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Abstract.  Research involving different forms of networks, such as internet 
networks, social networks, and cellular networks, has increasingly become an 
important field of study.   From this work, a variety of different scaling laws have 
been discovered.  However, these aspatial laws, stemming from graph theory, often 
do not apply to spatial networks.  When searching for network holes, results from 
graph theory frequently do not correlate with 2D spatial holes that enforce 
planarity.  We present a general approach for finding holes in a 2D spatial network, 
and in particular for a network representing street centrelines of an area in 
Washington, D.C.  This methodology involves finding graph holes that can be 
restricted to 2D spatial holes by examining topological relationships between 
network features.  These spatial network holes gain significance as the number of 
edges encompassing the hole, and the length of these edges increase.  For this 
reason, our approach is designed to classify these holes into different sets based on 
the number of edges found and the length of those edges.  The results of this 
application provide valuable insights in the nature of the network, highlighting 
areas that we know from experience are poorly connected and thus suffer from low 
accessibility. 
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1   Introduction 

A network is a valuable representation of data. This data can be observably network in 
form, such as internet and street networks, or can be interpreted as a network, such as 
social and other relational networks. The benefit of representing data as a network lies in 
the graph theoretical measures available for network analysis.  Such benefits have 
resulted in an explosion of research towards the development of new network measures, 
and the representation of old data newly dressed as a network [8, 7]. 

Instances like the New York power outage in mid August 2003, and a similar Italian 
crisis in late September 2003, have highlighted holes that exist in infrastructural 
networks.  Similar holes can also be found in our social networks, giving power to certain 



players, and limiting information flow to others [1].  Holes have also formed the topic of 
substantial philosophical debate [3].  The significance of holes lies in their ability to 
obstruct the flow of information or substance through or over a network.  These areas 
tend to act as barriers to movement, where things are forced to travel around these holes 
in order to traverse the network. Whether that network represents social networks, 
transport networks, or any other data that can be represented as an adjacency matrix of 
relations, the hole forms a virtual object by affecting the rest of the network.  Therefore, 
detecting such holes within networks provides us with information about parts of the 
network that are poorly connected.  The automated discovery of 2D (two -dimensional) 
spatial network holes allows us to explore the impact of these holes on the 2D spatial 
network, thereby evaluating their importance to the processes operating upon this 
underlying fabric of structural relations [1]. 

This paper focuses on the algorithm for finding 2D spatial network holes, that is, those 
network holes that are found in planar-enforced topologies.  This algorithm involves a 
number of steps, beginning with a search for graph holes.  If these graph holes are 
established to remain holes under planar enforcement, they are graphically represented 
for visual analysis and measurement. This methodology is then applied to a case study of 
an urban street network in Washington D.C.  The underlying thesis is that large holes are 
more important because they identify parts of the network that need to be connected.  
Hence, filling a hole is likely to be of more value for larger holes, however “larger” is 
defined [1]. 

The remainder of this paper is structured as follows; Section 2 discusses background 
issues regarding the search for holes.   Section 3 describes the general methodology that 
forms the basis of a search for 2D spatial network holes, which is then applied to the case 
study of street networks in Section 4.  Section 5 concludes the paper.  

2   Background 

Because space is inherent in the structure of spatial networks, these unique networks 
cannot be fully understood with common graphic theoretic measurements.  Space 
confounds deterministic measures as it does stochastic measures through spatial 
autocorrelation.   For example, research by [8] has found that scale-free patterns that are 
found in a large range of networks, such as the world wide web and social networks, do 
not exist in geographic networks, such as internet routers and power grid structures.  
Similarly, spatial holes do not conform to traditional metrics. 

Loosely defined (see Section 3 for a formal definition), a network hole is a part of the 
network formed by four or more nodes that are connected by links, forming a non-
repeating path where the first node equals the last.  As a consequence of planar 
enforcement, graph holes do not equate to 2D spatial holes.  In figure 1 below, the nodes 
(A, B, C, D) and the edges linking them form a graph hole.  However, it does not form a 
spatial 2D hole as there is a crossing set of nodes and vertices, that is, nodes (D, E, B) 



and the edges connecting them.  Hence a general search for graph holes will include holes 
that are not 2D spatial holes. 

 
Fig. 1. Graph hole 

Furthermore, the problem of detecting spatial network holes is not merely a problem of 
shortest path analysis from a node back to itself.  As expressed in Figure 2, a spatially 
internal path (D, E, F, G, H, I, B) could be longer than the external path (A, B, C, D).  In 
a shortest path analysis from a node such as A, this would result in (A, B, C, D) being 
selected. 

 
Fig. 2. Graph holes versus spatial holes 

3   General Methodology 

In overview, the methodology for finding 2D network holes involves three steps which 
couple GIS with a program implemented in Java.  First, the network, represented as an 
adjacency matrix, is used to find graph holes.  Second, the results of the graph hole 
search are spatially filtered for 2D spatial network holes.  And finally, the output is 
visually represented for analysis. 
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3. 1 Graph Hole Search 

The problem of searching for holes in a network translates to a graph theoretical problem 
of searching for chordless cycles in a graph, also called graph holes.  Given a set of 
vertices V and edges E , we form a graph ( , )G V E .  A graph cycle C is a subset of the 

set of graph edges that forms a path, a sequence of non-repeating edges, where the first 
edge is also the last.  A chord of a cycle is an edge that joins two non-consecutive 
vertices of the cycle, that is, an edge not in the edge set of the cycle whose endpoints lie 
in the vertex set of C (Figure 3).  A chordless cycle of graph G is a graph cycle of length 
at least four in G that has no cycle chord [4]. 

 
 

Fig. 3. Graph cyle and chord 

The network to be analyzed must be represented as an adjacency matrix.  An adjacency 
matrix is a matrix with rows and columns that are labeled with the network’s nodes, or in 

terms of graph theory, graph vertices.  The adjacency matrix ( ) [ ]ijA A G a= =  is a 

n n×  matrix in which the 1ija =  if iv and jv , where ,i jv v V∈ , are adjacent and 

0ija =  otherwis e.  This adjacency matrix forms the input for the detection of chordless 

cycles or holes. 
The method for detecting chordless cycles was informed by the work of [5]. It was 

implemented in the Java programming language using the JAMA matrix library 
(available online at: http://math.nist.gov/javanumerics/jama/).  The algorithm is 
structured as follows: 

for (each edge {x, y} of a matrix) do { 

 for (each chordless path ≥  4) do { 

     if (the first vertex is connected to the last vertex) then{ 

chord

cycle 



         chordless path = chordless cycle 

         write chordless path to array 

    } 

 } 

} 

3.2 Spatial Hole Search 
 
Searching for spatial holes is based on the output of the graph hole search.   Each graph 
hole is checked to see whether it spatially contains a subgraph that connects at least two 
nodes of the hole.  The JTS Topology Suite, which is an API of 2D spatial predicates and 
functions, was utilized for searching for the spatial holes (available online at 
http://www.vividsolutions.com/jts/jtshome.htm). 

The general algorithm for searching for 2D spatial holes is as follows: 

for (each graph hole) do { 

 for (each node in the network) do { 

    if (there is no node spatially within the hole that connects   

        two unique nodes of hole) then { 

   write hole to spatial holes array 

    } 

 } 

} 

 
The result of this algorithm is an array of 2D spatial network holes that can be used for 

visualization and analysis. 

3.3 Spatial Hole Visualization 
 
The array of 2D spatial network holes is transferred into ESRI’s ArcGIS environment, 
and is manipulated with Visual Basic for Applications programming language.   Each 
node from the vector street network is coordinated with its corresponding node in the 
array of spatial holes. 

 The basic algorithm for transferring the array of holes into graphic polygons is as 
follows: 

for (each graph hole) do { 

  for (each arc in the network) do { 



    if (the edge contains two nodes that make up the hole) then{ 

          add edge vertices to point collection 

    } 

   } 

 create new polygon from point collection 

} 

 
A resulting polygon geometry file is created to visualize the relationships between 

each hole. This output also provides the means to calculate some basic measurements, 
such as the area and perimeter of each hole. 

4 Street Network Application 

A subset street network from Washington D.C. was selected in order to test the algorithm 
and explore its potential in the analysis of street network structure.  The street network is 
displayed below in Figure 4.  It is already visually evident that parts of the network will 
be more difficult to traverse, in particular where there are large areas without any 
crossing streets. 

 
Fig. 4. Selected street network in Washington D.C. 

4.1  Method and Results 

The method implemented for finding 2D spatial network holes in street networks 
involved a number of steps beyond the general methodology described in Section 3 
above.   A street centerline network provided by the Washington, D.C. government was 



used for the analysis .   Since these networks can vary in representation of real-world 
features, it is important to define some basic rules for the study area.  The data represents 
the theoretical centerline of the actual ground feature; with no more than one edge for 
each route (divided highways and boulevards are often represented with more than one 
edge).  Nodes define the start and end of each edge, and need to be placed where 
centerlines intersect each other.  Overpasses need to be represented so that the edges that 
meet at this area do not intersect; in other words, without a node present at the 
intersection.  For this  example, private drives and alleyways were excluded, as this study 
is only concerned with main thoroughfares.  Finally, any cul-de-sacs that are represented 
in a “lollipop” configuration should not be included, but should instead be shown with an 
ending edge. 

As mentioned earlier, the vector street network is transferred into an adjacency matrix 
by describing the relationships between each pair of nodes in the network.  Each node in 
this network has a relationship with one another through a connecting edge.  From this 
understanding, it was necessary to use the general algorithm below to build the adjacency 
matrix: 

create matrix consisting of columns and rows for each unique node 

for (each node in the network) { 

    for (each edge in the network) { 

        if (from-node or to-node of the edge matches the   

        coordinates of node) { 

            get the opposite node of either the from-node or to- 

            node and write a 1 in the node row, opposite node      

            column {x, y} value of the matrix 

       } 

  } 

} 

 
Once holes were found from the adjacency matrix produced from the algorithm above, 

holes defined with four edges were removed from the array, as they do not greatly impact 
on accessibility of the network.   

The results of the analysis are presented in Figure 5 below. The holes detected range in 
size from 5 edges to 15.  Clearly hole number 3 provides the largest barrier to traffic 
crossing from one side of the street network surrounding the hole to another.   
 
 

 



 

 

 

Fig. 5. Results of 2D spatial network hole search      Table 1.  Measurements of spatial 
network holes (meters)  

Furthermore, we can see from examining the measurements in Table 1 that hole 3 also 
has the largest perimeter and area, correlating with the relatively large number of nodes 
that make up this region.  We can therefore conclude that the network would benefit the 
most by having this hole crossed by an edge that divides the area and number of nodes 
the best.  Unfortunately, the presence of the rather large and historic National Cathedral 
may make this slightly difficult. 

4.2 Discussion  

Finding holes within the street networks gains significance by providing an indication of 
barriers to accessibility.  Street network holes can increase the cost of travel for 
individuals traversing the network from two locations on opposing sides of the hole.  This 
is a purely structural approach to accessibility, defining the potential of the network for 
impeding the flow of traffic, rather than more traditional approaches which incorporate 
patterns of land use as activity elements [6].  It provides a measure of accessibility that is 
inherent in the network structure.  Furthermore, holes identify areas that would be best 
suited for the addition of new roads, in order to benefit the entire network structure.  

Street network holes cannot be inferred from other transportation network metrics as 
there are no graph theoretic measures that capture the spatial hole either directly or 
indirectly.  The nodes and edges that form the hole do not give themselves away by local 
measures such as through lower node degree, that is, by fewer connections to those nodes 

Hole Area Perimeter 
1 23825 619 
2 42004 890 
3 255775 1983 
4 19882 690 
5 19676 556 
6 12306 455 
7 25280 637 
8 53566 1182 
9 27716 761 
10 17713 520 
11 105273 1794 
12 19401 595 
13 13898 501 
14 30090 718 
15 27720 796 
16 36430 843 
17 23173 618 



composing a hole.  Nor can holes be detected through global measures such as the 
diameter of the network, which is  the length of the shortest path between the most distant 
nodes in the graph, or indices such as the alpha index, which is a measure of connectivity 
comparing the number of cycles in a network with the maximum number of cycles. 

4.3 Limitations and Extensions 

Although this application is simple, it presents the first findings and analysis of spatial 
network holes.  Yet there are limitations to the example presented in this paper, which 
directs us to extending this work.  A limitation not recognized in example above may 
arise when the size of a hole in terms of the number of edges and nodes that describe it 
does not correlate with the area of the hole or perimeter of the hole.  In other words, we 
could have a hole that has a large number of edges  and nodes, but a rather small area and 
perimeter (or vice-versa).  For example, roundabouts are prevalent in the D.C. area, 
resulting from the large number of streets that converge on these small areas, and can 
produce smaller holes that are densely populated with nodes.  In these cases, naturally 
occurring in larger study areas, a ranking calculation would need to be developed 
incorporating the length of the edges in each hole. 

Furthermore, in certain cases, holes defined with less than four edges could turn out to 
be large areas that act as greater barriers to the network than normal.  An extreme 
scenario could present itself with the occurrence of a large area that is only connected 
through two edges, as in Figure 6.  This is likely to be the case in mountainous terrain.  
This area would be excluded from the results of the methodology discussed above, as 
holes are defined as having equal to or more than four edges .  A solution to this problem 
would be to increase the density of the nodes in the network by creating pseudo nodes if 
an edge exceeds a certain distance.  These pseudo nodes would not define intersections 
but produce the same results in the analysis . 
 
 
 
 

 

 

Fig. 6. Large hole consisting of only two nodes and edges 

A logical addition would be to weight the links based on factors such as the number of 
lanes, usage, or other factors that can affect the impedance of a route.  The results would 
then rank the holes according to importance based on these weights.  For example, holes 
can be found at various levels of connectivity through slicing those levels at specific 
weights.  In graph theory, the weighted adjacency matrix forms  a graph with multiple 

B A



edges connecting vertices which can be represented as a network together with a function 
which maps the edge set into the set of integers.  The resultant graph is termed a 
multigraph or hypergraph [2, 5].  Given a graph S is a subgraph of multigraph 

( , )M V E , where ( ) ( )V S V M⊆  and ( ) ( )E S E M⊆ , the level of connectivity 

i I∈  of S is thus defined as the union of all edges with a value greater than or equal to i, 
and their connected vertices.  That is, if  
 

iE ≠ ∅  

( )i
i I

E E S
=

=U  

 
The general algorithm discussed above could then be applied at particular levels of 
connectivity by specifying the value to be found in the entry of the matrix. 

Another approach to determining the importance of the hole is to analyze its impact on 
transportation paths.  The hole could be weighted according to the number of times it 
impedes the accessibility of an individual trip.  For example, a shortest path analysis 
could be executed for a specified origin-destination matrix, where if half of the nodes of a 
hole are used in the path, then that hole is impeding the flow.  Such an approach 
integrates this analysis method to traditional measures typically based on Origin-
Destination matrices.  The hole structure could also be incorporated into other current 
metrics of accessibility, particularly gravity-based measures, where the hole may add to 
the impedance function [4]. 

5. Conclusion and Future Work 

The search for 2D spatial network holes presents a new perspective on network structure, 
where the absence of network structure itself plays an important role in the nature of the 
network.  Finding these holes  allows us to evaluate the thesis that filling big and 
important holes.  The application example of the street network provides some first 
insights into how these holes may impact on the network and its use for transportation.   

Beyond the extensions proposed for street networks, this method has significant 
implications for networks in general, whether they are explicitly spatial or not.  As 
expressed in the introduction, spatial networks, such as infrastructural networks, are 
susceptible to failure . An analysis of spatial holes may provide insights into the reasons 
behind these breakdowns.  Furthermore, extending the dimensionality of these holes to 
three dimensions may provide insights into visual hollows that may have an impact on 
wayfinding research.   



6. References 

1. Atkin, R. H. (1977). Combinatorial Connectivities in Social Systems: an application of simplicial 
complex structures to the study of large organizations. Basel, Birkhauser Verlag. 

  
2. Berge, C. (1970). Graphs and Hypergraphs. Amsterdam, North-Holland Publishing Company. 

  
3. Casati, R. and A. C. Varzi (1994). Holes and Other Superficialities. Cambridge, MA, MIT Press. 

  
4. Chandrasekharan, N., V. S. Lakshmanan and M. Medidi (1993). Efficient Parallel Algorithms for 
Finding Chordless Cycles in Graphs. Parallel Processing Letters 3(2): 165-170.  

  
5. Chartrand, G. (1977). Introducutory Graph Theory. New York, Dover Publications. 

  
6. Handy, S. L. and D. A. Niemeier (1997). Measuring Accessibility: an Exploration of Issues and 
Alternatives. Environment and Planning A 29: 1175-1194.  

  
7. Jeong, H., Z. Néda and A. L. Barabási (2003). Measuring Preferential Attachment for Evolving 
Networks. Europhysics Letters 61: 567-572.  

  
8. Ravasz, E. and A. Barabasi (2003). Hierarchical Organization in Complex Networks. Physical 
Review E 67(026112).  

  
9. Watts, D. J. and S. H. Strogatz (1998). Collective Dynamics of 'Small-World' Networks. Nature 
393: 440-442.  

  
 

 
 


