
Routing in Turn-Prohibition Based
Feed-Forward Networks

Markus Fidler and Gerrit Einhoff

Aachen University, Department of Computer Science,
Ahornstr. 55, 52074 Aachen

fidler@i4.informatik.rwth-aachen.de
gerrit@einhoff.com

Abstract. The application of queuing theory to communications sys­
tems often requires that the respective networks are of a feed-forward
nature, that is they have to be free of cyclic dependencies. An effective
way to ensure this property is to identify a certain set of critical turns
and to prohibit their use. A turn is a concatenation of two adjacent,
consecutive links.
Unfortunately, current routing algorithms are usually not equipped to
handle forbidden turns and the required extensions are nontriviaL We
discuss the relevant issues for the example of the widely deployed Dijkstra
algorithm. Then, we address the general case and introduce the Turnnet
concept, which supports arbitrary combinations of routing algorithms
with turn-prohibiting feed-forward mechanisms.

1 Introduction

Classical queuing theory has been investigated for a long time to better under­
stand many qualities of communication systems [7]. It has recently been com­
plemented by Network Calculus [10,2], which extends known queuing theory by
means of a worst-case analysis to provide deterministic performance bounds. A
field of application of Network Calculus are Quality of Service (QoS) enabling
architectures, like the Differentiated Services framework [I], where it allows to
effi.ciently compute delay bounds [6,14] for a so-called Premium Service [3].

1.1 The Feed-Forward Property

Unfortunately, a variety of methods from the field of classical queuing theory, as
well as the direct application of Network Calculus have one important prerequi­
site, namely the network has to be of a feed-forward nature.

Definition 1 (Feed-Forward Property). A feed-forward queuing network is
a network, in which all queues can be ordered in such a way that whenever a
traffic fiow traverses from queue i to queue j , this implies that i < j (1), or
in a more verbatim way: the links of a feed-forward network cannot form any
cycles, i.e. it is impossible for traffic fiows to create cyclic dependencies an each
other (2).

N. Mitrauet al. (Eds.): NETWORKING 2004, LNCS 3042, pp. 1168- 1179, 2004.
© IFIP International Federation for Information Processing 2004

Routing in Turn-Prohibition Based Feecl-Forward Networks 1169

Dependencies occur, for example in case of Network Calculus, if two fl.ows use
the same queuing and scheduling unit on an outgoing link. In this scenario the
service offered to each of the fl.ows individually depends on the service that is
consumed by the respective other flow. Now, consider a network consisting of
three nodes a, b, and c and three links (a, b), (b, c), and (c, a). Assurne two flows
use the network, whereby the path of flow 1 is a -+ b -+ c and the path of flow
2 is b -+ c -+ a. The service that remains for flow 2 at link (b, c) depends on
the service that is consumed by flow 1 at the same link, which in turn depends
on the output of flow 1 from link (a, b). Fortunately, the output of flow 1 from
link (a, b) does not depend on flow 2. Thus, the dependency is not cyclic and the
system can be solved in an inductive manner. However, adding a third flow that
traverses the path c -+ a -+ b creates a cyclic dependency. The output of flow 1
from link (a,b) depends on the output offlow 3 from link (c,a). Flow 3's output
from link (c,a) depends, however, on flow 2's output from link (b,c), and again
on fl.ow 1 's output from link (a, b) , which completes the cycle.

1.2 Feed-Forward Mechanisms

Obviously, real-world networks arenot necessarily of a feed-forward nature, un­
less they are for example star-shaped. One way to nevertheless realize Network
Calculus based QoS afferings [6] is to take provisions to prevent from the creation
of cyclic dependencies between different flows.

To ensure the feed-forward property in an arbitrary network, the usual ap­
proach is to restriet the usage in a certain way that makes it impossible for flows
to create a cyclic dependency. The simplest way to do so is to build a spanning
tree covering all nodes and to prohibit the use of alllinks not belanging to that
tree. Since a spanning tree cannot contain any circles by definition, the feed­
forward property is ensured. On the other hand this approach can disable large
parts of the network, potentially causing a big performance impact [5].

A more intelligent approach is not to prohibit the use of complete links, but
only of certain turns. A turn is a triple of three nodes connected by two links.
For example a prohibited turn (a, b, c) would disallow a flow to utilize the path
a -+ b -+ c, but it could still use a -+ b -+ d, provided the link b -+ d exists and
the turn (a, b, d) is permitted.

Two possible algorithms that determine a set of turns, which have to be
prohibited to make a network feed-forward compliant, are Up/Down Routing
[13] and Turn Prohibition [15]. Both algorithms return a set of turns that have
to be prohibited within a given network topology. As expected the performance
impacts of the two turn-prohibiting algorithms on the routing performance are
a lot smaller than with the link-prohibiting spanning tree approach [5] .

2 Routing in Networks with Probibited Turns

Using a t urn-prohibiting mechanism creates a problern though. Routing algo­
rithms are usually not equipped to handle forbidden turns. In difference to link­
prohibiting mechanisms that return a smaller, but still valid network consisting

1170 M. Fidler and G. Einhoff

only of nodes, links, and metrics that routing algorithms can work with 1 , turn­
prohibiting mechanisms require that the routing algorithm takes the forbidden
turns into account and does not use them. Obviously, commonly used routing
schemes do usually not fulfill this requirement.

2.1 The Challenge of Routing with Probibited Turns

One option to apply a routing algorithm to a network with prohibited turns,
is to adapt the algorithm to honor the forbidden turns. In [15] an example is
provided for the Bellman-Ford algorithm. However, a solution that is applicable
to arbitrary routing algorithms is not self-evident and to our knowledge missing
in current literature.

An algorithm used by a lot of routing schemes [5] is Dijkstra's shortest path
algorithm. Examples include Shortest Path First (SPF) and its enhancements
[11,12,17,5]. Yet, Dijkstra's algorithm is not aware of prohibited turns, although
it does not seem to hard to extend it by just cancelling the consideration of
a new path as soon as it includes a prohibited turn. However, figure 1 gives a
motivating example, why this approach does not work.

Part (a) shows a simple network with four nodes. The number at each link
specifies the additive link-costs. When searching a least-cost path 1 -+ 4 using
Dijkstra's algorithm, it finds the correct path 1 -+ 3 -+ 4 with a cost of 2 as
shown in (b). Assuming that the turn 1 -+ 3 -+ 4 is prohibited (see (c)), the
correct least-cost path from 1 to 4 is now 1 -+ 2 -+ 3 -+ 4 with a cost of 5
as can be seen in (d). However, using Dijkstra's algorithm extended in the way
described above, it would find the path 1 -+ 2 -+ 4 (see (e)) with a cost of 6,
which is not the path with the least costs.

The reason for this wrong result is that the algorithm finds the shortest path
to each node in an irreremental way, i.e. once it has found the shortest path to
a node, that path is fixed. In the given example the first node that is examined
is node 3. The correct shortest path 1 -+ 3 is identified and the backpointer of
node three is set to point to node 1. With prohibited turns, however, the shortest
path to a node depends on the next node of the path. Unfortunately, Dijkstra's
algorithm does not consider the following node in its local shortest path decision
as it is not designed to do so. With prohibited turns, a node may need more than
one backpointer, depending on the destination node. For the request 1 -+ 3, the
backpointer of node 3 should point to node 1, but for the request 1 -+ 4 it should
point to 2 (see (f)).

It is obvious that extending Dijkstra's algorithm to work with prohibited
turns is far from trivial and also would not constitute a general solution for
all routing schemes. For example t he Maximum Disjoint Paths [16] and the
Minimum Interference Routing [9] algorithm-although making use of Dijkstra's
algorithm-would need individual adaptations to honor prohibited turns. Thus,
a general purpose concept that allows for an arbitrary combination of routing
algorithms with feed-forward mechanisms is needed.
1 Note, that routing in a spanning tree is trivial, since there exists only a single path

between any two nodes.

Routing in Turn-Prohibition Based Feecl-Forward Networks 1171

2 4

2 4

3

(a) (b)

(c) (d)

(e) (f)

Fig. 1. Dijkstra's algorithm does not work with forbidden turns.

2.2 Formal Requirements Specification

Routing algorithms expect a network to consist of nothing else but nodes, links,
and link metrics, which can be used without any restrictions. To work with pro­
hibited turns one solution is to transform a network with a given set of prohibited
turns into another network without prohibited turns, with the constraint that
routing results can be transferred back to the original network without impacts
on their correctness.

The following definition helps in the formal specification of this requirement.

Definition 2 (Path-Conserving). Given two networks G1 = (N 1 , E 1) and
G2 = (N2 , E 2) consisting of nodes Ni and edges Ei. Select two nodes s 1 , d1 E N 1

with s1 -.:J. d1 and define P8 1,dl to be the set of possible paths between s 1 and d1 .

1172 M. Fidler and G. Einhoff

G2 is called path-conserving to G1 , if there exist s2 , d2 E N 2 and a bijective
function f between Ps',d' and Ps2,d2 so that all defined path metrics are the same
for p and f(p), i.e. m(p) = m(f(p)) with m() being the metrics for a path p.

The function m() hereby specifies the accumulated result of the metrics of a
path. For an additive metric this means the sum of alllink metrics on that path.
For example the path p in Fig. 1 (d) would result in m(p) = 5. If a network has
a vector of different metrics for each link, m() results in a vector also.

From this definition, the following corollary can be extracted immediately.

Corollary 1. Ij a network G2 is path-conserving to a network G1 with function
f, any routing algorithm that finds optimal paths by link metrics and produces a
path p2 in G2 would produce a path p1 in G1 with m(p1) = m(J- 1(p2)) = m(p2).

Proof. By contradiction. Assuming the routing algorithm would produce a path
p1 in G1 and a path p2 in G2 and m(p1) -=1- m(f-1 (p2)) would hold. If m(p1) >
m(J-1(p2)), i.e. j-1 (p2) is a better path in GI, then the routing algorithm should
have found that path and is therefore no optimizing algorithm contrary to the
assumption. If m(p1) < m(f- 1 (p2)), i.e. f- 1 (p2) is a worse path in GI, then by
definition m(f(p1)) < m(p2) holds and therefore the routing algorithm should
have found f(p 1) in G2 and is thus no optimizing routing algorithm contrary to
the assumption. 0

To use this result for the combination of routing algorithms and turn pro­
hibiting feed-forward mechanisms, an algorithm is needed that, if given a network
G = (N, E), a source and a destination node s, d E N, a set of prohibited turns
T ~ {(i,j, k) : i,j, k E N !\ (i,j) E E !\ (j, k) E E}, and foreachlink (i,j) E E
a set of m additive, multiplicative2 , or concave3 metrics m(i,j), 1 ~ t ~ m (e.g.
propagation delay, 1-loss probability, or bandwidth), generates a new network
G2 that is path-conserving to G with respect to the set of prohibited turnsT. Ad­
ditionally, a transforming function f- 1 must be known, respective an algorithm
that produces f- 1 (p) for the input p.

The Turnnet algorithm provides exactly that and is described in the following
section.

3 The Turnnet Concept

The basic idea behind Turnnet is that a routing algorithm should not look at a
path node-by-node but link-by-link, i.e. it should shift its focus from the visited
nodes to the visited links. Going from one node to the next includes crossing a
link, but going from one link to the next includes crossing a turn around a node.
So by focusing on the link-steps in a path, rather than the node-steps, the turns
are included in the observations.

2 A multiplicative metric can be converted into an additive metric applying the loga­
rithmic transformation.

3 A concave metric is a metric that is accumulated by forming the minimum, i.e.
m = min(m1,m2, ... ,mn) ·

Routing in Turn-Prohibition Based Feecl-Forward Networks 1173

3.1 The Algorithm

To achieve this, Turnnet transforms an arbitrary network with prohibited turns
into a new one without prohibited turns with the following steps:

1. Add two special nodes to the original network, one connected to the source
node, the other connected from the destination node. Set the link metrics
of the new links to neutral, that is zero for additive metrics and infinity for
concave metrics.

2. For each link in the original network, generate a node in the new network.
3. For each turn in the original network, generate a link in the new network

connecting the nodes corresponding to the two links of the original turn.
4. Set the link metrics of the new links to be the same as the metrics of the

second link of the corresponding turn in the original network.
5. Delete all links from the new network, whose corresponding turns in the

original network are prohibited.

The routing algorithm is then run on the new network using the nodes corre­
sponding to the newly added speciallinks in the original network as source and
destination nodes.

Transforming a path from the new to the original network can be clone effi­
ciently by cycling through the nodes of the new path and replacing them with
corresponding nodes in the original network like this:

1. Cut the last link from the path (which is the link to the node corresponding
to the second special node in the original network).

2. Cycle through the nodes of the path and append the destination node of the
corresponding link in the original network to the new path.

3.2 The Initial Example Revisited

Figure 2 continues the previous example from figure 1, by applying the Turn­
net algorithm to the network and showing that Dijkstra's algorithm produces
optimal results this time. In part (a) the original network is shown, with the
new special nodes connected to the source and destination nodes. In (b) the net­
work has been transformed as described in steps 2-4. The new nodes are marked
with the labels of the source and destination nodes of the corresponding links
in the original network in (a) . In the following they will be labelled with the
"~" symbol. Step 5 of the algorithm is shown in (c). The original network has
only one prohibited turn, namely 1 -+ 3 -+ 4, i.e. T = {(1, 3, 4)}. This turn
corresponds to the link (1 ~ 3) -+ (3 ~ 4) in the new network. Thus, in com­
pliance with step 5, the use ofthat link is prohibited. After running Dijkstra's
algorithm on the new network, two paths are found as shown in (d), the best
path being (- 1 ~ 1)-+ (1 ~ 2)-+ (2 ~ 3)-+ (3 ~ 4)-+ (4 ~ -2) with a cost
of 5. Transforming this path back into the original network one gets the path
1 -+ 2 -+ 3 -+ 4 which is identical to the path shown in part (d) of figure 1 and
indeed the correct shortest path.

1174 M. Fidler and G. Einhoff

2

2 4

(a) (b)

(c) (d)

Fig. 2. Example for the transformation of a network with the Turnnet concept.

3.3 Formal Definition and Proof of Correctness

In the following a formal definition of the Turnnet concept is given and its path­
conserving property is proven.

Definition 3 (Turnnet algorithm). Given a network G = (N, E), a source
and a destination node s, dEN, a set of prohibited turnsT~ {(i,j, k) : i,j, k E

N 1\ (i,j) E E 1\ (j, k) E E}, and for each link (i , j) E E a set of m additive,
multiplicative, or concave metrics m(i,j)' 1 ::; t ::; m, the Turnnet algorithm
produces two Special nodes ns and nd, a network cTN = (NTN,ETN), two
nodes sTN, ~NE NTN, and a set of link metrics mTN as follows:

NTN ={(i -v-+ j)}: (i,j) E E} U (1)

{(ns -v-+ s), (d -v-+ nd)} (2)
ETN ={ {((i -v-+ j), (j -v-+ k)) : (i,j), (j, k) E E} U (3)

{((ns ~ s), (s -v-+ i)): i E N 1\ (s, i) E E} U (4)

{((j -v-+ d), (d -v-+ nd)): jE N 1\ (j,d) E E}} \ (5)

{((i ~ j), (j ~ k)): (i,j, k) E T} (6)
sTN = (n8 -v-+ s) (7)

dTN =(d ~ nd) (8)

m~~~j),(j-.k))=m(J,k) V ((i -v-+ j), (j -v-+ k)) E ETN (9)

Routing in Turn-Prohibition Based Feecl-Forward Networks 1175

The two nodes (n8 ""'s) and (d""' nd) in (2) emerge from the addition of the
two special nodes n 8 and nd to the original graph G in step 1 of the algorithm.
Equation (9) only holds for the links in ETN that have a corresponding link in
E. For the new links leading to the second special node (specified in (5)), the
metrics have to be set to "neutral", i.e. they should not influence the total path
metric. This is given in (10).

if mt is an additive metric
if mt is a multiplicative metric
if mt is a concave metric

(10)

Definition 4 (Transformation Function). Given a path pTN = ((i ""'
j)l, ... ,
(i ""'j)q) with (i ""'j)x E NTN, the transformation function tr to the corre­
sponding path p in Gis defined as given in {11}:

(11)

Given these definitions the following theorem shows that the Turnnet algo­
rithm indeed provides a method to combine arbitrary routing algorithms with
turn-prohibiting feed-forward mechanisms.

Theorem 1. Given a network G , source and destination nodes s, d, a set of
prohibited turnsT, and for each link a set of metrics mt(..), the Turnnet algo-•,J
rithm produces a network cT N that is path-conserving to G with respect to the
prohibited turns.

Proof The proof is divided into two parts. First, it is shown that tr is a bijective
function between G and cTN and then m(p) = m(tr-1 (p)) is proven.

Given a path p in G from the source node s to the destination node d. The
path is defined as p = (Pb ... ,pq) with PI = s, Pq = d, and Px E N for 1 < x < q.
Theinversetransformation function tr-1 transforms this path p to a path pTN
in QT N like this:

ifx = l
if 1 < X< q + 1
if X = q + 1

(12)

(13)

To prove that PTN isavalid path in cTN it suffices to show that all its nodes
are valid, i.e. p~N E NTN for 1 :S x :S q + 1, and that they are connected to
each other, i.e. (p1j;!!1 ---+ p1j;N) E ETN for 2 :S x :S q + 1.

Clearly, all p1j; N are valid nodes in NT N, because all Px- 1 ---+ Px are links in
G (otherwise p would not be a path) and N TN includes alllinks from G (see
(1)).

1176 M. Fidler and G. Einhoff

Since every pair of nodes (p;!!1,p;N) in pTN corresponds to the two links
((Px-2-+ Px-1), (Px-1-+ Px)) in E, according to (3) there is also a link p;!!1 -+
p;N in ETN. Therefore, every node in pTN is connected to its predecessor node
and thus, pTN isavalid path in QTN.

The other way around, i.e. given pTN, the tr function from definition 4 pro­
duces p, because p;N = (Px-1 ""'Px) for 1 < x < q+ 1 and p[N = sTN = (ns""'
s) (see (7)) still holds and therefore p = (p1 , ... ,pq) according to (11) .

Thus, tr-1 produces an unique, valid path in QTN and p = tr(tr-1(p)) holds
and consequently tr is a bijective function.

Since tr is a bijective function, it suffi.ces to show that m(p) = m(tr-1(p)) =
m(pTN) to prove that QTN is path-conserving to G.

Because p =(PI, ... ,pq), pTN = (p[N, ... ,pr.CD and, with (9), mT(~~ TN) =
P:r:-1 ---+px

mt(~) for 2:::; x:::; q, for the path metric m(p) = m((p[N, ... ,pTq N)) holds,
Px-l~Px

i.e. the path metrics for p in G and the first q nodes of pTN = tr-1(p) in cTN
is the same.

Now, since the metrics for the last link of pTN, namely prN-+ pr.fr which
is prN -+ (d ""' nd), are set to neutral according to (10), they have no in­
fl.uence of the accumulated path metrics. Thus, m(p) = m((pf N, ... , pr N))
m((p[N, ... ,pr.fr)) = m(pTN) holds and QTN is path-conserving to G. 0

3.4 Application to the G-WiN Topology

This section provides a real-world scenario applying the G-WiN topology of
the German Research Network (DFN) as of 2000 [8] that is shown in the left of
figure 3. It consists of a dense Ievel one mesh, which allows for multiple alternative
paths, thus achieving redundancy. The level two sites are each connected to a
single level one site only, however, using two links in parallel, thereby providing
backup capabilities.

In the right of figure 3 the Ievel one mesh is reproduced, including a set
of forbidden turns that are derived by TUrn Prohibition [15]. The level one
nodes have been visited by the TUrn Prohibition algorithm in the order of their
numbering. The star-shaped Ievel two components are excluded here, because all
routing decisions are already determined. Further on, the star structure assures
that the routes are feed-forward compliant anyway.

Figure 4 illustrates the TUrnnet that corresponds to the G-WiN level one
topology excluding the prohibited turns from figure 3. It can be immediately
seen, that the TUrnnet graph provides a valid order for an inductive application
ofNetwork Calculus. However, adding any ofthe prohibited turnsthat are shown
in figure 3, for example (7, 1, 2), will render an inductive approach impossible.
The TUrnnet graph represents the dependencies that exist between the links in
the original network. A related structure is also known as channel dependency
graph from [4] , where it is used to analyze deadlock conditions.

Adding special nodes as described in section 3.1 and applying Dijkstra's
algorithm to the TUrnnet in figure 4 allows to derive shortest paths without
introducing cycles that can be transformed backwards to the original network.

0

Routing in Turn-Prohibition Based Feecl-Forward Networks 1177

Level 1 Site 0

STM 16 Connection

STM 4 Connection

Level2 Sile

2 STM 16 Connections

2 STM 4 Connections

Prohibite<:t tums:

\._ not on any shortest path

\._ altemalive path with
the same lenglh exists

Fig. 3. G-WiN topology and Turn Prohibition example.

For example to derive the shortest path from node 5 to node 3 two special
nodes -1 and -2 have tobe connected to the original network by links (- 1,5)
and (3, - 2). These are then transformed to the Turnnet and become nodes
(-1 ""'"'5) and (3""'"' -2) and links ((-1 ""'"'5),(5""'"' 2)), ((-1 ""'"'5),(5""'"' 6)),
((-1 ""'"'5), (5""'"' 7)), ((2""'"' 3), (3""'"' -2)), and ((6""'"' 3), (3""'"' -2)). The short­
est path that is found in the Turnnet is (-1 ""'"' 5) ~ (5 ""'"' 6) ~ (6 ""'"' 3) ~
(3""'"' -2), which becomes 5 ~ 6--+ 3 after backwards transformation.

An analysis of the paths that can be derived with or without Turn Prohibition
allows to classify the turns as shown in the right of figure 3. Three of the seven
prohibited turns do not impact any shortest paths and the remaining four forbid
potential shortest paths, for which alternatives with the same hop count exist.

3.5 Discussion

From theorem 1 and corollary 1 it immediately follows that any routing results
found in the Turnnet network are also valid in the original network, when trans­
formed back with function tr. Thus, it is proven that the Turnnet algorithm
solves the problems described in section 2 and allows for the combination of
arbitrary routing algorithms and turn-prohibiting feed-forward mechanisms.

This flexibility, however, comes at the price of increased complexity. Ac­
cording to the definition, the Turnnet algorithm has to be executed for each
source/destination pair. Fortunately, it is very easy to implement Turnnet in a
way that allows for a single execution at initialization time and a very simple

1178 M. Fidler and G. Einhoff

Fig. 4. G-WiN Turnnet excluding prohibited turns.

adjustment of the sourcejdestination nodes for each request. The complexity of
the initial Turnnet computation is in O(JE/ 2). However, the resulting network
QTN is bigger than the original one, i.e. JNTN/ = (/E / + 2) and JETNJ depends
on the number of turns in the original network. Therefore, the computational
complexity of the applied routing algorithm may increase. For routing schemes
basedOll Dijkstra's algorithm the complexity rises from O(n2) to oTN(IE/2).

A big advantage of the Turnnet concept is that routing algorithms do not
have to be aware of it. For a routing algorithm it makes no difference if the
network it operates on is a Turnnet or not, which can be used effi.ciently for
practical implementations.

4 Conclusions

The application of feed-forward mechanisms to data networks is relatively new
and the problern of applying conventional routing algorithms to networks with
prohibited turns has to our knowledge not been investigated in detail so far.
By developing the Turnnet concept, we have evolved a general-purpose solution,
which allows to use arbitrary routing schemes with prohibited turns.

The Turnnet algorithm is not very complicated. It does not raise the routing
complexity in an unacceptable manner and can be easily implemented. Thus,
offering a service with delay guarantees based on Network Calculus and the
application of a feed-forward mechanism in conjunction with the use of Turnnet
for routing, is a viable and recommendable option for network operators.

Routing in Turn-Prohibition Based Feecl-Forward Networks 1179

Acknowledgments. This work was supported in part by the Path Allocation
in Backhone Networks (PAB) project funded by the German Research Network
(DFN) and the Federal Ministry of Education and Research (BMBF) and in
part by the German Research Community (DFG) under grant GRK (Graduate
School) 643.

References

1. S. Blake, D. Blake, M. Carlson, E. Davies, Z. Wang, and W. Weiss. An Architecture
for Differentiated Services. RFC 2475, December 1998.

2. C.-S. Chang. Performance Guarantees in Communication Networks. Springer,
2000.

3. B. Davie, A. Charny, J.C.R. Bennett, K. Benson, J.Y. Le Boudec, W. Courtney,
S. Davari, V. Firoiu, and D. Stiliadis. An Expedited Forwarding PHB (Per-Hop
Behavior). RFC 3246, March 2002.

4. J. Duato, S. Yalamanchili, and N. Lionel. Interconnection Networks: An Engineer­
ing Approach. Morgan Kaufmann, 2003.

5. Gerrit Einhoff. Quality of Service Routing for an IP Premium Service based on
MPLS Traffic Engineering. Master's Thesis, Aachen University, June 2003.

6. M. Fidler, and V. Sander. A Parameter Based Admission Control for Differentiated
Services Networks, Elsevier Computer Networks, 44(4) :463-479, 2004.

7. B. R. Haverkort. Performance of Computer Communication Systems: A Model­
Based Approach. John Wiley & Sons, January 1999.

8. G. Hoffmann. G-WiN- the Gbit/ s Infrastructure fortheGerman Scientific Com­
munity. Proceedings of Terena Networking Conference, 2000.

9. M. S. Kodialam and T.V. Lakshman. Minimum lnterference Routing with Appli­
cations to MPLS Traffic Engineering. Proccedings of IEEE INFOCOM {2), pages
884-893, 2000.

10. J.-Y. Le Boudec and P. Thiran. Network Calculus: A Theory of Deterministic
Queueing Systems for the Internet. Number 2050 in LNCS. Springer, July 2002.

11. Q. Ma and P. Steenkiste. On Path Selection for Traffic with Bandwidth Guarantees.
Proceedings of IEEE International Conference on Network Protocols, October 1997.

12. Q. Ma, P. Steenkiste, and H. Zhang. Routing High-Bandwidth Traffic in Max-Min
Fair Share Networks. Proceedings of ACM SIGCOMM, pages 206- 217, 1996.

13. M. D. Schroeder et al. Autonet: A High-speed, Self-configuring Local Area Network
Using Point-to-point Links. IEEE Journal on Selected Areas in Communications,
9(8):1318-1335, October 1991.

14. V. Sander. Design and Evaluation of a Bandwidth Broker that Provides Network
Quality of Service for Grid Applications, volume 16 of NIC. February 2003. PhD
Thesis, Aachen University.

15. D. Starobinski, M. Karpovsky, and L. Zakrevski. Application of Network Calcu­
lus to General Topologies using Turn-Prohibition. IEEE/ACM Transactions on
Networking, June 2003.

16. N. Taft-Plotkin, B. Bellur, and R. Ogier. Quality-of-Service Routing Using Max­
imally Disjoint Paths. Proceedings of IEEE/IFIP IWQoS, pages 119-128, June
1999.

17. Z. Wang and J. Crowcroft. Quality-of-Service Routing for Supporting Multimedia
Applications. IEEE Journal of Selected Areas in Communications, 14(7):1228-
1234, 1996.

