Skip to main content

Direct Simulation Monte Carlo Modeling of Non Equilibrium Reacting Flows. Issues for the Inclusion into a ab initio Molecular Processes Simulator

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3044))

Abstract

Direct Simulation Monte Carlo (DSMC) method for the modeling of non equilibrium reacting flows is presented. The is particularly suitable for the simulation of gas-phase systems with complex boundary conditions and with varying degrees of thermal and chemical non equilibrium. Since the description is done at the kinetic level, detailed information about the elementary processes, as derived from ab initio molecular dynamics calculations, can be used as input physical data for the simulation. These features make the DSMC method an ideal candidate for inclusion into a ab initio Molecular Processes Simulator for the gas phase.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bird, G.A.: Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Clarendon Press, Oxford (1994)

    Google Scholar 

  2. Wagner, W.: A Convergence Proof for Bird’s Direct Simulation Monte Carlo Method for the Boltzmann Equation. J. Stat. Phys. 66, 1011–1044 (1992)

    Article  MATH  Google Scholar 

  3. Dunn, S.M., Anderson, J.B.: Direct Monte Carlo simulation of chemical reaction systems: Internal energy transfer and an energy-dependent unimolecular reaction. J. Chem. Phys. 99, 6607–6612 (1993)

    Article  Google Scholar 

  4. Dunn, S.M., Anderson, J.B.: Direct Monte Carlo simulation of chemical reaction systems: Dissociation and recombination. J. Chem. Phys. 102, 2812–2815 (1995)

    Article  Google Scholar 

  5. Bruno, D., Capitelli, M., Longo, S.: DSMC modeling of vibrational and chemical kinetics for a reacting gas mixture. Chem. Phys. Lett. 289, 141–149 (1998)

    Article  Google Scholar 

  6. Longo, S., Bruno, D., Minelli, P.: Direct simulation of non-linear interparticle collisional relaxation of ensembles of two-level systems. Chem. Phys. 256, 265–273 (2000)

    Article  Google Scholar 

  7. Bruno, D., Capitelli, M., Esposito, F., Longo, S., Minelli, P.: Direct simulation of nonequilibrium kinetics under shock conditions in nitrogen. Chem. Phys. Lett. 360, 31–37 (2002)

    Article  Google Scholar 

  8. Bruno, D., Capitelli, M., Esposito, F., Longo, S., Minelli, P.: Direct Monte Carlo simulation of oxygen dissociation behind shock waves. AIAA paper 2003-4059 (2003)

    Google Scholar 

  9. Bruno, D., Capitelli, M., Longo, S.: Effect of translational kinetics on chemical rates in a Direct Simulation Monte Carlo model gas phase detonation. Chem Phys. Lett. 380, 383–390 (2003)

    Article  Google Scholar 

  10. Bruno, D., Cacciatore, M., Longo, S., Rutigliano, M.: Gas-surface scattering models for Particle Fluid Dynamics: A comparison between analytical approximate models and Molecular Dynamics calculations. Chem. Phys. Lett. 320, 245–254 (2000)

    Article  Google Scholar 

  11. Ivanov, M.S., Rogasinsky, S.V.: Analysis of numerical techniques of the direct simulation Monte Carlo method in the rarefied gas dynamics. Soviet J. Numer. Anal. Math. Modelling 3, 453–465 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  12. Koura, K., Matsumoto, H.: Variable soft sphere molecular model for air species. Phys. Fluids A 4, 1083–1085 (1992)

    Article  Google Scholar 

  13. Borgnakke, C., Larsen, P.S.: Statistical Collision Model for Monte Carlo Simulation of Polyatomic Gas Mixture. J. Comput. Phys. 18, 405–420 (1975)

    Article  Google Scholar 

  14. Parker, J.G.: Rotational and vibrational relaxation in diatomic gases. Phys. Fluids 2, 449–462 (1959)

    Article  MathSciNet  Google Scholar 

  15. Boyd, I.D.: Rotational–translational energy transfer in rarefied nonequilibrium flows. Phys. Fluids A 2, 447–452 (1990)

    Article  Google Scholar 

  16. Billing, G.D.: Vibration-Vibration and Vibration-Translation Energy Transfer, Including Multiquantum Transitions in Atom-Diatom and Diatom-Diatom Collisions. In: Capitelli, M. (ed.) Nonequilibrium vibrational kinetics, pp. 85–112. Springer, Heidelberg (1986)

    Google Scholar 

  17. Esposito, F., Capitelli, M.: Quasiclassical molecular dynamic calculations of vibrationally and rotationally state selected dissociation cross-sections: N+N2(v,j)->3N. Chem. Phys. Lett. 302, 49–54 (1999); Esposito, F, Capitelli, M., Gorse, C.: Quasi-classical dynamics and vibrational kinetics of N+N2(v) system. Chem.Phys. 257, 193–202 (2000)

    Article  Google Scholar 

  18. Esposito, F., Capitelli, M.: Quasiclassical trajectory calculations of vibrationally specific dissociation cross-sections and rate constants for the reaction O+O2(v)->3O. Chem. Phys. Lett. 364, 180–187 (2002)

    Article  Google Scholar 

  19. Koura, K.: Monte Carlo direct simulation of rotational relaxation of diatomic molecules using classical trajectory calculations: Nitrogen shock wave. Phys. Fluids 9, 3543–3549 (1997)

    Article  Google Scholar 

  20. Fujita, K., Abe, T.: Coupled Rotation-Vibration-Dissociation Kinetics of Nitrogen using QCT Models. AIAA paper 2003-3779 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bruno, D., Capitelli, M., Longo, S., Minelli, P. (2004). Direct Simulation Monte Carlo Modeling of Non Equilibrium Reacting Flows. Issues for the Inclusion into a ab initio Molecular Processes Simulator. In: Laganá, A., Gavrilova, M.L., Kumar, V., Mun, Y., Tan, C.J.K., Gervasi, O. (eds) Computational Science and Its Applications – ICCSA 2004. ICCSA 2004. Lecture Notes in Computer Science, vol 3044. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24709-8_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24709-8_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22056-5

  • Online ISBN: 978-3-540-24709-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics