Skip to main content

Numerical Implementation of Quantum Fluid Dynamics: A Working Example

  • Conference paper
Computational Science and Its Applications – ICCSA 2004 (ICCSA 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3044))

Included in the following conference series:

Abstract

In the last years new interest has been addressed to the fluid dynamical formulation of quantum mechanics of Madelung-De Broglie-Bohm. Various attempts to implement numerically this formulation have been presented recently concerning photodissociation and scattering, sharing the use of the lagrangian and semi-lagrangian method to discretize the spatial independent variables. The possibility of using moving numerical grids suited for wave packet propagation, in general computationally cheaper than fixed grids, is attractive but difficult when QFD is applied to molecular scattering. This aspect is discussed in the paper, and a particular solution of the problem is proposed. The result for transmission probability through the Eckart barrier as a function of momentum is obtained by Fourier transforming the final wave packet; the agreement with analytical results is good on a large range, the computational time is reasonable and the algorithm used is relatively simple in comparison to other ones proposed for solving this problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Madelung, V.E.: Z. Phys. 40, 332 (1926)

    Google Scholar 

  2. De Broglie, L.: C. R. Acad. Sci. Paris, 183, 447 (1926)

    Google Scholar 

  3. Bohm, D.: A Suggested Interpretation of the Quantum Theory in Terms of “Hidden” Variables. I. Phys. Rev. 85, 166 (1952)

    Article  MathSciNet  Google Scholar 

  4. Holland, P.R.: The Quantum Theory of Motion. Cambridge University Press, New York (1993)

    Book  Google Scholar 

  5. Selleri, F.: The Wave-Particle Duality. Plenum, New York (1992)

    Google Scholar 

  6. Burant, J.C., Tully, J.C.: Nonadiabatic dynamics via the classical limit Schroedinger equation. Journal of Chemical Physics 112, 6097 (2000)

    Article  Google Scholar 

  7. Lopreore, C.L., Wyatt, R.E.: Quantum Wave Packet Dynamics with Trajectories. Physical Review Letters 313, 189 (1999)

    Google Scholar 

  8. Bittner, E.R., Wyatt, R.E.: Integrating the quantum Hamilton–Jacobi equations by wavefront expansion and phase space analysis. Journal of Chemical Physics 113, 8888 (2000)

    Article  Google Scholar 

  9. Trahan, C.J., Wyatt, R.E.: An arbitrary Lagrangian-Eulerian approach to solving the quantum hydrodynamic equations of motion: equidistribution with “smart” springs. Journal of Chemical Physics 118, 4784–4790 (2003); and references therein

    Article  Google Scholar 

  10. Pagano, D.: Application of the Hydrodynamic Formulation of Quantum Mechanics to Atom-Surface Dynamics. Ph.D Thesis in Chimica dei Materiali Innovativi-XV Ciclo, University of Bari (2003)

    Google Scholar 

  11. Leforestier, C., Bergeron, G., Hiberty, P.C.: A quantum mechanical investigation of a collinear model for collision-induced dissociation. Chemical Physics Letters 84, 385–389 (1981)

    Article  Google Scholar 

  12. Hu, X., Ho, T., Rabitz, H.: Multivariate Radial Basis Interpolation for Quantum Fluid Dynamical Equations. Computers and mathematics with applications 43, 525–537 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Billing, G.D., Mikkelsen, K.V.: Advanced Molecular Dynamics and Chemical Kinetics, ch. 5

    Google Scholar 

  14. Kuppermann, A.: A Bohmian view of quantum reaction dynamics, oral presentation. In: Vth Workshop on Quantum Reaction Scattering, Dept. of Chemistry, University of Perugia (Italy), June 25-27 (1999)

    Google Scholar 

  15. Oriols, X., Martin, F., Sune, J.: Oscillatory Bohm trajectories in resonant tunneling structures. Solid State Communications 99, 123–128 (1996)

    Article  Google Scholar 

  16. Kendrick, B.K.: A new method for solving the quantum hydrodynamic equations of motion. Journal of Chemical Physics 119, 5805–5817 (2003)

    Article  Google Scholar 

  17. Baines, M.J.: Grid adaptation via node movement. Applied Numerical Mathematics 26, 77–96 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  18. Esposito. F: work in preparation

    Google Scholar 

  19. Manolopoulos, D.E., Light, J.C.: A log derivative formulation of reaction rate theory. Chemical Physics Letters 216, 18–26 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Esposito, F. (2004). Numerical Implementation of Quantum Fluid Dynamics: A Working Example. In: Laganá, A., Gavrilova, M.L., Kumar, V., Mun, Y., Tan, C.J.K., Gervasi, O. (eds) Computational Science and Its Applications – ICCSA 2004. ICCSA 2004. Lecture Notes in Computer Science, vol 3044. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24709-8_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24709-8_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22056-5

  • Online ISBN: 978-3-540-24709-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics