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A REWRITE BASED ANALYSIS OF ALGORITHMS

ALI AKHAVI AND CÉLINE MOREIRA DOS SANTOS

Abstract. We introduce here a new method for extracting worst–cases of algorithms by using rewrite
systems over automorphisms groups of inputs.
We propose a canonical description of an algorithm, that is also related to the problem it solves. The
description identifies an algorithm with a set of a rewrite systems over the automorphisms groups of inputs.
All possible execution of the algorithm will then be reduced words of these rewriting system.
Our main example is reducing two-dimensional Euclidean lattice bases. We deal with the Gaussian algorithm
that finds shortest vectors in a two–dimensional lattice. We introduce four rewrite systems in the group of
unimodular matrices, i.e. matrices with integer entries and with determinant equal to ±1 and deduce a new
worst-case analysis of the algorithm that generalizes Vallée’s result[16] to the case of the usual Gaussian
algorithm. An interesting (but not easy) future application will be lattice reduction in higher dimensions,
in order to exhibit a tight upper- bound for the number of iterations of LLL–like reduction algorithms in
the worst case.
Sorting ordered finite sets are here as a nice esay example to illustrate the purpose of our method. We
propose several rewrite systems in the group S of permutations and canonically identify a sorting algorithm
with a rewrite system over S. This brings us to exhibit worst-cases of several sorting algorithms.

1. Introduction

A Euclidean lattice is the set of all integer linear combinations of a set of linearly independent vectors in R
p.

The independent vectors are called a basis of the lattice. Any lattice can be generated by many bases. All
of them have the same cardinality, that is called the dimension of the lattice. If B and B′ represent matrices
of two bases of the same lattice in the canonical basis of Rp, then there is a unimodular matrix U such that
B′ = UB. A unimodular matrix is a matrix with integer entries and with determinant equal to ±1.
The lattice basis reduction problem is to find bases with good Euclidean properties, that is, with sufficiently
short vectors and almost orthogonal.

In two dimensions, the problem is solved by the Gaussian algorithm, that finds in any two–dimensional
lattice, a basis formed with the shortest possible vectors. The worst–case complexity of Gauss’ algorithm
(explained originally in the vocabulary of quadratic forms) was first studied by Lagarias [7], who showed
that the algorithm is polynomial with respect to its input. The worst–case complexity of Gauss’ algorithm
was also studied later more precisely by Vallée[16].

In 1982, Lenstra, Lenstra and Lovász [11] gave a powerful approximation reduction algorithm for lattices
of arbitrary dimension. Their famous algorithm, called LLL, was an important breakthrough to numerous
theoretical and practical problems in computational number theory and cryptography: factoring polynomials
with rational coefficients [11], finding linear Diophantine approximations [8], breaking various cryptosystems
[4] and integer linear programming [6, 9]. The LLL algorithm is a possible generalization of its 2–dimensional
version, which is the Gaussian algorithm.
The LLL algorithm seems difficult to analyze precisely, both in the worst–case[1, 10, 11] and in average–
case[2, 3]. In particular when the dimension is higher than two, the problem of the real worst–case of the
algorithm is completely open. However, LLL–like reduction algorithms are so widely used in practice that
the analyzes are a real challenge, both from a theoretical and practical point of view.
The purpose of our paper is a new approach to the worst- -case analyze of LLL–like lattice reduction
algorithms. For the moment this approach is presented only in two dimensions. We have to observe here
that the worst case of some variant of the Gaussian algorithm is already known [16]. Even if our paper
generalize this knowledge to the case of the usual Gaussian algorithm, we do not consider it as the most
important point of this paper. Our aim here is to present this new approach.

1

http://arxiv.org/abs/0707.0644v1


2 A. AKHAVI, C. MOREIRA

An LLL–like lattice reduction algorithm uses some (finite) elementary transforms. We consider the group
generated by these basic transforms. Then we exhibit a family of rewriting rules over this group, corre-
sponding to the mechanism of the algorithm. The rewriting rules make some forbidden sequences and the
length of a valid word over the set of generators becomes very close to the number of steps of the algorithm.
This makes appear the smallest length of input demanding a given number of iterations to the reduction
algorithm.
From a combinatorial point of view, the group of n– dimensional lattice transformations GLn(Z), i.e. the
multiplicative group of n × n matrices with determinant ±1, is the group of automorphisms of the free
Abelian group on n free generators1. Here we are concerned by GL2(Z), which is is well–known and whose
presentation in terms of generators and relators is known since the nineteenth century.
In this paper we present a rewriting system over GL2(Z), that makes us predict how the Gaussian algorithm
is running on an arbitrary input. We deduce from this the worst–case configuration of the usual Gaussian
algorithm and give an “optimal” maximum for the number of steps of the Gaussian algorithm. Our result
generalizes the result of Vallée [16]. She studied a variant of the Gaussian algorithm where elementary
transforms made by the algorithm are some integer matrices of determinant equal to 1. In the case of the
usual Gaussian algorithm, elementary transforms are integer matrices of determinant either 1 or −1.
Il the following we briefly outline the two steps of our method.

1.1. First step. Consider a deterministic algorithm A that run on an input x (the data x is a set X of
data). Then by mean of elementary transforms taken in a set F ⊂ XX , the algorithm changes the input
step by step (x → f(x) until the modified data satisfies some output condition (x ∈ O ⊂ X . An elementary
or atomic transform is a transform that cannot be decomposed by the algorithm:

(1.1) ∀f ∈ F, ∀k ∈ N, k > 1, ∀(f1, . . . , fk) ∈ (F\{id})k, f 6=
k
∏

i=1

fi

This is of course a very general context containing both iterative and recursive algorithms.
Algorithm A :

Input: x ∈ X .
Output: y ∈ O.

Initialization: i := 1;
While x /∈ O do

Determine an adequate function f ∈ F by a computation on x and eventually on i.
x:=f(x)
i:=i+1

The algorithm A is deterministic. We suppose that the determination of the adequate function f ∈ F at
a moment i (which may depend on the history of the execution) has a cost that can be added without
ambiguity to the cost of the function f . Considering F as an alphabet, the set F ∗ of finite words on F is
then the monoid generated by the set of free generators F . F ∗ contain all (finite) executions of the algorithm.

Now fix a sequence of transforms (f1, f2, . . . , fk) ∈ F k.

Is the sequence (f1, f2, . . . , fk) ∈ F k a possible execution for the algorithm? More precisely,
is there (x, y) ∈ X × Y such that the algorithm A outputs y when running on an input x
and following the exact sequence of transforms (f1, f2, . . . , fk)?

Answering this question in such a general context is very difficult and the general problem (formulated more
precisely) is likely undecidable. However the answer in restricted class of algorithms bring indeed a strong
understanding of the mechanism of the algorithm and we believe that it is interesting by its own with lots
of possible applications in program verifying, or program designing.
In this paper, we propose a method to answer this question in the case of Gaussian algorthm and three sorting
algorithms. A set (finite in the case of our examples) of rewriting systems encode all possible executions of
a given algorithm. All possible executions will be the normal forms (or reduced forms) of these rewriting
systems.

1By the free Abelian group, we mean that the only non trivial relators (i.e. the additional relators compared to the free
group) are the commutators.
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1.2. second step. Usually when counting the number of steps of an algorithm, one considers all inputs of
length less than a fixed bound, say M . Then one estimates the maximum number of steps taken over all
these inputs by:

(1.2) f(M) := max
all inputs of length less than M

number of steps of the algorithm.

2

Here to exhibit the precise real worst–case, we first proceed in “the opposite way”. Consider k a fixed number
of steps. We will estimate the minimum length of those inputs demanding at least k steps to be processed
by the algorithm:

(1.3) g(k) := min
all inputs demanding at least k steps

length of the input.

Clearly f(g(k)) = k. Otherwise there would be an input of length less than g(k) demanding more than k
steps. But g(k) is by definition the minimal length of such inputs. So by inverting the fuction g , we can
compute f .

2. Gaussian algorithm and the new approach to its worst–case analysis

Endow R
2 with the usual scalar product ( , ) and Euclidean length |u| = (u,u)

1/2
. A two–dimensional lattice

is a discrete additive subgroup of R2. Equivalently, it is the set of all integer linear combinations of two
linearly independent vectors. Generally it is given by one of its bases (b1,b2). Let (e1, e2) be the canonical
basis of R2. We often associate to a lattice basis (b1,b2) a matrix B, such that the vectors of the basis are
the rows of the matrix:

(2.1) B =

(

e1 e2

b1 b1,1 b1,2
b2 b2,1 b2,2

)

.

The length L of the previous basis (or the length of the matrix B) is defined here to be the maximum of
(|b1|, |b2|).
The usual Gram–Schmidt orthogonalization process builds, in polynomial–time, from a basis b = (b1,b2) an
orthogonal basis b∗ = (b∗

1,b
∗
2) and a lower–triangular matrix M that expresses the system b into the system

b∗3. Put m = (b2,b1)
(b1,b1)

. By construction, the following equalities hold:

(2.2)

{

b∗
1 = b1

b∗
2 = b2 −m b1

, M =

(

b∗
1 b∗

2

b1 1 0
b2 m 1

)

.

The ordered basis B = (b1,b2) is called proper if the quantity m satisfies

(2.3) − 1/2 ≤ m < 1/2.

There is a natural and unique representative of all the bases of given two–dimensional lattice. This basis is
composed of two shortest vectors generating the whole lattice. It is called the Gauss– reduced basis and the
Gaussian algorithm outputs this reduced basis running on any basis of the lattice. Any lattice basis in two
dimensions can always be expressed as

(2.4) B = U R,

where R is the so–called Gaussian reduced basis of the same lattice and U is a unimodular matrix, i.e. an
element of GL2(Z). The goal of a reduction algorithm, the Gaussian algorithm in two dimensions, is to find
R given B. The Gaussian algorithm is using two kinds of elementary transforms, explained in the sequel of
this paper. Let (b1, b2) be an input basis of a lattice and the matrix B expressing (b1, b2) in the canonical
basis of R2 as specified by (2.1).
The algorithm first makes an integer translation of b2 in the direction of b1 in order to make b2 as short as
possible. This is done just by computing the integer x nearest to m = (b2, b1)/(b1, b1) and replacing b2 by
b2 − xb1. Notice that, after this integer translation, the basis (b1, b2) is proper.

2When dealing with a non–trivial algorithm f is always an increasing function.
3 Of course, b∗ is generally not a basis for the lattice generated by b.
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The second elementary transform is just the swap of the vectors b1 and b2 in case when after the integer
translation we have |b1| > |b2|.
The algorithm iterates these transforms, until after the translation, b1 remains still smaller than b2, i.e.,
|b1| ≤ |b2|.
The Gaussian algorithm can also be regarded (especially for the analysis purposes) as an algorithm that
gives a decomposition of the unimodular matrix U of relation (2.4) by means of some basic transforms:

(2.5)
Input: B = U R.
Output: R = T xk+1ST xkST xk−1 . . . ST x2ST x1B;

where

(2.6) S =

(

0 1
1 0

)

and T =

(

1 0
1 1

)

.

The matrix T corresponds to an integer translation of b2 in the direction of b1 by one. Of course, we have:

T x =

x
∏

i=1

and T =

(

1 0
x 1

)

, for all x ∈ Z.

The matrix S represents a swap. Each step of the algorithm is indeed an integer translation followed by a
swap4. So each step of the Gaussian algorithm is represented by ST x, x ∈ Z

∗.
Writing the output in this way (2.5) shows not only the output but how precisely the algorithm is working
since T and S represent the only elementary transforms made during the execution of the Gaussian algorithm.
So when studying the mechanism of a reduction algorithm in two dimensions and for a fixed reduced basis
R, the algorithm can be regarded as a decomposition algorithm over GL2(Z):

(2.7)
Input: U ∈ GL2(Z).
Output: a decomposition of U , U := T xk+1 ST xk ST xk−1 . . . ST x2 ST x1.

The integer k denotes the number of steps. Indeed the algorithm terminates[1, 7, 16]. In the sequel we will
prove that the above mechanism does not depend strongly on the reduced basis R. More precisely there are
exactly 4 rewrite systems. (for all reduced bases of R2)

The unimodular group in two dimensions GL2(Z) has been already studied [12, 13, 14, 15] and it is well–
known that {S, T } is a possible family of generators for GL2(Z). Of course there are relators associated to
these generators and there is no unicity of the decomposition of an element of GL2(Z) in terms of S and
T . But the Gaussian algorithm gives one precise of these possible decompositions. In the sequel of this
paper, we will completely characterize this decomposition and we will call it the Gaussian decomposition of
a unimodular matrix. Roughly speaking, we exhibit forbidden sequences of values for the xi–s.
More precisely, we exhibit in Section 3 a set of rewriting rules that lead to the formulation output by the
Gaussian algorithm, from any product of matrices involving S and T . The precise characterization of the
Gaussian decomposition that we give makes appear the slowest manner the length of a unimodular matrix
can grow with respect to its Gaussian decomposition. More precisely we consider unimodular matrices the
length of Gaussian decomposition of which is fixed, say k:

U := T xk+1 ST xk ST xk−1 . . . ST x2 ST x1.

We exhibit in Section 4 the Gaussian word of length k with minimal length. We naturally deduce the
minimum length g(k) of all inputs demanding at least k steps (Section 5). Finally by “inverting” the
function g we find the maximum number of steps of the Gaussian algorithm.

3. The Gaussian decomposition of a unimodular matrix

Let Σ be a (finite or infinite) set. A word ω on Σ is a finite sequence

(3.1) α1α2 . . . αn

where n is a positive integer, and αi ∈ Σ, for all i ∈ {1, . . . , n}. Let Σ∗ be the set of finite words on Σ. We
introduce for convenience the empty word and we denote it by 1.

4A priori x1 and xk+1 in (2.5) may be zero so the algorithm may start by a swap or finish by a translation.
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Consider the alphabet Σ = {S, T, T−1}. Remember that we call Gaussian decomposition, the expression of
U output by the Gaussian algorithm. Remember also that, for a given basis B, there exists a unique couple
(U,R) such that U and R are output by the Gaussian algorithm while reducing B.

Lemma 1. Let R = (b1, b2) be a reduced basis. Then one of the following cases occurs:

• |b1| < |b2| and m 6= −1/2;
• |b1| = |b2| and m 6= −1/2;
• |b1| < |b2| and m = −1/2;
• |b1| = |b2| and m = −1/2.

Now consider a word ω on Σ, that is, an element of Σ∗, a unimodular matrix U and a reduced basis R.
We give, in the following subsections, sets of rewriting rules depending on the form of R, such that any word
in which none of these rewriting rules can be applied is Gaussian. Since the results of these subsections are
very similar, we only give detailed proofs for Subsection 3.1 in the appendix.

3.1. The basis R is such that |b1| < |b2| and m 6= −1/2. Say that ω is a reduced word or a reduced
decomposition of the unimodular matrix U , if ω is a decomposition of U in which no one of the rewriting
rules of Theorems 1 can be applied.
Thus, Theorem 1 shows that, for a given reduced basis R such that |b1| < |b2| and m 6= −1/2, the Gaussian
decomposition and a reduced decomposition of a unimodular matrix are the same, which implies that this
decomposition is unique.

Theorem 1. Let ω1 be any decomposition of U in terms of the family of generators {S, T }. The Gaussian
decomposition of U is obtained from ω1 by applying repeatedly the following set of rules:

(3.2) S2 −→ 1;

(3.3) T xT y −→ T x+y;

(3.4) ∀x ∈ Z
∗
−, ST 2ST x −→ TST−2ST x+1;

(3.5) ∀x ∈ Z
∗
+, ST−2ST x −→ T−1ST 2ST x−1;

(3.6) ∀x ∈ Z
∗, ∀k ∈ Z+, ST ST x

1
∏

i=k

ST yi −→ T ST−x−1
1
∏

i=k

ST−yi;

(3.7) ∀x ∈ Z
∗, ∀k ∈ Z+, ST−1ST x

1
∏

i=k

ST yi −→ T−1ST−x+1
1
∏

i=k

ST−yi.

The trivial rules (3.2) and (3.3) have to be applied whenever possible. So any word ω1 on the alphabet Σ
can trivially be written as

(3.8) T xk+1

1
∏

i=k

ST xi,

with xi ∈ Z
∗ for 2 ≤ i ≤ k and (x1, xk+1) ∈ Z

2. The integer k is called the length5 of ω1. Notice that usually
the length of a word as in (3.1) is n, which would corresponds here to 2k + 1. Here the length is k, which
correspond to the number of iterations of the algorithm minus 1.

The proof of Theorem 1 is given in appendix. It consists in the following lemmas:

• Lemma 2, where we prove that the rewriting process terminates;
• Lemma 3, where we prove that any reduced word is also Gaussian;
• Lemmas 4 and 5, where we prove that the use of a nontrivial rewriting rules changes a base of the
lattice in another base of the same lattice.

Proofs of Theorems 2, 3 and 4, which are given in the following subsections, are very similar.

5The length of a word has of course to be distinguished with what we call the length of a unimodular matrix, that is the
maximum of absolute values of its coefficients.
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3.2. The basis R is such that |b1| = |b2| and m 6= −1/2.

Theorem 2. Let ω1 be any decomposition of U in terms of the family of generators {S, T }. The Gaussian
decomposition of U is obtained from ω1 by applying repeatedly the set of rules (3.2) to (3.7) of Theorem 1,
together with the following rules:

(3.9) ∀x ∈ Z
∗, ∀k ∈ Z+, ST ST x

(

1
∏

i=k

ST yi

)

−→ T ST−x−1

(

1
∏

i=k

ST−yi

)

T ;

(3.10) ∀x ∈ Z
∗, ∀k ∈ Z+, ST−1ST x

(

1
∏

i=k

ST yi

)

−→ T−1ST−x+1

(

1
∏

i=k

ST−yi

)

T ;

(3.11) if ω1 = ω S, then ωS −→ ω;

(3.12) if ω1 = ω ST, then ωST −→ ωTST−1.

3.3. The basis R is such that |b1| < |b2| and m = −1/2.

Theorem 3. Let R be a reduced basis and let U be a unimodular matrix, i.e., an element of GL2(Z). Let
ω1 be any decomposition of U in terms of the family of generators {S, T }. The Gaussian decomposition of
U is obtained from ω1 by applying repeatedly the rules (3.2) to (3.5) of Theorem 1 until ω1 is reduced in the
sense of Theorem 1. Then, if we have ω1 = ω ST 2 S, the following rule applies:

(3.13) ωST 2 S −→ ωT ST−2 ST,

and the rewriting process is over.

3.4. The basis R is such that |b1| = |b2| and m = −1/2.

Theorem 4. Let R be a reduced basis and let U be a unimodular matrix, i.e., an element of GL2(Z). Let
ω1 be any decomposition of U in terms of the family of generators {S, T }. The Gaussian decomposition of
U is obtained from ω1 by applying repeatedly Rules (3.2) to (3.5) of Theorem 1, together with Rules (3.9)
and (3.10) and the following set of rules:

(3.14) if ω1 = ω S, then ωS −→ ω;

(3.15) if ω1 = ω ST, then ωST −→ ωT ;

(3.16) if ω1 = ω ST 2, then ωST 2 −→ ωTST−1.

4. The length of a unimodular matrix with respect to

its Gaussian decomposition

Let B = (b1, b2) be a basis. The length of B, denoted by ℓ(B), is the sum of the squares of the norms of its
vectors, that is, ℓ(B) = |b1|2 + |b2|2.

The easy but tedious proof of the following theorem is given in the appendix, see Lemmas 6, 7, 8, 9 and 10.

Theorem 5. Let R = (b1, b2) be a reduced basis, let k be a positive integer, and let x1, . . . , xk+1 be integers

such that the word ω = T xk+1
∏1

i=k ST
xi is Gaussian. Then the following properties hold:

(1) if |b1| < |b2| and m ≥ 0 then ℓ(ωR) ≥ ℓ((ST−2)k−1 S R);
(2) if |b1| < |b2| and −1/2 < m < 0 then ℓ(ωR) ≥ ℓ((ST 2)k−1 S R);
(3) if |b1| < |b2| and m = −1/2 then ℓ(ωR) ≥ ℓ((ST−2)k−1 ST R);
(4) if |b1| = |b2| then ℓ(ωR) ≥ ℓ((ST−2)k−1 ST−1R).
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5. The maximum number of steps of the Gaussian algorithm

Theorem 6. Let k > 2 be a fixed integer. There exists an absolute constant A such that input basis
demanding more than k steps to the Gaussian algorithm has a length greater than A(1 +

√
2)k:

g(k) ≥ A(1 +
√
2)k.

It follows that any input with length less than A(1 +
√
2)k is demanding less than k steps. We deduce the

following corollary.

Corollary 1. There is an absolute constant A such that the number of steps of the Gaussian algorithm on
inputs of length less than M is bounded from above by

log(1+
√
2)

(

M

A

)

.

6. Sorting algorithms

Let n be a positive integer, and let [1, . . . , n] be the sorted list of the n first positive integers. Let Sn be
the set of all permutations on [1, . . . , n], and let S be the set of all permutations on a list of distinct integers
of variable size. Let us denote by ti the transposition which swaps the elements in positions i and i + 1 in
the list , for all i ∈ {1, . . . , n}. Any permutation can be written in terms of the ti-s. Put Σn = {t1, . . . , tn}
and Σ = {ti : i ∈ N

∗}. Thus Σn (resp. Σ) is a generating set of Sn (resp. S).
As in previous sections, any word ω on Σ will be denoted as following:

ω = ti1ti2 . . . tik =
k
∏

j=1

tij ,

where k and i1, . . . , ik are positive integers.

Definition 1. Let ω1 = ti1ti2 . . . tik and ω2 = tj1tj2 . . . tjl be words on Σ.

(1) The length of ω, denoted by |ω|, is k;
(2) the distance between ω1 and ω2, denoted by Dist(ω1, ω2), is given by minti∈ω1,tj∈ω2

|i− j|;
(3) the maximum (resp. minimum) of ω1, denoted by max(ω1) (resp. min(ω1)), is given by maxti∈ω1

(i)
(resp. minti∈ω1

(i));
(4) ω1 is an increasing word (resp. decreasing word) whether ip < ip+1 (resp. ip > ip+1), for all

p ∈ {1, . . . , k − 1};
(5) ω1 is a consecutively increasing word (resp. consecutively decreasing word) whether ij+1 − ij = 1

(resp. ij − ij+1 = 1), for all j ∈ {1, . . . , k − 1};
(6) ω1 < ω2 (resp. ω1 > ω2) whether ω1 and ω2 are increasing (resp. decreasing) words such that

max(ω1) ≤ min(ω2) (resp. min(ω1) ≥ max(ω2));
(7) ω1 is minimal on the left in ω2ω1 (resp. maximal on the right in ω1ω2) whether ω1 is an increasing

word such that i1 ≤ jl (resp. j1 ≤ ik);
(8) similarly, ω1 is minimal on the right in ω2ω1 (resp. maximal on the left in ω1ω2) whether ω1 is a

decreasing word such that jl ≤ i1 (resp. ik ≤ j1).

It is easy to prove that any word ω on Σ can be uniquely written on the form

(6.1) ω = ω1ω2 . . . ωm,

where ωi is an increasing (resp. decreasing) word maximal on the right and on the left, for all i ∈ {1, . . . ,m}.
We will call (6.1) the increasing decomposition (resp. decreasing decomposition) of ω, and we will denote it
by [ω1, . . . , ωm]. We define s : Σ∗ → N as the map given by the rule

s(ω) = m,

where [ω1, . . . , ωm] is the increasing decomposition of ω. Moreover, it is also easy to prove that ωi can be
uniquely written on the form

ωi = ω′
i1ω

′
i2 . . . ω

′
ipi

,

where the ω′
j-s are consecutively increasing (resp. decreasing) and minimal on the left (resp. right), for all

i ∈ {1, . . . ,m}. The decomposition [ω′
i1 , ω

′
i2 , . . . , ω

′
ipi

] is called the consecutively increasing decomposition

(resp. consecutively decreasing decomposition) of ωi.
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6.1. Bubble sort. The basic idea of the bubble sort algorithm is the following: pairs of adjacent values in
the list to be sorted are compared and interchanged if they are out of order, the process starting from the
beginning of the list. Thus, list entries ‘bubble upward’ in the list until they bump into one with a higher
sort value.

The algorithm first compares the two first elements of the list and swap them if they are in the wrong
order. Then, the algorithm compares the second and the third elements of the list and swaps them if
necessary. The algorithms continues to compare adjacent elements from the beginning to the end of the list.
This whole process is iterated until no changes are done.

Let σ be a permutation on [1, . . . , n]. There exists a unique decomposition ω of σ on the alphabet Σ cor-
responding to the sequence of elementary transforms performed by the bubble sort algorithm on σ[1, . . . , n].
We will call it the bubblian decomposition of σ. Notice that (ω)−1σ = 1.

(6.2)
Input: σ ∈ S.
Output: a decomposition of σ, σ := t1 . . . tm.

Definition 2. A word ω on Σ is a bubblian word if it corresponds to a possible execution of the bubble sort
algorithm.

Let us define some rewriting rules on Σ∗. In the following equations, i, j and k are arbitrary positive
integers and ω is a word on Σ:

(6.3) ti ti −→ 1;

(6.4) if Dist(i+ 1, ω) > 1, then ti+1 ω ti ti+1 −→ ωti ti+1 ti;

(6.5) if Dist(i + 1, ω) > 1 and ω is maximally increasing, then ω ti −→ ti ω;

(6.6) if Dist(j, kω) > 1 and either i ≤ j ≤ k or k < i ≤ j, then ti tk ω tj −→ ti tj tk ω.

Theorem 7. Let σ be a permutation and let ω ∈ Σ∗ be a decomposition of σ on Σ. The bubblian decompo-
sition of σ is obtained from ω by applying repeatedly the rules (6.3) to (6.6).

Remark 1. Let ω and ω′ be words on Σ. It is well known that a presentation of S on Σ is the following:

• ti ti = 1;
• ti tj = tj ti;
• ti ti+1 ti = ti+1 ti ti+1;

for all positive integers i, j such that |i− j| = 1. Thus, it is easy to prove that if ω′ is obtained from ω, then
ω = ω′ in S.

The sketch of the proof of Theorem 7 is very similar to the proof of Theorem 1 and is given in the
appendix. Notice that we can easily deduce from Theorem T:redbubble the worst-case for the bubble sort
algorithm.

6.2. Other iterative sorting algorithms. We also give without proof some rewriting rules for the insertion
sort algorithm and the selection sort algorithm, see the appendix.

7. Conclusion

In this paper we studied the Gaussian algorithm by considering a rewriting system over GL2(Z). We first
believe that our method should be applied to other variants of the Gaussian algorithm (for example, Gaussian
algorithm with other norms [5]) and for each variant there is an adequate rewriting system over GL2(Z).
The most important and interesting continuation to this work is to generalize the approach in higher dimen-
sions. Even in three dimensions the worst–case configuration of all possible generalization of the Gaussian
algorithm is completely unknown for the moment. ([17] has tried without success in 3 dimensions.) Although
the problem is really difficult, we have already achieved a step, since the LLL algorithm uses the Gaussian
algorithm as an elementary transform.
The group of n–dimensional lattice transformations has been studied first by Nielsen [14] (n = 3) and for
an arbitrary n by Magnus [12, 13], based on the work of Nielsen[15]. Their work should certainly help to
exhibit such rewriting systems on GLn(Z) if there exists.
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This approach may also be an insight to the still open problem of the complexity of the optimal LLL
algorithm[1, 10].
Acknowledgments. The authors are indebted to Brigitte Vallée for drawing their attention to algorithmic
problems in lattice theory and for regular helpful discussions.

References

[1] A. Akhavi. Worst–case complexity of the optimal LLL algorithm. In Proceedings of LATIN’2000 - Punta del Este.
LNCS 1776, pp 476–490.
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Appendix A. The Gaussian decomposition of a unimodular matrix

In the following proofs, we will essentially use the set of rules (3.4), (3.5), (3.6), (3.7) and apply (3.2) and
(3.3) implicitly whenever possible.
So with any initial ω1, we always obtain a reduced word after applying a finite number of times the rewriting
rules. Moreover, no matter in which order the different rewriting rules are used, the same unique reduced
word – corresponding to a Gaussian word – is always obtained from ω1, as proved by the following lemmas.

Lemma 2. Let ω1 be a word as in (3.8). Then the rewriting process always terminates6.

The proof of Lemma 2 will use the following notations.

Notation 1. Let k be a nonnegative integer, and let x1, . . . , xk+1 be integers such that x2,. . . , xk are nonzero.

Put ω1 = T xk+1
∏k

i=1 ST
xi. We denote by ω−

1 the word T−xk+1
∏k

i=1 ST
−xi. Put

S1 = {i : 2 ≤ i ≤ k and |xi| = 1};
S2 = {i : 2 ≤ i ≤ k, xixi−1 < 0 and |xi| = 2}.

We also put d(ω1) =
∑

i∈S1∪S2
i.

Proof. We proceed by induction on the length of ω1, and on the sum d = d(ω1). The property is trivially
true whether |ω1| ∈ {0, 1, 2} and d ∈ N.

Let k be a positive integer such that k ≥ 2. Suppose that the property holds for any word of length k.
Suppose that |ω1| = k+1. The property holds whether d belongs to {0, 1}. Suppose that the property holds
for any word ω of length k + 1 such that d > d(ω) ≥ 1. Let i be in S1 ∪ S2. If xi = 1 (resp. xi = −1), then
we use the rule (3.6) (resp. (3.7)), and the length of ω1 strictly decreases. Suppose now that xi = 2. Then
ω1 can be written as ω2 ST

x ST 2 ST y ω3, where x ∈ Z, y ∈ Z
∗
−, ω2 and ω3 are words on the alphabet Σ,

6Of course saying that the rewriting process presented by the previous Theorem always terminates has a priori nothing to
do with the well-known fact that the Gaussian algorithm always terminates.
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such that ω2 does not end by a S and ω3 is either 1 or starts by S. If we use the rule (3.4), then we get the
word ω′

1 = ω2 ST
x+1 ST−2 ST y+1 ω3. Put d′ = d(ω′

1), and δ =
∑

j∈S1∪S2\{i+1,i,i−1} j. Notice that if x = 0,

then ω1 = T z ST 2 ST y ω3, with z ∈ Z.

Case 1. Suppose that either x = −1 or y = −1.

Then |ω′
1| = k, and the rewriting process terminates.

Case 2. Suppose that y /∈ {−3,−2,−1}.
• Suppose that x /∈ {−2,−1, 1}: then d′ = d− 1.
• Suppose that x = −2. Then the following equalities hold:

ω1 = ω2 ST
−2 ST 2 ST y ω3;

ω′
1 = ω2 ST

−1 ST−2 ST y+1 ω3.

Thus, we have d′ = i+ 1 < d = 2i+ 1 + δ.
• Suppose that x = 1. Then the following equalities hold:

ω1 = ω2 ST
1 ST 2 ST y ω3;

ω′
1 = ω2 ST

2 ST−2 ST y+1 ω3.

Thus we have d′ = i+ 1 < d = 2i+ 1 + δ.

Case 3. Suppose that y = −3.

• Suppose that x /∈ {−2,−1, 1}. Then d′ ≤ i− 1 + δ < i+ δ ≤ d.
• Suppose that x = −2. Then

ω1 = ω2 ST
−2 ST 2 ST−2 ω3;

ω′
1 = ω2 ST

−1 ST−2 ST−2 ω3.

Thus d′ ≤ 2i− 1 + δ < 2i+ 1 + δ ≤ d.
• Similarly, if x = 1, then the following equalities hold:

ω1 = ω2 ST
1 ST 2 ST−3 ω3

ω′
1 = ω2 ST

2 ST−2 ST−2 ω3.

Thus d′ ≤ 2i− 1 + δ < 2i+ 1 + δ ≤ d.

Case 4. Suppose that y = −2.

• Suppose that x /∈ {−2,−1, 1}. Then d′ ≤ i− 1 + δ < i+ δ ≤ d.
• Suppose that x = −2. Then the following equalities hold:

ω1 = ω2 ST
−2 ST 2 ST−2 ω3;

ω′
1 = ω2 ST

−1 ST−2 ST−1 ω3.

Thus d′ ≤ 2i− 1 + δ < 2i+ 1 + δ ≤ d.
• Suppose that x = 1. Then the following equalities hold:

ω1 = ω2 ST
1 ST 2 ST−2 ω3

ω′
1 = ω2 ST

2 ST−2 ST−1 ω3.

Thus d′ ≤ 2i− 1 + δ < 2i+ 1 + δ ≤ d.

By induction hypothesis, the rewriting process always terminates. �

Lemma 3. Let B be the matrix of a proper basis (b1, b2) (see (2.1), (2.2) and (2.3)). Let x ∈ Z
∗ be a non

zero integer and B̃ := ST xB express the matrix of the basis (b̃1, b̃2), i.e. b̃1 is the first row of B̃ and b̃2 is its
second row.

(1) If |x| ≥ 3, then B̃ is still proper. Moreover,



A REWRITE BASED ANALYSIS OF ALGORITHMS 11

• if (b1, b2) and x are both positive or both negative, then B̃ is proper whenever |x| ≥ 2.

• if B is reduced, |b1| < |b2| and m 6= −1/2, then B̃ is proper for all x ∈ Z.

(2) If |x| ≥ 2, then |b̃2| < |b̃1|. Moreover, if (b1, b2) and x are both positive or both negative, it is true
provided that |x| ≥ 1.

(3) If |x| ≥ 2, then max(|b̃1|, |b̃2|) ≥ max(|b1|, |b2|).
(4) If |x| ≥ 1, then (b̃1, b̃2) and x are both positive or both negative.

Proof. The definitions of B, b∗ and m are given by Relations (2.1), (2.2) and (2.3). We have b̃1 = b2 + xb1
and b̃2 = b1. In the sequel we express all the needed quantities in the orthogonal basis b∗.

(1) We will show that
∣

∣

∣

(b̃1,b̃1)

(b̃1,b̃2)

∣

∣

∣
≤ 2.

Notice that
(b̃1, b̃1)

|(b̃1, b̃2)|
=

(m+ x)2|b∗1|2 + |b∗2|2
|m+ x||b∗1|2

<
1

|m+ x| .

Since ||x| − |m|| < |m+ x| and |m| ≤ 1/2, when |x| ≥ 3, clearly 2 < |m+ x| and when mx > 0 this
is still true whenever |x| ≥ 2.

(2) We have to show that |b1| < |b2 + xb1|. We notice that

|b1|2
|b2 + xb1|2

=
|b∗1|2

(m+ x)2|b∗1|2 + |b∗2|2
<

1

(m+ x)2
.

If mx < 0, we have 1 < 1.5 ≤ ||x| − |m|| < |m+ x|. If mx > 0, |m+ x| ≥ 1, ∀x ≥ 1.
(3) From the last point, we know that |b1| ≤ |b2 + xb1|. If |b2| < |b1|, we have also |b2| < |b2 + xb1|.

(This is true for |x| ≥ 2 or for |x| ≥ 1 provided that xm > 0.
Now if |b2| ≥ |b1|, since (b1, b2) is proper, it is indeed Gauss–reduced. So b1 and b2 are the shortest
vector generating the whole lattice. So for all x 6= 0, |b2 + xb1| > b2.

(4) By definition (b̃1, b̃2) := (b2+xb1, b1) = (x+m)|b∗1|2. Since |m| ≤ 1/2 if |x| ≥ 1, the quantities x+m
and x have the same sign.

�

Corollary 2. Let ω1 be a word of the form (3.8). Then there is a unique reduced word ω′
1 corresponding to

ω1. Moreover, ω′
1 is a Gaussian word.

Lemma 4. Let B be a proper basis. Put

B̃ := ST 2 ST xB and B′ := (T ST−2 ST x+1)−1B̃;

(resp. B̃ := ST−2 ST xB and B′ := (T−1 ST 2 ST x−1)−1B̃).

Then B′ is such that B′ = −B.

Proof. The following equalities hold:

ST 2 ST x =

(

2x+ 1 2
x 1

)

and T ST−2 ST x+1 =

(

−2x− 1 −2
−x −1

)

,

which concludes the proof. �

Lemma 5. Let R be a reduced basis such that m 6= − 1
2 . Put B̃ := ST ST x ω B (resp. B̃ := ST−1 ST x ω1B),

where ω is a word on Σ of the form (3.8). Then the basis B′ := (T ST−x−1 ω−)−1B̃ (resp. B′ :=

(T−1 ST−x+1 ω−)−1B̃) is a reduced basis.

Proof. Notice that:

ST ST x =

(

x+ 1 1
x 1

)

and T ST−x−1 =

(

−x− 1 1
−x 1

)

.

Thus, it is easy to prove that ST ST x = T ST−x−1

(

−1 0
0 1

)

.

The proof of the following easy claim is left to the reader.

Claim 1. Let y be an integer. Then the following equalities hold:
(

−1 0
0 1

)

ST y = ST−y

(

1 0
0 −1

)

and

(

1 0
0 −1

)

ST y = ST−y

(

−1 0
0 1

)

.
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Thus, it is easy to prove by induction on the length of ω1 that there exists an integer β ∈ {−1, 1} such that

ST ST xω1 = T ST−x−1 ω−
1 β

(

−1 0
0 1

)

. Thus, we have B′ = β

(

−1 0
0 1

)

B, which concludes the proof. �

Corollary 3. Let ω1 = T xk+1
∏1

i=k ST
xi be a non–reduced word, and let R be a reduced basis. If ω1 B is

the input of the Gaussian algorithm, then the sequence of elementary transforms made during the execution
is exactly represented by the reduced word uniquely associated to ω1.

Appendix B. The length of a unimodular matrix with respect to
its Gaussian decomposition

The easy proof of the following lemma is left to the reader.

Lemma 6. Let k be a positive integer. There exist nonnegative integers α, β and γ such that:

(ST 2)k =

(

α β
β γ

)

, (ST−2)k = (−1)k
(

α −β
−β γ

)

and α = 2β + γ.

Lemma 7. Let B be a proper basis, and let x be an integer such that |x| ≥ 3. Then ℓ(ST xB) ≥ ℓ(ST 2B)
and ℓ(ST xB) ≥ ℓ(ST−2B).

Proof. Put B̃x = (b̃1,x, b̃2,x) = ST xB, for all integer x. Then

• b̃1,x = (x+m)b∗1 + b∗2;

• b̃2,x = b∗1.

It is obvious that |b̃2,x|2 = |b̃2,2|2 = |b̃2,−2|2. Moreover, we have

|b̃1,x|2 − |b̃1,2|2 = [(x+m)2 − (2 +m)2]|b∗1|2 = [(x+ 2 + 2m)(x− 2)]|b∗1|2 ≥ 0,

and
|b̃1,x|2 − |b̃1,−2|2 = [(x+m)2 − (m− 2)2]|b∗1|2 = [(x− 2 + 2m)(x+ 2)]|b∗1|2 ≥ 0,

which concludes the proof. �

Lemma 8. Let B be a proper basis, let k be a positive integer, let ε ∈ {1,−1} be an integer, and let x be an
integer such that |x| ≥ 3. The following properties hold:

• if x is positive, then ℓ((ST 2)k ST xB) ≥ ℓ((ST ε2)k+1 B);
• if x is negative, then ℓ((ST−2)k ST xB) ≥ ℓ((ST ε2)k+1 B).

Proof. Put (ST 2)k =

(

α β
β γ

)

and (ST−2)k = (−1)k
(

α −β
−β γ

)

, as in Lemma 6. Put B̃ = (b̃1,x, b̃2,x) =

(ST 2)k ST xB and B̃′ = (b̃′1,x, b̃′2,x). Then

• b̃1,x = (α(x +m) + β)b∗1 + αb∗2, b̃′1,x = (α(x +m)− β)b∗1 + αb∗2;

• b̃2,x = (β(x+m) + γ)b∗1 + βb∗2, b̃′2,x = (−β(x +m) + γ)b∗1 − βb∗2;
Suppose that x is positive. Then

|b̃1,x|2 − |b̃1,2|2 = [(α(x +m) + β)2 − (α(2 +m) + β)2]|b∗1|2

= [α(x − 2)(α(x+ 2 + 2m) + 2β)]|b∗1|2 ≥ 0

and

|b̃2,x|2 − |b̃2,2|2 = [(β(x +m) + γ)2 − (β(2 +m) + γ)2]|b∗1|2

= [β(x− 2)(β(x + 2 + 2m) + 2γ)]|b∗1|2 ≥ 0,

that is, ℓ((ST 2)k ST xB) ≥ ℓ((ST 2)k+1 B). Moreover,

|b̃1,x|2 − |b̃′1,−2|2 = [(α(x +m) + β)2 − (α(m− 2)− β)2]|b∗1|2

= [α(x − 2 + 2m)(α(x+ 2) + 2β)]|b∗1|2 ≥ 0

and

|b̃2,x|2 − |b̃′2,−2|2 = [(β(x +m) + γ)2 − (−β(m− 2) + γ)2]|b∗1|2

= [β(x− 2 + 2m)(β(x + 2) + 2γ)]|b∗1|2 ≥ 0,
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that is, ℓ((ST 2)k ST xB) ≥ ℓ((ST−2)k+1 B). The second part of the proof is very similar. �

Proofs of Lemmas 9 and 10 are very similar to the proof of Lemma 8.

Lemma 9. Let B be a proper basis and let x be an integer. Then ℓ(T xB) ≥ ℓ(B).

Lemma 10. Let R be a reduced basis, let k be a positive integer, let x and x′ be integers. Then

• if x ≥ x′ ≥ 0, then ℓ((ST 2)k ST xR) ≥ ℓ((ST 2)k ST x′

R);

• if x ≤ x′ ≤ 0, then ℓ((ST−2)k ST xR) ≥ ℓ((ST−2)k ST x′

R).

Moreover, the following properties hold:

• if m is positive, then ℓ((ST 2)k S R) ≥ ℓ((ST−2)k S R);
• if m is negative, then ℓ((ST−2)k S R) ≥ ℓ((ST 2)k S R).

Proof. Proof of Theorem 5.
Notice first that, by Lemma 9, we can suppose that xk+1 = 0. Suppose that k = 1. Then, by Lemma 10,

ℓ(ST x1B) ≥ ℓ(SB).
Suppose that k ≥ 1. The variable ε will denote an integer in {1,−1}. We construct a sequence ω0, ω1,

. . . , ωk such that the following properties hold:

(1) ω0 = ω and ωk = (ST ε2)k−1S;

(2) ωj = (ST ε2)j
∏k−j

i=1 ST xi, with ε ∈ {1,−1} such that (ε2)xk−j ≥ 0, for all j ∈ {1, . . . , k − 1};
(3) ℓ(ωj B) ≤ ℓ(ωj−1 B), for all j ∈ {1, . . . , k}.

Notice that ωj may be equal to ωj−1 for some j ∈ {1, . . . , k}. We proceed by induction on an integer j such

that 1 ≤ j ≤ k. Put ω′ =
∏k−1

i=1 ST xi, B̃′ = ω′B and B̃ = ST xkB̃′ = ω B. By Lemma 7, we know that

ℓ(B̃) = ℓ(ST xkB̃′) ≥ ℓ(ST ε2)B̃′). Now, either xk−1 is positive and we put ω1 = ST 2ω′, or xk−1 is negative
and we put ω1 = ST−2ω′, so that ω1 is Gaussian.

Let j be an integer in {1, . . . , k − 2} such that ωj verifies (2) and (3). By Lemma 8, it is obvious that we
can put:

• ωj+1 = (ST 2)j+1
∏k−j−1

i=1 ST xi if x is positive;

• ωj+1 = (ST−2)j+1
∏k−j−1

i=1 ST xi if x is negative.

Suppose now that we constructed ωk−1 = (ST ε2)k−1ST x1. Then, by Lemma 10, we can put ωk =
(ST 2)k−1S whether m is positive and ωk = (ST−2)k−1S whether m is negative. �

Appendix C. The maximum number of steps of the Gaussian algorithm

Proof. Proof of Theorem 6.
From the last section , we know that the input with the smallest length demanding k steps is (ST 2)k or

(ST−2)k. Let Q be equal to (ST 2). The symmetrical matrix Q
(

2 1
1 0

)

has its eigenvalues equal to 1+
√
2 and 1−

√
2. It can be diagonalized and one deduces that there exist two

constants α > 0 and β > 0 such that all coefficients of Qk are expressed in the form

α(1 +
√
2)k + β(1 −

√
2)k = α(1 +

√
2)k

(

1 +
β(1−

√
2)k

α(1 +
√
2)k

)

.

This leads to the lower–bound proposed by the theorem. �

Proof. Proof of Corollary 1. �

Appendix D. Sorting algorithms

Lemma 11. The rewriting process always terminates.

Proof. Let l : Σ∗ → N be the map given by the rule

l(ω) =

|ω|
∑

i=1

αi,
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where ω = tα1
. . . tα|ω|

. Let h : Σ∗ → N be the map given by the rule

h(ω) =

s(ω)
∑

i=1

(s(ω)− i)(max(ω)− |ωi|),

where [ω1, . . . , ωm] is the increasing decomposition of ω. We proceed here by induction on the nonnegative
integers l(ω) and h(ω). Suppose that l(ω) = 0. Then σ = 1 and the rewriting process is over. Suppose that
l(ω) = 1 and h(ω) = 0. Then ω = t1 and the rewriting process is over. Notice that there exists no word on
Σ∗ such that l(ω) = 1 and h(ω) > 0.

Suppose now that l(ω) = l, that h(ω) = h and that we can apply a rewriting rule. If we apply one of the
rules (6.3) or (6.4), then we get a word ω′ such that l(ω′) < l(ω). If we apply (6.5) or (6.6), then l(ω′) = l(ω).
Let [ω1, . . . , ωm] be the increasing decomposition of ω.

Suppose that we can apply (6.5). Then there exists j ∈ {1, . . . ,m − 1} such that min(ωj+1) = i and
min(ωj) > i+ 1. Put

ω = ω1 . . . ωj ti ω
′
j+1 . . . ωm;

ω′ = ω1 . . . ti ωj ω
′
j+1 . . . ωm;

where ω′
j+1 is such that ωj+1 = ti ω

′
j+1. Then

h(ω′) = h(ω) −(s(ω)− j)(max(ω)− |ωj |) −(s(ω)− (j + 1))(max(ω)− |ωj+1|)
+(s(ω)− j)(max(ω)− (|ωj |+ 1))
+(s(ω)− (j + 1))(max(ω)− (|ωj+1| − 1))

= h(ω) −(s(ω)− j) + (s(ω)− (j + 1))
= h(ω) −1.

Suppose now that we can apply the rule (6.6). Then there exist p, q ∈ {1, . . . ,m} and i, j, k ∈ {1, . . . ,max(ω)}
such that one of the following cases occurs.

Case 1. Suppose that i < k ≤ max(ωp).

Then

ω = ω1 . . . ω′
p ti tk ω

′′
p . . . ω′

q tj ω
′′
q . . . ωm;

ω′ = ω1 . . . ω′
p ti tj tk ω

′′
p . . . ω′

q ω
′′
q . . . ωm.

Case 2. Suppose that i = max(ωp) and k = min(ωp+1).

Then,

ω = ω1 . . . ω′
p ti tk ω

′
p+1 . . . ω′

q tj ω
′′
q . . . ωm;

ω′ = ω1 . . . ω′
p ti tj tk ω

′
p+1 . . . ω′

q ω
′′
q . . . ωm.

Thus,
h(ω′) = h(ω) −(s(ω)− p)(max(ω)− |ωp|) −(s(ω)− q)(max(ω)− |ωq|)

+(s(ω)− p)(max(ω)− (|ωp|+ 1))
+(s(ω)− q)(max(ω)− (|ωq| − 1))

= h(ω) −(s(ω)− p) + (s(ω)− q)
= h(ω) +p− q,

which concludes the proof. �

Lemma 12. Let ω be a reduced word, and let [ω1, . . . , ωm] be its increasing decomposition. Let p ∈
{1, . . . ,m− 1} be an integer. If ti is in ωp+1, then ti+1 is in ωp.

Proof. Let p ∈ {1, . . . ,m} be such that the property does not hold. Let i ∈ {1, . . . ,max(ω)} be the smallest
integer such that ti ∈ ωp+1, and ti+1 /∈ ωp. Then, there exists ω′

p, ω
′′
p , ω

′
p+1, ω

′′
p+1 ∈ Σ∗ such that

ω = ω1 . . . ω′
p ω

′′
p ω

′
p+1 ti ω

′′
p+1 . . . ωm;

and such that the following inequalities hold:

max(ω′
p) < i+ 1 < min(ω′′

p );

max(ω′
p+1) < i < min(ω′′

p+1);

Dist(ti, ω
′′
p ) > 1.
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Case 1. Suppose that i = min(ωp+1).

Then ω′
p+1 = 1, ω′′

p is maximal on the left and we can apply the rule (6.5).

Case 2. Suppose that i 6= min(ωp+1) and that ti−1 ∈ ω′′
p+1.

Since ti ∈ ωp and Dist(ti, ω
′′
p ) > 1, we can apply the rule (6.4).

Case 3. Suppose that i 6= min(ωp+1) and that ti−1 /∈ ω′′
p+1.

Then Dist(ti, ω
′′
pω

′
p+1) > 1. Thus, either ω′

p = 1 and we can apply the rule (6.5), or ω′
p 6= 1 and we can

apply the rule (6.6). �

The following corollary is an easy consequence of Lemma 12.

Corollary 4. Let ω be a reduced word, and let [ω1, . . . , ωm] be its increasing decomposition. Let p ∈
{1, . . . ,m− 1} be an integer. Then

(1) max(ωp) > max(ωp+1);
(2) Dist(ωp, ωp+1) ≤ 1.

The easy but tedious proof of the following lemma is left to the reader, who can proceed by induction.

Lemma 13. Let ω = ω1 . . . ωm be a permutation put under increasing decomposition. Put ω[1, . . . , n] =
[α1, . . . , αn] and ω1 =

∏q
k=1 tik . . . tik+pk

7. Suppose that ω is reduced. Then the following properties hold:

(1) α1 < α2 < · · · < αi1 ;
(2) αik = max{α1, α2, . . . , αik+pk

};
(3) αik < αik+pk+1 < αik+pk+2 < · · · < αik+1

;

for all k ∈ {1, . . . , q}.
Corollary 5. In the conditions of Lemma 13, the first iterations of the algorithm on ω[1, . . . , n] are repre-
sented by ω1.

The following corollary is an easy consequence of Lemma 13.

Corollary 6. Let ω be a reduced word. Then ω is a bubblian word.

Since the bubblian word associated to a given permutation is unique and the rewriting process terminates,
the bubblian words are the reduced words.

D.1. Insertion sort. The basic idea of the insertion sort algorithm is the following: the beginning of the list
being already sorted, the first non sorted element of the list is put at the right place in the already sorted part.
Thus, an elementary transform made by the algorithm is a cycle (i, i+ 1, . . . , i+ p) = ti+p ti+p−1 . . . ti+1 ti
in S. Thus, any permutation σ can be written on the form

σ =

m
∏

p=1

(ip, . . . , ip + qp) =

m
∏

p=1

tip+qp . . . tip ,

and the word on Σ∗ produced by the algorithm, which we will call insertion word, is a particular decompo-
sition of σ. Let ω be a word on σ∗. The rewriting rules for the insertion sort algorithm are very similar to
the rewriting rules for the bubble sort algorithm. In the following equations, i, j and k are arbitrary positive
integers and ω is a word on Σ:

(D.1) if Dist(i, ω) > 1, then ti ω ti −→ ω;

(D.2) if Dist(i + 1, ω) > 1, then ti+1 ti ω ti+1 −→ ti ti+1 ti ω;

(D.3) if Dist(i+ 1, ω) > 1, then ti+1 ω ti −→ ω ti+1 ti;

(D.4) if j − i > 1, then tj+1 tj ti −→ tj+1 ti tj .

Let ω be a word on σ∗. Using similar methods that in Subsection 6.1, we can prove that, by applying
repeatedly rules D.1 to D.4, we obtain the insertion word uniquely associated to ω.

7
∏q

k=1
tik . . . tik+pk is the consecutively increasing decomposition of ω1.
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D.2. Selection sort. The basic idea of the selection sort algorithm is the following: the beginning of the
list being already sorted, the algorithm finds the smallest element of the non sorted list and put it at the
right place at the end of the already sorted part. As in the previous subsection, an elementary transform
made by the algorithm is a cycle (i, i + 1, . . . , i + p), which can be written as ti+p ti+p−1 . . . ti+1 ti in Σ∗.
The word on Σ∗ produced by the algorithm, called selection word, is a particular decomposition of σ.

Let ω be a word on σ∗. The rewriting rules for the selection sort algorithm are very similar to the rewriting
rules for the bubble sort algorithm. In the following equations, i, j and k are arbitrary positive integers and
ω is a word on Σ:

(D.5) if Dist(i, ω) > 1, then ti ω ti −→ ω;

(D.6) if Dist(i, ω) > 1, then ti ω ti+1 ti −→ ω ti+1 ti ti+1;

(D.7) if Dist(i, ω) > 1, then ti+1 ω ti −→ ti+1 ti ω;

(D.8) if i− j > 1, then ti tj tj−1 −→ tj ti tj−1.

Let ω be a word on σ∗. Using similar methods that in Subsection 6.1, we can prove that, by applying
repeatedly rules D.1 to D.4, we can obtain the insertion word uniquely associated to ω.
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