrade performance by as much as 2 x. (4) In
a PlanetLab experiment, the mesh-based method of selecting propagation paths
performs 30% better than the tree-based method, which in turn performs about
30% better than a simple end-to-end rsync. These results demonstrate the kind
of performance benefits that a service can get by being network-aware, and by
intelligently using network information in a service-specific manner.

3 A Customizable Distributed File System

Today, we build cluster-based distributed file systems [5,6,7] that are very dif
ferent from wide-area storage systems [8,9,10]. Life would be simpler if we only
had to build two stereotypical file systems: one for LAN and one for WAN. The
reality, however, is more complicated than just two mythical "representative" ex
tremes: we face an increasingly diverse continuum, often with users and servers
distributed across a complex interconnection of subnets.

Prognosfs is a "meta file system" in the sense that its participating Stones
can be customized to allow the resulting system to exhibit different personalities
in different environments. Prognosfs software has two parts: (1) a fixed frame
work that is common, and (2) a collection of injectable components that run on
participating Stones and may be tailored for different workloads, and network
topologies and characteristics. (In the near future, we envision injectable Prog
nosfs parts to be compiled from high-level specifications of the workload and the
physical environment.)

3.1 Architecture and Component Details

Unlike several existing wide-area storage systems that support only immutable
objects and loose coherence semantics [11,8], Prognosfs is a read/write file sys
tem with strong coherence semantics: when file system update operations are in
volved, users on different dient machines see their file system operations strictly
serialized. Of course, we are not advocating that this is the only coherence se
mantics that one should implement-it just happens to be one of the desirable
semantics that makes collaboration easy.

Figure 2 shows the Prognosfs parts in greater detail. The fixed part is sim
ilar to that of the PetaljFrangipani systems [6,7]. For each file system call, a
Prognosfs dient kerne! module translates it into a sequence of a lock acquisition,
block readsjwrites, and a lock release. This sequence is forwarded to a Prognosfs
dient user modulevia the Linux NBD pseudo disk driver. The read and write
locks provide serialization at the granularity of a user-defined "volume" and they
are managed by the Distributed Lock Manager. If a dient fails without holding

Network-Ernbedded Prograrnrnable Storage and Its Applications 1149

Dlstrlbuted . Cllenl Cllenl User t Lock ::
Manager

~ I Cllent Kernel I (OLM) .
"' I

I NBO I

~ ,. 0 • .;]
-;;:_,

I
I PROGNOS I

Fig. 2. Cornponents of Prognosfs.

STONEs

tii~III
Cllents

(a) (b)

Fig. 3. Exarnple topologies connecting dient rnachines with their Stones.

a write lock, no recovery action is required. If a dient fails while holding the
write lock of a volume, a recovering dient inherits the write lock and runs fsck
on the failed volume. These components of Prognosfs are fixed.

The customizable part of Prognosfs lies within the Distributed Virtual Disk
(DVD). Externally, the interface to the DVD is very much like existing dis
tributed virtual disks such as Petal [6]. The difference is that, internally, while
all Petal servers are identical, the DVD consists of a number of peer Stones,
each of which can run a specialized piece of code to perform functions such
as selective caching, active forwarding, replication, and distribution of data to
other Stones. These decisions can be made based on network topology, network
condition, Stone load, and Stone capacity information that is typically either
unavailable or difficult to determine accurately and responsively at the edge.

Figure 3 shows several example topologies. In Figure 3(a), dients on each of
the two subnets can read data served by Stones on either subnet. If, for example,
the dients of the right subnet repeatedly read data from Stones on the left, they
might increase the load on the left subnet. As the "bridge Stone" Sb detects this
access pattern, due to its awareness of the topology, Sb can take several possible
actions to reduce the load: (1) Sb could cache data from the left subnet in its
own persistent store. (2) If Sb itself becomes a bottleneck, Sb could forward a
copy of the data to a Stone in the right subnet and this Stone would absorb
future reads. (3) As reply data flows from the left subnet to a dient in the right
subnet, Sb could distribute the data across multiple Stones in the right subnet.

1150 S. Sobti et al.

In Figure 3(b), the Stones in the middle layer (Ss) form a "switching fabric"
they accept requests from clients and perform functions such as load-balancing
and striping as they forward requests to the next tier Stones. The role played by
an S 8 is analogous to that played by a JLproxy, an NFS interposition agent [12].
Such interposition agents are just an example of the kind of functionalities
that Prognosfs can enable. (Unlike a JLproxy, the switching fabric is fully pro
grammable, can have its own storage, and is not limited to the NFS protocol.)

In Figure 3(c), we replace a number of wide-area routers with their Stone
counterparts. To see the role played by network-awareness, consider an example
where s4, Oll its clients' behalf, reads data stored at Sl. As data flows back Oll

the path S1 -+ S0 -+ Sz -+ S4 , So does not need to cache the data, Sz may
cache the data in the hope that s3 may demand it later' and s4 may cache the
data in the hope that its own clients may demand it again. Once S3 does read
the cached data at S2 and caches it itself, S2 may choose to discard it.

In each of these examples, the function executed by a Stone is intimately
associated with its often unique position in the network. Furthermore, although
we have described the above Stone functions in the context of Prognosfs, the
concepts are more generally applicable to other Prognos applications.

While the Prsync application relies on the combination of a known producer
to ensure that a requester receives an up-to-date copy of the desired data, the
presence of multiple readers and writers and the presence of multiple copies in
Prognosfs demand a data location service from the underlying Prognos infras
tructure. Given an object ID, the location service is responsible for locating a
replica for a read request, and for locating all obsolete replicas to invalidate (or
update) for a write request. This service is briefly described in Section 4.

We have implemented an initial prototype Prognosfs, along with a few of
its incarnations that are customized to work for some different topologies. Ex
isting applications on multiple Linux dient machines are able to transparently
read/write-share Prognosfs volumes.

3.2 Summary of Prognosfs Experimental Results

Detailed experimental results from both local area and wide area configurations
are described in [4]. Here, we only present some observations from our experi
ments with the topology of Figure 3(a). The main role of the bridge Stone Sb
is to forward blocks from one side to the other. In addition, its behavior can be
customized in at least two ways. In one case, it is programmed to "cache" any
data blocks that flow through it, so that it may be able to satisfy any subse
quent requests for those blocks. In another case, it is programmed to actively
"distribute" blocks flowing through it among the Stones on the destination side
in a round-robin fashion. These "cache" and "distribute" strategies pay the cost
of replication the firsttime a block flows through Sb for potential benefit during
subsequent accesses to that block. This illustrates the fact that the benefits of
any given strategy may be highly workload- and application-dependent. There
fore, the ability to dynamically adapt the behavior of embedded storage is often

Network-Embedded Programmahle Storage and lts Applications 1151

important. In some cases, it may be possible to execute these functions by is
suing commands from the edges of the network, but this often incurs overheads
and limits the ability to quickly adapt to the workload.

Prognosfs is an example that illustrates some of the extremely diverse cus
tomizations made possible by programmable embedded storage. The example
strategies, such as those mentioned in the context of Figure 3, serve to show that
a fixed interface for embedded storage may not always be sufficient. Different
strategies suit different system configurations, and one needs both programma
bility and network-awareness of embedded storage to tailor application behavior
to prevailing conditions.

4 Prototype Prognos

Resource Management and Security. The three key players in resource
management are: the Stone Operating System (SOS), the application-specific
service running on a Prognos, and the user of the service. In general, the user
trusts the service, which in turn trusts the SOS. The SOS must protect different
services from each other on a Stone; the distributed participants implementing
the same service on multiple Stones must be able to authenticate each other; and
the service must implement its own application-specific protection to protect its
users from each other. We discuss each of these issues in turn.

One simple way of insulating the multiple Services that run on a Stone si
multaneously from each other is to employ one process per service per allocated
Stone. Such a daemon is present as long as the service is up. Code specific to each
service is executed within its own separate address space, thus isolating it from
other services running concurrently on the same Stone. The service daemons re
quest resources from the SOS, which is currently implementedas a simple Linux
user-level process. Prognos could benefit from resource accounting abstractions
that are more precise than the process model, such as "resource containers" [13],
but our prototype does not support such fine-grained mechanisms. More efficient
alternatives than the process model, such as software-based fault isolation and
safe language-based extensions, also exist. One of the chief aims of building
this prototype is to have a vehicle with which we can experiment with several
Prognos-based applications and demonstrate the utility ofthe Prognos approach.
To this end, we have not started with a potentially more efficient kernel-based
andjor language-based implementations.

All the participants that collaborate in a Prognos to implement a particu
lar service, such as Stones allocated to this service and the processes on edge
machines belanging to the service provider, must be able to authenticate each
other. Existing cryptographic techniques for authentication, secure booting, and
secure links can be used for this purpose [14,15].

The codes that implement different services can choose their own means
of authenticating their users. Application-specific access control and resource
management is entirely left to individual services.

1152 S. Sobti et al.

Code Injection. Service-specific code is injected into the Prognos at service
launch time. (Updating code requires re-starting the service.) The Prognos sup
ports an interface to allow services to inject code in native binary format. The
code fragments injected into different Stones might be different because they
may be tailor-made for Stones at different locations in the network.

Persistent Storage. Each service is allocated a separate storage partition on
each participating Stone at service launch time. At each Stone, storage is avail
able in three alternative forms, and a service is free to choose one or even switch
among them. The alternatives are: (1) A raw disk partition interface that is
essentially the Linux /dev/raw/ interface. (2) A logical disk interface that is
similar to several existing ones [16]. A user of this interface can read and write
blocks that are keyed by their 64-bit logical addresses. This interface is useful
for those who desire a block-level interface but do not care to explicitly manage
their own storage layout. Our implementation is log-structured. Prognosfs uses
this interface. (3) A subset of the Linux local file system interface. Prsync uses
this interface.

Connectivity. The communication links between Stones can be either physical
or virtual. The current SOS implementation enforces no resource arbitration
mechanisms such as proportional bandwidth sharing[17], which we plan to add.
The SOS also needs to be able to provide local connectivity information in the
form of, for example, the set of neighboring Stones, and estimates of pair-wise
bandwidth, latency and loss-rate.

Location Service. Our prototype includes an efficient, network-aware object
location service to track copies of objects in a set of participating Stones. We
refer to it as Canto (Coherent And Network-aware Tracking of Objects). Canto
is heavily used by Prognosfs. It is designed as a network-aware generalization
of the manager-based approach commonly used in cluster-based systems [5,6,7].
Due to lack of space, we refer the reader to [18] for further details on Canto.

5 Related Work

Many active network prototypes have been built [19,20,21,22]. Prognos shares
their goal of allowing new services to be loaded into the infrastructure on de
mand. Most active networking efforts to date, however, have consciously avoided
tackling persistent storage inside the network. This decision typically limits the
injected intelligence to those related to low-level forwarding decisions. By em
bracing embedded storage, Prognos makes it possible for services to inject high
level intelligence that is qualitatively different and more sophisticated.

In a DARPA proposal [23], Nagle proposes "Active Storage Nets," which
are active networks applied to network-attached storage. In this proposal, ac
tive routers may implement storage functions such as striping, caching, and

Network-Emhedded Programmahle Storage and Its Applications 1153

prefetching of storage objects, and quality-of-service responsibilities of I/ 0 Op
erations. "Logistical Networking", a system proposed in a recent SIGCOMM
position paper [1], argues for an IP-like embedded storage infrastructure that
allows arbitrary packets to manipulate the embedded storage using a fixed low
level interface. In our experience, applications such as Prsync and Prognosfs can
fully benefit from the embedded storage only when application-specific intelli
gence, which could be more sophisticated than conventional caching of objects,
is co-located with embedded storage.

Active technologies have been successfully applied to applications such as web
caching [24] and media transcoding [25]. We hope to generalize these approaches
for a wider array of applications that can benefit from network-embedded pro
grammable storage. Active technologies have also been successfully realized in
the context of "Active Disks" [26,27]. One important difference between Active
Disks and Prognos is that the intelligence in the former is at the "ends" of the
network while in the latter case, it is embedded "inside" the network.

The applications, Prsync and Prognosfs, represent extensions to previous
work that is either limited to client-server settings or lacks customizability.
LBFS [28] is a client/server file system that employs a checksum-based algo
rithm to reduce network bandwidth consumption in a way that is analogaus to
rsync. By using the Prognos infrastructure, Prsync extends this approach to fully
exploit multiple peer Stones and their network-awareness. Prognosfs is similar
to Petal/Frangipani [6, 7] in its break down of the file system into three compo
nents: clients, a distributed lock manager, and a distributed virtual disk (DVD),
but it improves upon existing duster file systems that possess little network
awareness [5,6,7]. The most novel part of Prognosfs lies within its DVD- the
DVD consists of a number of peer Stones, each of which can be customized for
a specific environment.

6 Conclusion

We describe two applications that gain significant performance and functionality
benefits by using a clever combination of the programmability and network
awareness of network-embedded storage. These applications qualitatively and
quantitatively show that such combination is necessary to exploit the full power
of embedded storage. They are also evidence to support our belief that the
benefits of such combination are not limited to content-distribution networks,
but extend to many conventional applications too. The applications run on our
prototype Prognos system that currently works on LAN clusters and wide-area
PlanetLab-like overlay networks.

References

1. Beck, M., Moore, T. , Plank, J .S.: An End-to-End Approach to Glohally Sealahle
Network Storage. In: Proc. of ACM SIGCOMM 2002. (2002)

1154 S. Sohti et al.

2. Peterson, L., Anderson, T., Culler, D., Roscoe, T.: A Blueprint for Introducing
Disruptive Technology into the Internet. In: Proc. First ACM Workshop on Hot
Topics in Networking (HotNets). (2002)

3. Tridgell, A.: Efficient Algorithms for Sorting and Synchronization. PhD thesis,
Australian National University (1999)

4. Sohti, S., Lai, J., Shao, Y., Garg, N., Zhang, C., Zhang, M., Zheng, F., Krish
namurthy, A., Wang, R.Y.: Network-Emhedded Programmahle Storage and Its
Applications. Technical report, CS Dept. , Princeton University (2004)

5. Anderson, T., Dahlin, M., Neefe, J ., Patterson, D. , Roselli, D., Wang, R.: Serverless
Network File Systems. ACM Transactions on Computer Systems 14 (1996)

6. Lee, E.K., Thekkath, C.E.: Fetal: Distrihuted Virtual Disks. In: Conference on
Architectural Support for Programming Languages and Operating Systems. (1996)

7. Thekkath, C.A., Mann, T. , Lee, E.K.: Frangipani: A Sealahle Distrihuted File
System. In: Proc. ACM Symposium on Operating Systems Principles. (1997)

8. Dahek, F. , Kaashoek, M.F., Karger, D., Morris, R., Stoica, I.: Wide-Area Coop
erative Storage with CFS. In: Proc. of SOSP. (2001)

9. Kuhiatowicz, J., Bindel, D., Chen, Y., Czerwinski, S., Eaton, P., Geels, D.,
Gummadi, R., Rhea, S., Weatherspoon, H., Weimer, W., Wells, C., Zhao, B.:
OceanStore: An Architecture for Glohal-Scale Persistent Storage. In: Proc. of
ASPLOS. (2000)

10. Rowstron, A., Druschel, P.: Storage Management and Caching in PAST, a Large
Scale, Persistent Peer-to-Peer Storage Utility. In: Proc. of SOSP. (2001)

11. Clarke, I., Sandherg, 0., Wiley, B., Hong, T.: Freenet: A Distrihuted Anonymaus
Information Storage and Retrieval System. In: Workshop on Design Issues in
Anonymity. (2000)

12. Anderson, D., Chase, J ., Vahdat, A.: Interposed Request Routing for Sealahle
Network Storage. In: Proc. of Operating Systems Design and Implementation.
(2000)

13. Banga, G., Druschel, P., Mogul, J .C.: Resource Containers: A New Facility for
Resource Management In Server Systems. In: Operating Systems Design and Im
plementation. (1999)

14. Wohher, E ., Ahadi, M., Burrows, M., Lampson, B.: Authentication in the Taos
operating system. ACM Transactions on Computer Systems 12 (1994) 3-32

15. Gihson, G., Nagle, D., Amiri, K., Chang, F., Feinherg, E., Gohioff, H., Lee, C.,
Ozceri, B., Riedel, E., Rochherg, D., Zelenka, J.: File Server Scaling with Network
Attached Secure Disks. In: Proc. of the 1997 SIGMETRICS. (1997)

16. de Jonge, W ., Kaashoek, M.F., Hsieh, W.C.: The Logical Disk: A New Approach
to Improving File Systems. In: Proc. Symposium on Operating Systems Principles.
(1993)

17. Zhang, M., Wang, R.Y., Peterson, L., Krishnamurthy, A.: Prohahilistic Packet
Scheduling: Achieving Proportional Share Bandwidth Allocation for TCP Flows.
In: Proc. IEEE Infocom 2002. (2002)

18. Zhang, C., Lai, J., Garg, N., Sohti, S., Zheng, F., Krishnamurthy, A., Wang, R.:
Coherent and Network-aware Tracking of Ohjects. Technical Report TR-672-03,
CS Dept., Princeton University (2003)

19. Alexander, D.S., Shaw, M., Nettles, S. , Smith, J.M.: Active Bridging. In: Proc. of
ACM SIGCOMM '97. (1997) 101- 111

20. Decasper, D. , Dittia, Z. , Parulkar, G.M., Plattner, B.: Router Plugins: A Software
Architecture for Next Generation Routers. In: Proc. of ACM SIGCOMM '98.
(1998)

Network-Embedded Programmahle Storage and Its Applications 1155

21. Nygren, E.L., Garland, S.J., Kaashoek, M.F.: PAN: A High-Performance Ac
tive Network Node Supporting Multiple Mobile Code Systems. In: Proc. of Ope
nArch'99. (1999)

22. Wetherall, D.: Active Network Vision and Reality: Lessons from a Capsule-Based
System. In: Proc. of the ACM Seventeenth Symposium on Operating Systems
Principles. (1999)

23. Nagle, D.: Active Storage Nets. http:/ jwww.ece.cmu.edu;- asn/ old/ pubs/
Active%20Storage%20Nets%201ntro. pdf (1998)

24. Cao, P., Zhang, J., Beach, K.: Active Cache: Caching Dynamic Contents on the
Web. In: lntl. Conf. on Distributed Systems Platforms and Open Distributed
Processing. (1998)

25. Amir, E. , McCanne, S., Katz, R.H.: An Active Service Framewerk and Its Appli
cation to Real-Time Multimedia Transcoding. In: Proc. of ACM SIGCOMM '98.
(1998)

26. Acharya, A., Uysal, M., Saltz, J.: Active Disks: Programming Model, Algorithms
and Evaluation. In: Proc. of ASPLOS. (1998)

27. Riede!, E., Gibson, G.A., Faloutsos, C.: Active Storage For Large-Scale Data
Mining and Multimedia. In: Proc. of International Conference on Very Large Data
Bases. (1998)

28. Muthitacharoen, A., Chen, B., Mazieres, D.: A Low-bandwidth Network File Sys
tem. In: Proc. ACM Symposium on Operating Systems Principles. (2001)

