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Abstract. The application of queuing theory to communications sys­
tems often requires that the respective networks are of a feed-forward 
nature, that is they have to be free of cyclic dependencies. An effective 
way to ensure this property is to identify a certain set of critical turns 
and to prohibit their use. A turn is a concatenation of two adjacent, 
consecutive links. 
Unfortunately, current routing algorithms are usually not equipped to 
handle forbidden turns and the required extensions are nontriviaL We 
discuss the relevant issues for the example of the widely deployed Dijkstra 
algorithm. Then, we address the general case and introduce the Turnnet 
concept, which supports arbitrary combinations of routing algorithms 
with turn-prohibiting feed-forward mechanisms. 

1 Introduction 

Classical queuing theory has been investigated for a long time to better under­
stand many qualities of communication systems [7]. It has recently been com­
plemented by Network Calculus [10,2], which extends known queuing theory by 
means of a worst-case analysis to provide deterministic performance bounds. A 
field of application of Network Calculus are Quality of Service (QoS) enabling 
architectures, like the Differentiated Services framework [I], where it allows to 
effi.ciently compute delay bounds [6,14] for a so-called Premium Service [3]. 

1.1 The Feed-Forward Property 

Unfortunately, a variety of methods from the field of classical queuing theory, as 
well as the direct application of Network Calculus have one important prerequi­
site, namely the network has to be of a feed-forward nature. 

Definition 1 (Feed-Forward Property). A feed-forward queuing network is 
a network, in which all queues can be ordered in such a way that whenever a 
traffic fiow traverses from queue i to queue j , this implies that i < j (1), or 
in a more verbatim way: the links of a feed-forward network cannot form any 
cycles, i.e. it is impossible for traffic fiows to create cyclic dependencies an each 
other (2). 
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Dependencies occur, for example in case of Network Calculus, if two fl.ows use 
the same queuing and scheduling unit on an outgoing link. In this scenario the 
service offered to each of the fl.ows individually depends on the service that is 
consumed by the respective other flow. Now, consider a network consisting of 
three nodes a, b, and c and three links (a, b), (b, c), and (c, a). Assurne two flows 
use the network, whereby the path of flow 1 is a -+ b -+ c and the path of flow 
2 is b -+ c -+ a. The service that remains for flow 2 at link (b, c) depends on 
the service that is consumed by flow 1 at the same link, which in turn depends 
on the output of flow 1 from link ( a, b). Fortunately, the output of flow 1 from 
link ( a, b) does not depend on flow 2. Thus, the dependency is not cyclic and the 
system can be solved in an inductive manner. However, adding a third flow that 
traverses the path c -+ a -+ b creates a cyclic dependency. The output of flow 1 
from link (a,b) depends on the output offlow 3 from link (c,a). Flow 3's output 
from link (c,a) depends, however, on flow 2's output from link (b,c), and again 
on fl.ow 1 's output from link ( a, b) , which completes the cycle. 

1.2 Feed-Forward Mechanisms 

Obviously, real-world networks arenot necessarily of a feed-forward nature, un­
less they are for example star-shaped. One way to nevertheless realize Network 
Calculus based QoS afferings [6] is to take provisions to prevent from the creation 
of cyclic dependencies between different flows. 

To ensure the feed-forward property in an arbitrary network, the usual ap­
proach is to restriet the usage in a certain way that makes it impossible for flows 
to create a cyclic dependency. The simplest way to do so is to build a spanning 
tree covering all nodes and to prohibit the use of alllinks not belanging to that 
tree. Since a spanning tree cannot contain any circles by definition, the feed­
forward property is ensured. On the other hand this approach can disable large 
parts of the network, potentially causing a big performance impact [5]. 

A more intelligent approach is not to prohibit the use of complete links, but 
only of certain turns. A turn is a triple of three nodes connected by two links. 
For example a prohibited turn (a, b, c) would disallow a flow to utilize the path 
a -+ b -+ c, but it could still use a -+ b -+ d, provided the link b -+ d exists and 
the turn (a, b, d) is permitted. 

Two possible algorithms that determine a set of turns, which have to be 
prohibited to make a network feed-forward compliant, are Up/Down Routing 
[13] and Turn Prohibition [15]. Both algorithms return a set of turns that have 
to be prohibited within a given network topology. As expected the performance 
impacts of the two turn-prohibiting algorithms on the routing performance are 
a lot smaller than with the link-prohibiting spanning tree approach [5] . 

2 Routing in Networks with Probibited Turns 

Using a t urn-prohibiting mechanism creates a problern though. Routing algo­
rithms are usually not equipped to handle forbidden turns. In difference to link­
prohibiting mechanisms that return a smaller, but still valid network consisting 
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only of nodes, links, and metrics that routing algorithms can work with 1 , turn­
prohibiting mechanisms require that the routing algorithm takes the forbidden 
turns into account and does not use them. Obviously, commonly used routing 
schemes do usually not fulfill this requirement. 

2.1 The Challenge of Routing with Probibited Turns 

One option to apply a routing algorithm to a network with prohibited turns, 
is to adapt the algorithm to honor the forbidden turns. In [15] an example is 
provided for the Bellman-Ford algorithm. However, a solution that is applicable 
to arbitrary routing algorithms is not self-evident and to our knowledge missing 
in current literature. 

An algorithm used by a lot of routing schemes [5] is Dijkstra's shortest path 
algorithm. Examples include Shortest Path First (SPF) and its enhancements 
[11,12,17,5]. Yet, Dijkstra's algorithm is not aware of prohibited turns, although 
it does not seem to hard to extend it by just cancelling the consideration of 
a new path as soon as it includes a prohibited turn. However, figure 1 gives a 
motivating example, why this approach does not work. 

Part (a) shows a simple network with four nodes. The number at each link 
specifies the additive link-costs. When searching a least-cost path 1 -+ 4 using 
Dijkstra's algorithm, it finds the correct path 1 -+ 3 -+ 4 with a cost of 2 as 
shown in (b). Assuming that the turn 1 -+ 3 -+ 4 is prohibited (see (c) ), the 
correct least-cost path from 1 to 4 is now 1 -+ 2 -+ 3 -+ 4 with a cost of 5 
as can be seen in (d). However, using Dijkstra's algorithm extended in the way 
described above, it would find the path 1 -+ 2 -+ 4 (see (e)) with a cost of 6, 
which is not the path with the least costs. 

The reason for this wrong result is that the algorithm finds the shortest path 
to each node in an irreremental way, i.e. once it has found the shortest path to 
a node, that path is fixed. In the given example the first node that is examined 
is node 3. The correct shortest path 1 -+ 3 is identified and the backpointer of 
node three is set to point to node 1. With prohibited turns, however, the shortest 
path to a node depends on the next node of the path. Unfortunately, Dijkstra's 
algorithm does not consider the following node in its local shortest path decision 
as it is not designed to do so. With prohibited turns, a node may need more than 
one backpointer, depending on the destination node. For the request 1 -+ 3, the 
backpointer of node 3 should point to node 1, but for the request 1 -+ 4 it should 
point to 2 (see (f)). 

It is obvious that extending Dijkstra's algorithm to work with prohibited 
turns is far from trivial and also would not constitute a general solution for 
all routing schemes. For example t he Maximum Disjoint Paths [16] and the 
Minimum Interference Routing [9] algorithm-although making use of Dijkstra's 
algorithm-would need individual adaptations to honor prohibited turns. Thus, 
a general purpose concept that allows for an arbitrary combination of routing 
algorithms with feed-forward mechanisms is needed. 
1 Note, that routing in a spanning tree is trivial, since there exists only a single path 

between any two nodes. 
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Fig. 1. Dijkstra's algorithm does not work with forbidden turns. 

2.2 Formal Requirements Specification 

Routing algorithms expect a network to consist of nothing else but nodes, links, 
and link metrics, which can be used without any restrictions. To work with pro­
hibited turns one solution is to transform a network with a given set of prohibited 
turns into another network without prohibited turns, with the constraint that 
routing results can be transferred back to the original network without impacts 
on their correctness. 

The following definition helps in the formal specification of this requirement. 

Definition 2 (Path-Conserving). Given two networks G1 = ( N 1 , E 1) and 
G2 = (N2 , E 2 ) consisting of nodes Ni and edges Ei. Select two nodes s 1 , d1 E N 1 

with s1 -.:J. d1 and define P8 1,dl to be the set of possible paths between s 1 and d1 . 
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G2 is called path-conserving to G1 , if there exist s2 , d2 E N 2 and a bijective 
function f between Ps',d' and Ps2,d2 so that all defined path metrics are the same 
for p and f(p), i.e. m(p) = m(f(p)) with m() being the metrics for a path p. 

The function m() hereby specifies the accumulated result of the metrics of a 
path. For an additive metric this means the sum of alllink metrics on that path. 
For example the path p in Fig. 1 (d) would result in m(p) = 5. If a network has 
a vector of different metrics for each link, m() results in a vector also. 

From this definition, the following corollary can be extracted immediately. 

Corollary 1. Ij a network G2 is path-conserving to a network G1 with function 
f, any routing algorithm that finds optimal paths by link metrics and produces a 
path p2 in G2 would produce a path p1 in G1 with m(p1) = m(J- 1(p2 )) = m(p2). 

Proof. By contradiction. Assuming the routing algorithm would produce a path 
p1 in G1 and a path p2 in G2 and m(p1) -=1- m(f-1 (p2)) would hold. If m(p1 ) > 
m(J-1(p2)), i.e. j-1 (p2) is a better path in GI, then the routing algorithm should 
have found that path and is therefore no optimizing algorithm contrary to the 
assumption. If m(p1 ) < m(f- 1 (p2)), i.e. f- 1 (p2 ) is a worse path in GI, then by 
definition m(f(p1 )) < m(p2) holds and therefore the routing algorithm should 
have found f(p 1) in G2 and is thus no optimizing routing algorithm contrary to 
the assumption. 0 

To use this result for the combination of routing algorithms and turn pro­
hibiting feed-forward mechanisms, an algorithm is needed that, if given a network 
G = (N, E), a source and a destination node s, d E N, a set of prohibited turns 
T ~ {(i,j, k) : i,j, k E N !\ (i,j) E E !\ (j, k) E E}, and foreachlink (i,j) E E 
a set of m additive, multiplicative2 , or concave3 metrics m( i,j), 1 ~ t ~ m ( e.g. 
propagation delay, 1-loss probability, or bandwidth), generates a new network 
G2 that is path-conserving to G with respect to the set of prohibited turnsT. Ad­
ditionally, a transforming function f- 1 must be known, respective an algorithm 
that produces f- 1 (p) for the input p. 

The Turnnet algorithm provides exactly that and is described in the following 
section. 

3 The Turnnet Concept 

The basic idea behind Turnnet is that a routing algorithm should not look at a 
path node-by-node but link-by-link, i.e. it should shift its focus from the visited 
nodes to the visited links. Going from one node to the next includes crossing a 
link, but going from one link to the next includes crossing a turn around a node. 
So by focusing on the link-steps in a path, rather than the node-steps, the turns 
are included in the observations. 

2 A multiplicative metric can be converted into an additive metric applying the loga­
rithmic transformation. 

3 A concave metric is a metric that is accumulated by forming the minimum, i.e. 
m = min(m1,m2, ... ,mn) · 
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3.1 The Algorithm 

To achieve this, Turnnet transforms an arbitrary network with prohibited turns 
into a new one without prohibited turns with the following steps: 

1. Add two special nodes to the original network, one connected to the source 
node, the other connected from the destination node. Set the link metrics 
of the new links to neutral, that is zero for additive metrics and infinity for 
concave metrics. 

2. For each link in the original network, generate a node in the new network. 
3. For each turn in the original network, generate a link in the new network 

connecting the nodes corresponding to the two links of the original turn. 
4. Set the link metrics of the new links to be the same as the metrics of the 

second link of the corresponding turn in the original network. 
5. Delete all links from the new network, whose corresponding turns in the 

original network are prohibited. 

The routing algorithm is then run on the new network using the nodes corre­
sponding to the newly added speciallinks in the original network as source and 
destination nodes. 

Transforming a path from the new to the original network can be clone effi­
ciently by cycling through the nodes of the new path and replacing them with 
corresponding nodes in the original network like this: 

1. Cut the last link from the path (which is the link to the node corresponding 
to the second special node in the original network). 

2. Cycle through the nodes of the path and append the destination node of the 
corresponding link in the original network to the new path. 

3.2 The Initial Example Revisited 

Figure 2 continues the previous example from figure 1, by applying the Turn­
net algorithm to the network and showing that Dijkstra's algorithm produces 
optimal results this time. In part (a) the original network is shown, with the 
new special nodes connected to the source and destination nodes. In (b) the net­
work has been transformed as described in steps 2-4. The new nodes are marked 
with the labels of the source and destination nodes of the corresponding links 
in the original network in (a) . In the following they will be labelled with the 
"~" symbol. Step 5 of the algorithm is shown in ( c). The original network has 
only one prohibited turn, namely 1 -+ 3 -+ 4, i.e. T = {(1, 3, 4)}. This turn 
corresponds to the link (1 ~ 3) -+ (3 ~ 4) in the new network. Thus, in com­
pliance with step 5, the use ofthat link is prohibited. After running Dijkstra's 
algorithm on the new network, two paths are found as shown in ( d), the best 
path being (- 1 ~ 1)-+ (1 ~ 2)-+ (2 ~ 3)-+ (3 ~ 4)-+ (4 ~ -2) with a cost 
of 5. Transforming this path back into the original network one gets the path 
1 -+ 2 -+ 3 -+ 4 which is identical to the path shown in part ( d) of figure 1 and 
indeed the correct shortest path. 
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2 

2 4 

(a) (b) 

(c) (d) 

Fig. 2. Example for the transformation of a network with the Turnnet concept. 

3.3 Formal Definition and Proof of Correctness 

In the following a formal definition of the Turnnet concept is given and its path­
conserving property is proven. 

Definition 3 (Turnnet algorithm). Given a network G = (N, E), a source 
and a destination node s, dEN, a set of prohibited turnsT~ {(i,j, k) : i,j, k E 

N 1\ (i,j) E E 1\ (j, k) E E}, and for each link (i , j ) E E a set of m additive, 
multiplicative, or concave metrics m(i,j)' 1 ::; t ::; m, the Turnnet algorithm 
produces two Special nodes ns and nd, a network cTN = (NTN,ETN), two 
nodes sTN, ~NE NTN, and a set of link metrics mTN as follows: 

NTN ={(i -v-+ j)}: (i,j) E E} U (1) 

{(ns -v-+ s), (d -v-+ nd)} (2) 
ETN ={ {((i -v-+ j), (j -v-+ k)) : (i,j), (j, k) E E} U (3) 

{((ns ~ s), (s -v-+ i)): i E N 1\ (s, i) E E} U (4) 

{((j -v-+ d), (d -v-+ nd)): jE N 1\ (j,d) E E}} \ (5) 

{((i ~ j), (j ~ k)): (i,j, k) E T} (6) 
sTN = (n8 -v-+ s) (7) 

dTN =(d ~ nd) (8) 

m~~~j),(j-.k))=m(J,k) V ((i -v-+ j), (j -v-+ k)) E ETN (9) 
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The two nodes (n8 ""'s) and (d""' nd) in (2) emerge from the addition of the 
two special nodes n 8 and nd to the original graph G in step 1 of the algorithm. 
Equation (9) only holds for the links in ETN that have a corresponding link in 
E. For the new links leading to the second special node (specified in (5)), the 
metrics have to be set to "neutral", i.e. they should not influence the total path 
metric. This is given in ( 10). 

if mt is an additive metric 
if mt is a multiplicative metric 
if mt is a concave metric 

(10) 

Definition 4 (Transformation Function). Given a path pTN = ((i ""' 
j)l, ... , 
(i ""'j)q) with (i ""'j)x E NTN, the transformation function tr to the corre­
sponding path p in Gis defined as given in {11}: 

(11) 

Given these definitions the following theorem shows that the Turnnet algo­
rithm indeed provides a method to combine arbitrary routing algorithms with 
turn-prohibiting feed-forward mechanisms. 

Theorem 1. Given a network G , source and destination nodes s, d, a set of 
prohibited turnsT, and for each link a set of metrics mt( .. ), the Turnnet algo-•,J 
rithm produces a network cT N that is path-conserving to G with respect to the 
prohibited turns. 

Proof The proof is divided into two parts. First, it is shown that tr is a bijective 
function between G and cTN and then m(p) = m(tr-1 (p)) is proven. 

Given a path p in G from the source node s to the destination node d. The 
path is defined as p = (Pb ... ,pq) with PI = s, Pq = d, and Px E N for 1 < x < q. 
Theinversetransformation function tr-1 transforms this path p to a path pTN 
in QT N like this: 

ifx = l 
if 1 < X< q + 1 
if X = q + 1 

(12) 

(13) 

To prove that PTN isavalid path in cTN it suffices to show that all its nodes 
are valid, i.e. p~N E NTN for 1 :S x :S q + 1, and that they are connected to 
each other, i.e. (p1j;!!1 ---+ p1j;N) E ETN for 2 :S x :S q + 1. 

Clearly, all p1j; N are valid nodes in NT N, because all Px- 1 ---+ Px are links in 
G (otherwise p would not be a path) and N TN includes alllinks from G (see 
(1) ). 
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Since every pair of nodes (p;!!1,p;N) in pTN corresponds to the two links 
((Px-2-+ Px-1), (Px-1-+ Px)) in E, according to (3) there is also a link p;!!1 -+ 
p;N in ETN. Therefore, every node in pTN is connected to its predecessor node 
and thus, pTN isavalid path in QTN. 

The other way around, i.e. given pTN, the tr function from definition 4 pro­
duces p, because p;N = (Px-1 ""'Px) for 1 < x < q+ 1 and p[N = sTN = (ns""' 
s) (see (7)) still holds and therefore p = (p1 , ... ,pq) according to (11) . 

Thus, tr-1 produces an unique, valid path in QTN and p = tr(tr-1(p)) holds 
and consequently tr is a bijective function. 

Since tr is a bijective function, it suffi.ces to show that m(p) = m(tr-1(p)) = 
m(pTN) to prove that QTN is path-conserving to G. 

Because p =(PI, ... ,pq), pTN = (p[N, ... ,pr.CD and, with (9), mT( ~~ TN) = 
P:r:-1 ---+px 

mt( ~ ) for 2:::; x:::; q, for the path metric m(p) = m((p[N, ... ,pTq N)) holds, 
Px-l~Px 

i.e. the path metrics for p in G and the first q nodes of pTN = tr-1(p) in cTN 
is the same. 

Now, since the metrics for the last link of pTN, namely prN-+ pr.fr which 
is prN -+ (d ""' nd), are set to neutral according to (10), they have no in­
fl.uence of the accumulated path metrics. Thus, m(p) = m( (pf N, ... , pr N)) 
m((p[N, ... ,pr.fr)) = m(pTN) holds and QTN is path-conserving to G. 0 

3.4 Application to the G-WiN Topology 

This section provides a real-world scenario applying the G-WiN topology of 
the German Research Network (DFN) as of 2000 [8] that is shown in the left of 
figure 3. It consists of a dense Ievel one mesh, which allows for multiple alternative 
paths, thus achieving redundancy. The level two sites are each connected to a 
single level one site only, however, using two links in parallel, thereby providing 
backup capabilities. 

In the right of figure 3 the Ievel one mesh is reproduced, including a set 
of forbidden turns that are derived by TUrn Prohibition [15]. The level one 
nodes have been visited by the TUrn Prohibition algorithm in the order of their 
numbering. The star-shaped Ievel two components are excluded here, because all 
routing decisions are already determined. Further on, the star structure assures 
that the routes are feed-forward compliant anyway. 

Figure 4 illustrates the TUrnnet that corresponds to the G-WiN level one 
topology excluding the prohibited turns from figure 3. It can be immediately 
seen, that the TUrnnet graph provides a valid order for an inductive application 
ofNetwork Calculus. However, adding any ofthe prohibited turnsthat are shown 
in figure 3, for example (7, 1, 2), will render an inductive approach impossible. 
The TUrnnet graph represents the dependencies that exist between the links in 
the original network. A related structure is also known as channel dependency 
graph from [4] , where it is used to analyze deadlock conditions. 

Adding special nodes as described in section 3.1 and applying Dijkstra's 
algorithm to the TUrnnet in figure 4 allows to derive shortest paths without 
introducing cycles that can be transformed backwards to the original network. 
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Level 1 Site 0 

STM 16 Connection 

STM 4 Connection 

Level2 Sile 

2 STM 16 Connections 

2 STM 4 Connections 

Prohibite<:t tums: 

\._ not on any shortest path 

\._ altemalive path with 
the same lenglh exists 

Fig. 3. G-WiN topology and Turn Prohibition example. 

For example to derive the shortest path from node 5 to node 3 two special 
nodes -1 and -2 have tobe connected to the original network by links (- 1,5) 
and (3, - 2). These are then transformed to the Turnnet and become nodes 
(-1 ""'"'5) and (3""'"' -2) and links ((-1 ""'"'5),(5""'"' 2)), ((-1 ""'"'5),(5""'"' 6)), 
(( -1 ""'"'5), (5""'"' 7)), ((2""'"' 3), (3""'"' -2)), and ((6""'"' 3), (3""'"' -2)). The short­
est path that is found in the Turnnet is ( -1 ""'"' 5) ~ (5 ""'"' 6) ~ (6 ""'"' 3) ~ 
(3""'"' -2), which becomes 5 ~ 6--+ 3 after backwards transformation. 

An analysis of the paths that can be derived with or without Turn Prohibition 
allows to classify the turns as shown in the right of figure 3. Three of the seven 
prohibited turns do not impact any shortest paths and the remaining four forbid 
potential shortest paths, for which alternatives with the same hop count exist. 

3.5 Discussion 

From theorem 1 and corollary 1 it immediately follows that any routing results 
found in the Turnnet network are also valid in the original network, when trans­
formed back with function tr. Thus, it is proven that the Turnnet algorithm 
solves the problems described in section 2 and allows for the combination of 
arbitrary routing algorithms and turn-prohibiting feed-forward mechanisms. 

This flexibility, however, comes at the price of increased complexity. Ac­
cording to the definition, the Turnnet algorithm has to be executed for each 
source/destination pair. Fortunately, it is very easy to implement Turnnet in a 
way that allows for a single execution at initialization time and a very simple 



1178 M. Fidler and G. Einhoff 

Fig. 4. G-WiN Turnnet excluding prohibited turns. 

adjustment of the sourcejdestination nodes for each request. The complexity of 
the initial Turnnet computation is in O(JE/ 2). However, the resulting network 
QTN is bigger than the original one, i.e. JNTN/ = (/E / + 2) and JETNJ depends 
on the number of turns in the original network. Therefore, the computational 
complexity of the applied routing algorithm may increase. For routing schemes 
basedOll Dijkstra's algorithm the complexity rises from O(n2) to oTN(IE/2). 

A big advantage of the Turnnet concept is that routing algorithms do not 
have to be aware of it. For a routing algorithm it makes no difference if the 
network it operates on is a Turnnet or not, which can be used effi.ciently for 
practical implementations. 

4 Conclusions 

The application of feed-forward mechanisms to data networks is relatively new 
and the problern of applying conventional routing algorithms to networks with 
prohibited turns has to our knowledge not been investigated in detail so far. 
By developing the Turnnet concept, we have evolved a general-purpose solution, 
which allows to use arbitrary routing schemes with prohibited turns. 

The Turnnet algorithm is not very complicated. It does not raise the routing 
complexity in an unacceptable manner and can be easily implemented. Thus, 
offering a service with delay guarantees based on Network Calculus and the 
application of a feed-forward mechanism in conjunction with the use of Turnnet 
for routing, is a viable and recommendable option for network operators. 
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