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Rooted Maximum Agreement Supertrees1

Jesper Jansson,2 Joseph H.-K. Ng,2 Kunihiko Sadakane,3 and Wing-Kin Sung2

Abstract. Given a set T of rooted, unordered trees, where each Ti ∈ T is distinctly leaf-labeled by a
set �(Ti ) and where the sets �(Ti ) may overlap, the maximum agreement supertree problem (MASP) is to
construct a distinctly leaf-labeled tree Q with leaf set �(Q) ⊆ ∪Ti∈T �(Ti ) such that |�(Q)| is maximized
and for each Ti ∈ T , the topological restriction of Ti to�(Q) is isomorphic to the topological restriction of Q
to �(Ti ). Let n =

∣∣∪Ti∈T �(Ti )
∣∣, k = |T |, and D = maxTi∈T {deg(Ti )}. We first show that MASP with

k = 2 can be solved in O(
√

Dn log(2n/D)) time, which is O(n log n) when D = O(1) and O(n1.5) when
D is unrestricted. We then present an algorithm for MASP with D = 2 whose running time is polynomial if
k = O(1). On the other hand, we prove that MASP is NP-hard for any fixed k ≥ 3 when D is unrestricted,
and also NP-hard for any fixed D ≥ 2 when k is unrestricted even if each input tree is required to contain at
most three leaves. Finally, we describe a polynomial-time (n/log n)-approximation algorithm for MASP.

Key Words. Phylogenetic tree, Maximum agreement supertree, Rooted triplet, Algorithm, Computational
complexity.

1. Introduction. An important objective in phylogenetics is to develop good methods
for merging a collection of phylogenetic trees on overlapping sets of taxa into a sin-
gle supertree so that no (or as little as possible) branching information is lost. Ideally,
the resulting supertree can then be used to deduce evolutionary relationships between
taxa which do not occur together in any one of the input trees. Supertree methods are
useful because most individual studies investigate relatively few taxa [26] and because
sample bias leads to certain taxa being studied much more frequently than others [5].
Also, supertree methods can combine trees constructed for different types of data or
under different models of evolution. Furthermore, although computationally expensive
methods for constructing reliable phylogenetic trees are infeasible for large sets of taxa,
they can be applied to obtain highly accurate trees for smaller, overlapping subsets of
the taxa which may then be merged using computationally less intense, supertree-based
techniques (see, e.g., [8], [18], and [24]).

Since the set of trees which is to be combined may in practice contain contradictory
branching structures (for example, if the trees have been constructed from data orig-
inating from different genes or if the experimental data contains errors), a supertree
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method needs to specify how to resolve conflicts. In this paper we consider maximum
agreement supertrees. The intuitive idea is to identify and remove a smallest possible
subset of the taxa so that the remaining taxa can be combined without conflicts. In
this way, one would get an indication of which ancestral relationships can be regarded
as resolved and which taxa need to be subjected to further experiments. We formal-
ize the above as a computational problem called the maximum agreement supertree
problem (MASP).

Further motivation for studying maximum agreement supertrees comes from the
relation to a well-studied problem known as the maximum agreement subtree prob-
lem (MAST) in which the input is a set of leaf-labeled trees and the goal is to compute
a tree contained in all of the input trees with as many labeled leaves as possible. Our
results in this paper complement those previously known for MAST. The computational
complexity of MAST has been closely investigated (see Section 1.2), motivated by the
practical usefulness of maximum agreement subtrees. For example, maximum agreement
subtrees can be used not only to identify small problematic subsets of taxa during phylo-
genetic reconstruction, but also to measure the similarity of a given set of trees [10], [13],
[23] or to estimate a classification’s stability to small changes in the data [13]. Moreover,
MAST-based algorithms have been used to prepare and improve bilingual context-using
dictionaries for automated language translation systems [9], [25].

1.1. Problem Definitions. Let T be a tree whose leaves are labeled by a set S. We say
that T is distinctly leaf-labeled by S if no two leaves in T have the same label. Below,
each leaf in such a tree is identified with its corresponding label in S. Given a rooted,
unordered, leaf-labeled tree T and a set S′, the topological restriction of T to S′ (denoted
by T | S′) is the tree obtained by deleting from T all nodes which are not on any path
from the root to a leaf in S′ along with their incident edges, and then contracting every
edge between a node having just one child and its child (see Figure 1.1). For any tree T ,
denote its set of leaves by �(T ).

LetT = {T1, T2, . . . , Tk}be a set of rooted, unordered trees, where each Ti is distinctly
leaf-labeled and where the sets�(Ti )may overlap. We write S =⋃

Ti∈T �(Ti ) and call
S the leaf set of T . A total agreement supertree of T is a distinctly leaf-labeled tree Q
such that �(Q) = S and Q | �(Ti ) is isomorphic to Ti for every Ti ∈ T . Note
that two or more trees in T may contain conflicting branching information, in which
case a total agreement supertree of T does not exist. The total agreement supertree

a

c d

a b

c d

e f g

Fig. 1.1. Let T be the tree on the left. Then T | {a, c, d, h} is the tree shown on the right.
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problem (TASP) is: Given a set T of distinctly leaf-labeled, rooted, unordered trees,
output a total agreement supertree of T if one exists, otherwise output null.

For any S′ ⊆ S, we let T | S′ denote the set {T1 | S′, T2 | S′, . . . , Tk | S′}. If there
exists a total agreement supertree Q of T | S′ then we say that S′ is consistent with T
and we call Q an agreement supertree of T . (Thus, Q is an agreement supertree of T if
and only if �(Q) ⊆ S and Q | �(Ti ) is isomorphic to Ti | �(Q) for every Ti ∈ T .) A
maximum agreement supertree of T is an agreement supertree of T with as many leaves
as possible. The maximum agreement supertree problem (MASP) is: Given a set T of
distinctly leaf-labeled, rooted, unordered trees, output a maximum agreement supertree
of T .

An agreement subtree of T is a distinctly leaf-labeled tree U such that�(U ) ⊆ S and
U is isomorphic to Ti | �(U ) for every Ti ∈ T . A maximum agreement subtree of T is
an agreement subtree of T with the maximum possible number of leaves. The maximum
agreement subtree problem (MAST)4 is to find a maximum agreement subtree of T .

Throughout this paper, we let n denote the cardinality of the leaf set and k the number
of input trees, i.e., n = ∣∣⋃

Ti∈T �(Ti )
∣∣ and k = |T | in the problem definitions above.

Furthermore, we let D = maxTi∈T
{
deg(Ti )

}
, where deg(Ti ) is the degree5 of Ti . We

assume that none of the trees in T has a node with degree 1, so that each tree contains
O(n) nodes. (Given an instance with one or more degree 1 nodes, we can replace Ti by
Ti | S for all Ti ∈ T in total time which is linear in the input size.) Note that if we are
given a subset S′ of S which is consistent with T , then we can efficiently construct a total
agreement supertree of T | S′ using the algorithm for TASP by Henzinger et al. [18]
(see Section 1.2 below and also Lemma 5.1 in Section 5). Hence, in the remainder of
this paper, we focus on the subproblem of MASP of computing a maximum cardinality
subset S′ of S such that S′ is consistent with T .

A distinctly leaf-labeled, binary, rooted, unordered tree with three leaves is called a
rooted triplet. The unique rooted triplet on leaf set {x, y, z} in which the lowest common
ancestor of x and y is a proper descendant of the lowest common ancestor of x and z (or,
equivalently, where the lowest common ancestor of x and y is a proper descendant of the
lowest common ancestor of y and z) is denoted by ({x, y}, z). For example, ({c, d}, a)
denotes the rooted triplet on the right in Figure 1.1.

1.2. Previous Results. Comprehensive surveys of existing methods for constructing
supertrees can be found in [5], [24], and [26]. Below, we mention some known results
related to MASP.

Aho et al. [1] presented an algorithm which can be used to solve TASP in O(kn)
time when all trees in T are rooted triplets. Several years later, Henzinger et al. [18]
showed how to modify the algorithm to solve TASP for any T in min

{
O(Nn0.5), O(N+

n2 log n)
}

time,6 where N =∑
Ti∈T |Ti | is the total number of nodes in T . In contrast,

the analog of TASP for unrooted trees is NP-hard, even if all of the input trees are

4 MAST is also referred to in the literature as the maximum homeomorphic subtree problem (MHT).
5 The degree of a node u in a rooted tree is the number of children of u. The degree of a rooted tree T is the
maximum degree of all nodes in T .
6 By replacing the deterministic algorithm for dynamic graph connectivity used by Henzinger et al., the running
time is improved to min{O(N log2 n), O(N + n2 log n)}. See Lemma 5.1 in Section 5.
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quartets (distinctly leaf-labeled, unrooted trees each having four leaves and no nodes
with precisely two neighbors) [27]. A polynomial-time algorithm for computing an
unrooted total agreement supertree if one exists (in fact, the best such tree according to
one of four optimization criteria) when all k input trees are binary and k = O(1) was
given by Bryant in [7].

The computational complexity of MAST has been studied extensively (e.g., [3], [6],
[9]–[13], [16], [17], [21]–[23], [28]). Today, the fastest known algorithm for MAST
for two trees, invented by Kao et al. [23], runs in O

(√
Dn log(2n/D)

)
time, which is

O(n log n) when D = O(1) and O(n1.5) when D is unrestricted.
Amir and Keselman [3] considered the case of k ≥ 3 input trees. They proved that

MAST is NP-hard for three trees with unrestricted degrees, but solvable in polynomial
time for three or more trees if the degree of at least one of the trees is bounded by a
constant. For the latter case, Farach et al. [10] gave an algorithm with improved efficiency
running in O(kn3 + nd) time, where d is an upper bound on at least one of the input
trees’ degrees; Bryant [6] proposed a conceptually different algorithm with the same
running time.

Hein et al. [17] proved the following inapproximability result: MAST for three trees
with unrestricted degrees cannot be approximated within a factor of 2logδ n in polynomial
time for any constant δ < 1, unless NP⊆DTIME[2polylog n]. Ga̧sieniec et al. [16] proved
that MAST cannot be approximated within a factor of nε for any constant ε where
0 ≤ ε < 1

9 in polynomial time unless P = NP, even for instances containing only trees
of height 2, and showed that if the number of trees is bounded by a constant and all the
input trees’ heights are bounded by a constant then MAST can be approximated within
a constant factor in O(n log n) time.

A problem related to MASP and MAST is the maximum refinement subtree prob-
lem (MRST). Its goal is to construct a tree W with�(W ) ⊆ S which maximizes |�(W )|
such that for each Ti ∈ T , Ti | �(W ) can be obtained from W by applying a series of
edge contractions. MRST is NP-hard for k = 2 if D is unrestricted [17] but solvable in
polynomial time if k = O(1) and D = O(1) [14].

Another related problem is the maximum compatible subset of rooted triplets prob-
lem (MCSR) in which the input is a set T of rooted triplets and the objective is to find a
T ′ ⊆ T of maximum cardinality such that there exists a total agreement supertree of T ′.
MCSR is NP-hard [6], [20]; two polynomial-time approximation algorithms for MCSR
were given in [16].

1.3. Our Results and Organization of the Paper. In Section 2 we make use of known
positive and negative results for MAST to obtain an efficient algorithm for MASP re-
stricted to k = 2 and an NP-hardness proof for MASP restricted to any fixed k ≥ 3,
respectively. The algorithm for k = 2 runs in O

(√
D n log(2n/D)

)
time, which is

O(n log n) when D = O(1) and O(n1.5) when D is unrestricted. Then, in Section 3 we
present a more complex MAST-based algorithm for solving MASP with D = 2. It runs
in O(k(2n2)3k2

) time, which is polynomial when k = O(1). In Section 4 we prove that
MASP is NP-hard even if all of the input trees are required to be rooted triplets (i.e.,
D = 2 and k is unrestricted). Finally, in Section 5, we describe a simple polynomial-time
approximation algorithm for MASP which is guaranteed to find an approximate solution
of size at least (log n)/n times the number of leaves in an optimal solution.
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2. Preliminaries. We first investigate the close relationship between MASP and MAST.

LEMMA 2.1. For any set T = {T1, T2, . . . , Tk} of distinctly leaf-labeled, rooted, un-
ordered trees such that �(T1) = �(T2) = · · · = �(Tk), an optimal solution to MASP
for T is an optimal solution to MAST for T and vice versa.

PROOF. Write S = �(T1) = �(T2) = · · · = �(Tk), let Q be any agreement supertree
of T , and let S′ = �(Q). Then, by definition, Q | �(Ti | S′) = Ti | S′ for every Ti ∈ T .
Now, �(Ti | S′) = S ∩ S′ = S′, so Ti | S′ = Q | S′ = Q for every Ti ∈ T , which
means that Q is an agreement subtree of T . Conversely, let U be an agreement subtree
of T whose leaves are distinctly labeled by some set S′. For every Ti ∈ T , we have
Ti | S′ = U . Then U | �(Ti | S′) = (Ti | S′) | �(Ti | S′) = Ti | S′ for every Ti ∈ T ,
i.e., U is an agreement supertree of T .

Now, suppose X is an optimal solution to MASP for T but not to MAST for T . Then
any optimal solution Y to MAST for T is a better solution to MASP for T than X .
Contradiction. The other case is analogous.

THEOREM 2.2. MASP with k = 2 can be solved in O
(√

D n log(2n/D)
)

time.

PROOF. Given an instance T = {T1, T2} of MASP with k = 2, let L = �(T1)∩�(T2)

and run the algorithm of Kao et al. [23] on the instance T | L to obtain a maximum
agreement subtree U of T | L . This takes O

(√
D n log(2n/D)

)
time. By Lemma 2.1,

U is also a maximum agreement supertree of T | L . Next, for every leaf which appears
in exactly one of T1 and T2, insert it into U according to its position in T1 or T2. More
precisely, let X = L\�(U ) and first compute T ′1 = T1 | (�(T1)\X) and T ′2 = T2 |
(�(T2)\X) in O(n) time. For any node u ∈ U , let T ′1(u) and T ′2(u) be the nodes in T ′1
and T ′2 respectively corresponding to u. Construct a tree Q as follows: initially, set
Q = T ′1, then for each edge (u, v) of U , where we assume u is the parent of v, replace
the edge in Q between T ′1(v) and its parent with the path in T ′2 between T ′2(v) and T ′2(u).
Q can be constructed using a total of O(n) time.

Q is an agreement supertree of T because Q | �(T1) = T ′1 = T1 | (�(T1)\X) =
T1 |

(
(�(T1)\�(T2)) ∪ �(U )

) = T1 | �(Q), where the last equality follows from
the relation �(Q) = �(U ) ∪ (�(T1)\�(T2)) ∪ (�(T2)\�(T1)). In the same way, Q |
�(T2) = T2 | �(Q). Furthermore, Q is a maximum agreement supertree of T because
otherwise there would exist an agreement supertree Q∗ of T with more leaves than Q,
and then Q∗ | L is an agreement subtree of T | L by the proof of Lemma 2.1 and Q∗ | L
has |�(Q∗) ∩ L| > |�(U )| leaves, which contradicts that U is a maximum agreement
subtree of T | L .

The running time given in Theorem 2.2 is O(n log n) for two trees whose degrees are
bounded by a constant and O(n1.5) for two trees with unrestricted degrees.

THEOREM 2.3. For any fixed k ≥ 3, MASP with unrestricted D is NP-hard.
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PROOF. Let T be an arbitrary instance of MAST. Any leaf which does not belong
to L = �(T1) ∩ �(T2) ∩ · · · ∩ �(Tk) cannot appear in an agreement subtree of T ,
so a maximum agreement subtree of T | L is also a maximum agreement subtree
of T . The former is in turn equal to a maximum agreement supertree of T | L by
Lemma 2.1. Hence, an algorithm for solving MASP could be used to solve MAST. The
theorem now follows from the NP-hardness of MAST for any fixed k ≥ 3 when D is
unrestricted [3].

The proof of Theorem 2.3 also implies that the inapproximability results of [16]
and [17] for MAST mentioned in Section 1.2 hold for MASP as well.

3. A Polynomial-Time Algorithm for MAST with D = 2 and k = O(1). In this
section we show how MASP restricted to D = 2 can be reduced to MAST for a set of k
distinctly leaf-labeled binary trees having O((2n)k

2
) leaves. Thus, we can solve MASP

with D = 2 in polynomial time if k = O(1).
Without loss of generality, assume that every a ∈ S appears in at least two trees in T .

(If a appears in exactly one tree in T , we can obtain a maximum agreement supertree
of T as follows: (1) remove a from T ; (2) compute a maximum agreement supertree T ′

for the modified T ; and (3) insert a into T ′ according to its position in the original T ,
as described in the proof of Theorem 2.2 above.)

Our transformation consists of two steps. MASP is first transformed to MAST for
non-distinctly leaf-labeled trees; then the latter problem is transformed to MAST. Here,
by a homeomorphic subtree of a (distinctly or non-distinctly) leaf-labeled tree R, we
mean a tree which is isomorphic to R | L for some subset L of the leaves of R, and by an
agreement subtree of a setR = {R1, R2, . . . , Rk} of non-distinctly leaf-labeled trees, we
mean a distinctly leaf-labeled tree which is a homeomorphic subtree of every Ri ∈ R.
MAST for non-distinctly leaf-labeled trees is defined as: Given a set R of k rooted,
unordered trees which are leaf-labeled by a set S and where each leaf label may occur
several times in each tree, find an agreement subtree of R with as many leaves as
possible.

We now describe the first step, i.e., the transformation from MASP to MAST for a
setR = {R1, R2, . . . , Rk} of non-distinctly leaf-labeled binary trees. For every Ti ∈ T ,
construct Ri using the following routine:

1. Set Ri,0 = Ti and L0 = �(Ti ).
2. For j = 1 to k do

(a) Let L j = L j−1 ∪�(Tj ) and let U = Tj | (L j\L j−1).
(b) Initially, set Ri, j = Ri, j−1. Attach |�(U )| copies of U to every edge of Ri, j .

Next, let r be a new node having the current root of Ri, j and the root of another
copy of U as its two children, attach |�(U )|−1 copies of U to the edge between
r and the root of Ri, j , and make r the new root of Ri, j .

3. Set Ri = Ri,k .

See Figures 3.1 and 3.2 for an example. For every i ∈ {1, 2, . . . , k}, any leaf in�(Ti )

appears exactly once in Ri whereas multiple copies of all leaves not in�(Ti ) are inserted
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T1: T3:T2: T4:

b

a

fd

e

d ecb f

d

c

ba

Fig. 3.1. Four input trees T1, T2, T3, and T4.

at all potential positions at which they might appear in an MASP (see Lemma 3.2). Based
on the above construction, Ti is a homeomorphic subtree of Ri . In addition, the setR has
the following properties.

LEMMA 3.1. For every Ri ∈ R, the number of leaves in Ri is at most (2n2)k .

PROOF. Fix i ∈ {1, 2, . . . , k}, write sj = |L j | for all 0 ≤ j ≤ k, and let tj be the
number of leaves of Ri, j . We claim that tj ≤ (2s2

j )
j+1 if j < i and that tj ≤ (2s2

j )
j if

j ≥ i .
When j = 0, tj = |�(Ti )| ≤ 2s2

0 . In iteration j ≥ 1, Ri, j−1 has 2tj−1 − 2 edges and
the number of leaves of U is sj − sj−1, so at most (2tj−1 − 1) · (sj − sj−1) copies of U
are inserted to obtain Ri, j , which gives us tj ≤ tj−1 + 2tj−1 · (sj − sj−1)

2 ≤ 2tj−1 · s2
j .

R2 :

ff

ff

db

c a

a f cf

cff
f

f

f

f

a f cf

f
a ff

f

f

f

e

c a

a f cf

cff
f

f

f

f

a f cf

f
a ff

f

f

f

ca ff

a f cf

f

f

f

f

f

Fig. 3.2. R2(= R2,4) is constructed from the trees in Figure 3.1. The marked nodes are the ones that originate
from T2.
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In iteration i , no leaves are inserted, i.e., si − si−1 = 0, and we have ti = ti−1. Now, the
claim follows by induction on j and using the fact that sj−1 ≤ sj for all j , together with
ti = ti−1.

Finally, sk = n gives tk ≤ (2n2)k .

LEMMA 3.2. For any tree X which is distinctly leaf-labeled by some S′ ⊆ S, X is an
agreement supertree of T if and only if X is an agreement subtree ofR.

PROOF. (←) Suppose X is an agreement subtree ofRwith�(X) = S′. For any Ri ∈ R
and S∗ ⊆ S, denote by Ri‖S∗ the set of all homeomorphic subtrees of Ri which are
distinctly leaf-labeled by S∗. Observe that Ri‖�(Ti ) = {Ti }. For every i , X ∈ Ri‖S′
by the definition of agreement subtree, so X | �(Ti ) belongs to (Ri‖S′) | �(Ti ) =
Ri‖(S′ ∩�(Ti )) = (Ri‖�(Ti )) | S′ = {Ti | S′}, i.e., X |�(Ti ) = Ti |�(X). This shows
that X is an agreement supertree of T .

(→) Suppose X is an agreement supertree of T . Consider a fixed i . We prove that
X | L j is a homeomorphic subtree of Ri, j for every j ∈ {0, 1, 2, . . . , k}. When j = 0,
X | L0 = X | �(Ti ) = Ti | �(X) is a homeomorphic subtree of Ti = Ri,0. Next,
assume X | L j−1 is a homeomorphic subtree of Ri, j−1. Let A be the set of maximal
subtrees of X | L j induced by the set of nodes which are not on any path between
two leaves from X | L j−1. Each A ∈ A is a homeomorphic subtree of U (this is
because A is a homeomorphic subtree of X | (L j\L j−1) and therefore a homeomorphic
subtree of X | �(Tj ) = Tj | �(X), so we have A = (Tj | �(X)) | �(A) = Tj |
�(A); furthermore,�(A) ⊆ (L j\L j−1)which means that A is a homeomorphic subtree
of Tj |(L j\L j−1) = U ). Then, since |�(U )| copies of U are attached to each edge
of Ri, j−1 and above the root to obtain Ri, j and sinceA contains at most |�(U )| elements,
it follows that X | L j must be a homeomorphic subtree of Ri, j . Therefore, X | Lk = X is
a homeomorphic subtree of Ri,k = Ri for every i = 1, 2, . . . , k, i.e., X is an agreement
subtree ofR.

Next, we transform MAST for the setR of non-distinctly leaf-labeled binary trees to
MAST for a set P = {P1, P2, . . . , Pk} of binary trees which are distinctly leaf-labeled
by a set

{
a1

b1,b2,...,bk
, a2

b1,b2,...,bk
| a ∈ S, 1 ≤ i ≤ k, 1 ≤ bi ≤ γa[i]

}
, where γa[i] is the

number of occurrences of leaf label a in Ri .
To describe the transformation, we need some additional notation. For every

a ∈ S, define a([b1..d1], [b2..d2], . . . , [bk ..dk]), where bi and di are positive
integers with bi ≤ di for all 1 ≤ i ≤ k, to be a rooted caterpillar7 with 2

∏k
i=1(di−bi+1)

leaves labeled (in order of non-decreasing distance from the root) by
a1

b1,b2,...,bk
, a2

b1,b2,...,bk
, a1

b1,b2,...,bk+1, a2
b1,b2,...,bk+1, . . . , a1

d1,d2,...,dk
, a2

d1,d2,...,dk
. Define ā

([b1..d1], [b2..d2],. . . , [bk ..dk]) as the rooted caterpillar a([b1..d1], [b2..d2],. . . , [bk ..dk])
but where the leaf ordering has been reversed. For every leaf in Ri labeled by a, such a
leaf is called the j th occurrence of a in Ri if, according to pre-order traversal of Ri , it is
the j th visited leaf which is labeled by a.

7 A rooted caterpillar is a rooted, unordered, distinctly leaf-labeled binary tree where every internal node has
at least one child which is a leaf.
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1,4,13,1

1,4,14,1

1,10,14,1

1,10,14,1

1,1,1,11,1,1,1

2a
1a

2a 1,10,13,1

1a 1,1,2,1

2a1a

1,4,1,1
1

2a 1,4,1,1

1a 1,4,2,1

2a
1a2a

a

1,4,14,1

Fig. 3.3. For the problem instance shown in Figure 3.1, we obtain γa[1] = 1, γa[2] = 10, γa[3] = 14, and
γa[4] = 1. Hence, when constructing P1, the single occurrence of leaf a in R1 will be replaced by the caterpillar
ā([1..1], [1..10], [1..14], [1..1]) shown on the left. Similarly, when constructing P2, the fourth occurrence of
leaf a in R2 will be replaced by the caterpillar a([1..1], [4..4], [1..14], [1..1]) shown on the right.

For i = 1, 2, . . . , k, the tree Pi is constructed from Ri by replacing, for every a ∈ S,
the leaves labeled by a with caterpillars a() or ā() as follows (see Figure 3.3 for an
example):

1. Set Pi = Ri .
2. For every a ∈ S,

— if Ti is the first tree containing a among T1, T2, . . . , Ti , then (in this case, Pi

contains exactly one a, that is, γa[i] = 1) replace a in Pi by the caterpillar
ā([1..γa[1]], . . . , [1..γa[i − 1]], [1..1], [1..γa[i + 1]], . . . , [1..γa[k]]);

— else for j = 1, 2, . . . , γa[i], replace the j th occurrence of a in Pi by the caterpillar
a([1..γa[1]], . . . , [1..γa[i − 1]], [ j.. j], [1..γa[i + 1]], . . . , [1..γa[k]]).

Based on the construction, it is easy to check that all trees Pi are distinctly labeled
by {a1

b1,b2,...,bk
, a2

b1,b2,...,bk
| a ∈ S, 1 ≤ i ≤ k, 1 ≤ bi ≤ γa[i]}. Also, for every label

a ∈ S, there exists exactly one tree Pi which contains the caterpillar ā() while the rest
of the trees in P contain caterpillars of the form a(). Below, more properties of P are
described.

LEMMA 3.3. For every Pi , |�(Pi )| = O((2n2)k
2
).

PROOF. For every a ∈ S and 1 ≤ i ≤ k, γa[i] ≤ (2n2)k by Lemma 3.1. Note that Pi is
created by replacing every leaf in Ri by a caterpillar having at most 2 · γa[1] · · · γa[i −
1] ·γa[i +1] · · · γa[k] = O(21+k(k−1) ·n2k(k−1)) leaves. By Lemma 3.1, each Ri contains
O((2n2)k) leaves. The lemma follows.

LEMMA 3.4. For any a ∈ S, an MAST ofP has at most two leaves of the form a
b1,b2,...,bk
.

PROOF. By the problem definition, the label a appears in at least two trees, say, Ti and Tj

where i < j . By our construction, all leaves of the form a
b1,b2,...,bk
in Pi must appear in ex-

actly one caterpillar ā([1..γa[1]], . . . , [1..γa[i−1]], [1..1], [1..γa[i+1]], . . . , [1..γa[k]])
while they appear in caterpillars of the form a() in Pj . Since the leaves belonging to two



302 J. Jansson, J. H.-K. Ng, K. Sadakane, and W.-K. Sung

caterpillars a() and ā() are in reverse order relative to each other, any agreement subtree
of Pi and Pj can contain at most two leaves of the form a
b1,b2,...,bk

. As an MAST of P
must be an agreement subtree of Pi and Pj , the lemma follows.

LEMMA 3.5. For any integer x , the size of the MAST ofR is ≥ x if and only if the size
of the MAST of P is ≥ 2x .

PROOF. (→) Suppose X is an agreement subtree of R such that |�(X)| ≥ x . Then X
is a homeomorphic subtree of Ri for i = 1, 2, . . . , k. For every leaf 
 in X which is
labeled by some a ∈ S, we associate with it a vector ( j a

1 , j a
2 , . . . , j a

k ) such that, for any
i , 
 is the j a

i th occurrence of a in Ri according to pre-order traversal. We construct Y by
replacing the leaf 
 in X by a tree with two child leaves which are labeled by a1

j a
1 , j a

2 ,..., j a
k

and a2
j a
1 , j a

2 ,..., j a
k
. It is easily checked that Y is an agreement subtree of P , whose size is

≥ 2x .
(←) Let Y be is a maximum agreement subtree of P such that |�(Y )| ≥ 2x . Let

L ′(a) = {a
b1,b2,...,bk
∈ �(Y )} and L = {L ′(a) | |L ′(a)| �= 0 and a ∈ S}. By Lemma 3.4,

the size of each set L ′(a) in L is at most two. Suppose L contains at most x − 1 sets.
Then |�(Y )| =∑

L ′∈L |L ′| ≤ (x − 1)2 < 2x ≤ |�(Y )|, which is a contradiction, so L
contains at least x sets. For each L ′ ∈ L, we choose a particular a
b1,b2,...,bk

and denote
it by ch(L ′). Let LY ′ =

⋃
L ′∈L ch(L ′) and Y ′ = Y |LY ′ . Then |LY ′ | = |L| ≥ x . Relabel

every leaf a
b1,b2,...,bk
in Y ′ by a and generate a tree X . It is easy to verify that X is a

homeomorphic subtree of R1, R2, . . . , Rk . This direction follows.

A maximum agreement supertree of T can now be computed by applying the algo-
rithm of Bryant [6] or Farach et al. [10] (see Section 1.2) to P . Since the number of
leaves in P is O((2n2)k

2
) and all trees are binary, we obtain the main theorem of this

section.

THEOREM 3.6. Given a set of k binary trees T which are labeled by n distinct labels,
their maximum agreement supertree can be computed in O(k(2n2)3k2

) time.

4. MASP with D = 2 Is NP-Hard. Theorem 2.3 states that MASP is an NP-hard
problem for any fixed k ≥ 3 when D is unrestricted. We now show that MASP remains
NP-hard if restricted to instances with D = 2 but where k is left unrestricted. In fact, we
prove that MASP is NP-hard even if all of the input trees are required to be rooted triplets.
Our NP-hardness proof consists of a polynomial-time reduction from the independent
set problem which is known to be NP-hard (see, e.g., [15]).

THE INDEPENDENT SET PROBLEM.

Instance: An undirected graph G = (V, E) and a positive integer I ≤ |V |.
Question: Is there a subset V ′ of V with |V ′| = I such that V ′ is an independent set,

i.e., such that no two vertices in V ′ are joined by an edge in E?
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THE MAXIMUM AGREEMENT SUPERTREE PROBLEM RESTRICTED TO ROOTED TRIPLETS,
DECISION PROBLEM VERSION (MASPR-D).

Instance: A set T of rooted triplets with leaf set S and a positive integer K ≤ |S|.
Question: Is there a subset S′ of S with |S′| = K which is consistent with T ?

THEOREM 4.1. MASP is NP-hard even if restricted to rooted triplets.

PROOF. Given an arbitrary instance (G, I ) of the independent set problem, construct
an instance of MASPR-d as follows. Let S = V ∪ {

ze | e ∈ E
}

and set K = I + |E |.
For each edge e in E , include the two rooted triplets ({a, ze}, b) and ({b, ze}, a) in T ,
where e = {a, b}.

CLAIM. G has an independent set of size I if and only if there exists a subset S′ of S of
size K which is consistent with T .

PROOF OF CLAIM. Suppose there exists an independent set W in G of size I . Let
S′ = W ∪ {

ze | e ∈ E
}
. Then T | S′ contains no rooted triplets (if T | S′ contained

some rooted triplet ({x, z{x,y}}, y) then x and y would have to be joined by an edge in E
and thus could not both belong to W , which is a contradiction) so the tree consisting
of a root node with |S′| children distinctly labeled by S′ is a total agreement supertree
of T | S′. Thus, S′ is consistent with T and |S′| = I + |E | = K .

Conversely, suppose there exists a consistent subset S′ of S of size K . For each
{x, y} ∈ E , if z{x,y} �∈ S′ but at least one of x and y belongs to S′ then replace x or y in S′

by z{x,y}, and if none of x , y, and z{x,y} is contained in S′ then replace any element in S′

belonging to V by z{x,y} (such an element always exists because K > |E |). The resulting
set S′′ will have the form W ∪ {

ze | e ∈ E
}

with W ⊆ V and |S′′| = K , and will still
be consistent with T . Next, observe that by the construction of T , for each {x, y} ∈ E
at most two of x , y, and z{x,y} can be included in any subset of S which is consistent
with T . Therefore, for each {x, y} ∈ E , since z{x,y} ∈ S′′ it holds that S′′ cannot contain
both x and y. Thus, W is an independent set and |W | = K − |E | = I .

Hence, MASPR-d is NP-hard and it follows that MASP restricted to rooted triplets
is NP-hard.

5. A Polynomial-Time (n/log n)-Approximation Algorithm. By the comments fol-
lowing Theorem 2.3, it is highly unlikely that MASP in its general form can be solved
exactly or even approximated efficiently (say, within a constant factor) in polynomial
time. However, we can adapt one of Akutsu and Halldórsson’s approximation algorithms
for the largest common subtree problem in [2] to obtain the following polynomial-time
(n/log n)-approximation algorithm for MASP:

Arbitrarily partition S into �n/log n� disjoint sets S1, S2, . . . , S�n/log n�, each of
size at most �log n� + 1. Then check every subset S′i of every set Si to see if
S′i is consistent with T , and let Z be one such subset of maximum cardinality.
Return Z .
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To see that this algorithm always returns a solution with at least (log n)/n times the
number of leaves in an optimal solution, let S∗ be a maximum consistent leaf subset.
Because of the pigeonhole principle, at least one of S1, S2, . . . , S�n/log n� contains ≥
1/�n/log n� of the elements in S∗; thus,

|Z | ≥ |S∗|
�n/log n� ≥

|S∗|
n/log n

.

Before describing how to implement the algorithm, we note that the deterministic
algorithm for dynamic graph connectivity employed in the algorithm for TASP of Hen-
zinger et al. [18] can be replaced with a more recent one due to Holm et al. [19] to yield
the following improvement.

LEMMA 5.1. TASP is solvable in min
{

O(N log2 n), O(N+n2 log n)
}

time, where N =∑
Ti∈T |Ti | is the total number of nodes in T .

PROOF. In the proof of Theorem 1 in [18], if the deterministic fully dynamic graph
connectivity algorithm of Holm et al. [19] which takes O(log2 n) amortized time per
update and which answers each connectivity query in O(log n/log log n) time is used
instead, then the m queries and O(m) updates to Algorithm A in [18] cost a total of
O(m log2 n) time (rather than O(mn1/2)).

To implement the approximation algorithm given above, first construct all the sets
T | Si using a total of O((n/log n) · kn) time. Next, each Si has at most 2log n+2 = O(n)
subsets that need to be considered. Each such subset S′i can be evaluated by computing
(T | Si ) | S′i in O(k ·log n) time and then applying the algorithm in Lemma 5.1; here there
are n̂ = O(log n) leaves and the total size of T | S′i is N̂ = O(k log n) so this step takes
X = min

{
O(N̂ log2 n̂), O(N̂ + n̂2 log n̂)

} = min
{

O(k log n · (log log n)2), O(k log n+
log2 n · log log n)

}
time. The total running time is therefore O((n/log n) ·kn+(n/log n) ·

n · (k · log n + X)) = O(n2) ·min
{

O(k · (log log n)2), O(k + log n · log log n)
}
.

If all of the input trees are rooted triplets, the running time can be further improved
because then: (1) all the sets T | Si can be obtained in O(k) time; (2) each T | Si contains
O(log3 n) rooted triplets since each Si contains at most log n + 2 leaves; and (3) each
S′i can be evaluated in O(log3 n) time by testing each of the O(log3 n) triplets in T | Si

for membership in T | S′i and then running the algorithm in Lemma 5.1 (now there are
n̂ = O(log n) leaves and k̂ = O(log3 n) triplets, so this takes min

{
O (̂k log2 n̂), O (̂k +

n̂2 log n̂)
} = O(log3 n) time). Hence, for this case the total running time is O(k +

(n/log n) · n · log3 n) = O(k + n2 log2 n).

THEOREM 5.2. MASP can be approximated within a factor of n/log n in O(n2) ·
min

{
O(k ·(log log n)2), O(k+ log n · log log n)

}
time. MASP restricted to rooted triplets

can be approximated within a factor of (n/log n) in O(k + n2 log2 n) time.

Finally, we remark that MAST can be approximated within a factor of (n/log n) in
O(kn2) time using the same technique.
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Table 1. Summary of results.

MASP k = 2 k = O(1) k unrestricted

D = 2 O(n log n) O(k(2n2)3k2
) NP-hard

(↓) (Theorem 3.6) (Theorem 4.1)
D = O(1) O(n log n) Open NP-hard

(Theorem 2.2) (↑)
D unrestricted O(n1.5) NP-hard NP-hard

(Theorem 2.2) (Theorem 2.3) (← or ↑)

6. Concluding Remarks. In Table 1, we summarize our results on how restricting the
parameters D and k affects the computational complexity of MASP. Arrows indicate
when a result follows directly from another by generalization (e.g., MASP with D = 2
and unrestricted k is NP-hard, so the more general case D = O(1) and unrestricted k
cannot be any easier) or by specialization (e.g., the algorithm for D = O(1) and k = 2
still works for the more restricted case D = 2 and k = 2).

We have also described a polynomial-time (n/log n)-approximation algorithm for
MASP (Theorem 5.2).

It is interesting to note that MASP with D = 2 and unrestricted k is NP-hard while, on
the other hand, MAST with D = 2 and unrestricted k can be solved in O(kn3) time, i.e., in
polynomial time, using the algorithm of Bryant [6] or Farach et al. [10] (see Section 1.2).
This means that for certain restrictions on the parameters D and k, MASP and MAST
cannot have the same computational complexity unless P = NP. Furthermore, although
our results indicate that MASP is computationally harder than MAST, the maximum
refinement subtree problem (see Section 1.2) does not seem any easier than MASP since
it is NP-hard already for k = 2 when D is unrestricted [17].

An open problem is to determine the computational complexity of MASP with D =
O(1) and k = O(1). We believe that this case is solvable in polynomial time. We would
also like to know if the running time of our algorithm for the case D = 2 and k = O(1)
can be improved.

Addendum. Independently of this paper, Berry and Nicolas [4] recently obtained
results for MASP restricted to k = 2 similar to our results presented in Section 2. In
addition, they considered the intractability of the general case of MASP in terms of a
parameter p that denotes the minimum number of leaves to remove from the input trees
so that they become isomorphic, and extended their results to the maximum refinement
supertree problem (referred to in their paper as the maximum compatible supertree
problem), which is a natural generalization of the maximum refinement subtree problem.
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