Skip to main content

Using Simulated Annealing for Paper Cutting Optimization

  • Conference paper
MICAI 2004: Advances in Artificial Intelligence (MICAI 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2972))

Included in the following conference series:

Abstract

This article presents the use of the Simulated Annealing algorithm to solve the waste minimization problem in roll cutting programming, in this case, paper. Client orders, which vary in weight, width, and external and internal diameter, are fully satisfied; and no cuts to inventory are additionally generated, unless, they are specified. Once an optimal cutting program is obtained, the algorithm is applied again to minimize cutting blade movements. Several tests were performed with real data from a paper company in which an average of 30% waste reduction and 100% in production to inventory are obtained compare to the previous procedure. Actual savings represent about $5,200,000 USD in four months with 4 cutting machines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Burkard, R.E., Rendl, F.: A thermodynamically motivated simulation procedure for combinatorial optimization problems. European J. of Oper. Res. (17), 169–174 (1984)

    Article  MATH  Google Scholar 

  2. Elperin, T.: Monte carlo structural optimization in discrete variables with annealing algorithm. Int. J. for Numerical Methods in Eng. (1988)

    Google Scholar 

  3. Gelfand, S.B., Mitter, S.K.: Analysis of simulated annealing for optimization. In: Proc. 24th Conf. on Decision and Control, December 1985, pp. 779–786 (1985)

    Google Scholar 

  4. Gielen, G.G.E., Herman, C., Walscharts, C., Sansen, W.M.C.: Analog circuit design optimization based on symbolic simulation and simulated annealing. IEEE Journal of Solid-State Circuits 25, 707–713 (1990)

    Article  Google Scholar 

  5. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  6. Kirkpatrick, S., Toulouse, G.: Configuration space analysis of travelling salesman problems. J. Physique (46), 1277–1292 (1985)

    Article  MathSciNet  Google Scholar 

  7. Malhotra, A., Oliver, J.H., Tu, W.: Synthesis of spatially and intrinsically constrained curves using simulated annealing. In: ASME Advances in Design Automation, vol. 32, pp. 145–155 (1991)

    Google Scholar 

  8. Martínez-Alfaro, H., Flugrad, D.R.: Collission-free path planning of robots and/or AGVs using B-splines and simulated annealing. In: ASME 23rd Biennial Mechanisms Conference, Minneapolis (September 1994)

    Google Scholar 

  9. Martínez-Alfaro, H., Ulloa-Pérez, A.: Computing near optimal paths in C-space using simulated annealing. In: ASME Design Engineering Technical Conference/24th Biennial Mechanisms Conference, Irvine, CA (1996)

    Google Scholar 

  10. Martínez-Alfaro, H., Flores-Terán, G.: Solving the classroom assignment problem with simulated annealing. In: IEEE Int. Conf. On Systems, Man, & Cybernetics, San Diego, CA (1998)

    Google Scholar 

  11. Martínez-Alfaro, H., Valdez, H., Ortega, J.: Linkage synthesis of a four-bar mechanism for n precision points using simulated annealing. In: ASME Design Engineering Technical Conferences/25th Biennial Mecanisms and Robotics Conference, Atlanta (1998)

    Google Scholar 

  12. Martínez-Alfaro, H., Valdez, H., Ortega, J.: Using simulated annealing to minimize operational costs in the steel making industry. In: IEEE Int. Conf. On Systems, Man, & Cybernetics, San Diego (1998)

    Google Scholar 

  13. Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A.: Equations of state calculations by fast computing machines. J. of Chemical Physics (21), 1087–1091 (1953)

    Article  Google Scholar 

  14. Rutenbar, R.A.: Simulated annealing algorithms: An overview. IEEE Circuits and Devices, 19–26 (January 1989)

    Google Scholar 

  15. van Laarhoven, P.J.M., Aarts, E.H.L.: Simulated Annealing: Theory and Applications. D. Reidel Pub. Co., Dordrecht (1987)

    MATH  Google Scholar 

  16. Vanderbilt, D., Louie, S.G.: A monte carlo simulated annealing approach to optimization over continuous variables. J. Comput. Phys. (36), 259–271 (1984)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Martínez-Alfaro, H., Valenzuela-Rendón, M. (2004). Using Simulated Annealing for Paper Cutting Optimization. In: Monroy, R., Arroyo-Figueroa, G., Sucar, L.E., Sossa, H. (eds) MICAI 2004: Advances in Artificial Intelligence. MICAI 2004. Lecture Notes in Computer Science(), vol 2972. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24694-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24694-7_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21459-5

  • Online ISBN: 978-3-540-24694-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics