Skip to main content

Simulating a Coalescent Process with Recombination and Ascertainment

  • Conference paper
Computational Methods for SNPs and Haplotype Inference (RSNPsH 2002)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 2983))

Abstract

A new method is presented for use in simulating samples of disease and normal chromosomes bearing multiple linked genetic markers under a neutral model of mutation, genetic drift, and recombination. The method accounts for the potential effects of investigator sampling bias by allowing for ascertainment of chromosomes according to disease status and of markers according to a pre-specified polymorphism cutoff level. The method was implemented in a computer program and applied to study the general effects of disease mutation age (or frequency), levels of marker polymorphism, and sample size, on pairwise LD between markers and a disease mutation. It is shown that the average pairwise LD between a marker and a disease mutation is lower for older, or more prevalent, disease mutations, as expected. The marker polymorphism cutoff level also has an important influence on LD. Potential applications of the method for predicting the power of genome-wide marker-disease association studies are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dove, A.: Mapping project moves forward despite controversy. Nature Medicine 8(12), 1337 (2002)

    Article  Google Scholar 

  2. Reich, D.E., Cargill, M., Bolk, S., Ireland, J., Sabeti, P.C., Richter, D.J., Lavery, T., et al.: Linkage disequilibrium in the human genome. Nature 411(6834), 199–204 (2001)

    Article  Google Scholar 

  3. Gabriel, S.B., Schaffner, S.F., Nguyen, H., Moore, J.M., Roy, J., Blumenstiel, B., Higgins, J., et al.: The structure of haplotype blocks in the human genome. Science 296, 2225–2229 (2002)

    Article  Google Scholar 

  4. Phillips, M.S., Lawrence, R., Sachidanandam, R., Morris, A.P., Balding, D.J., Donaldson, M.A., Studebaker, J.F., et al.: Chromosome-wide distribution of haplotype blocks and the role of recombination hot spots. Nat. Genet. 33(3), 382–387 (2003)

    Article  Google Scholar 

  5. Shifman, S., Kuypers, J., Kokoris, M., Yakir, B., Darvasi, A.: Linkage disequilibrium patterns of the human genome across populations. Hum. Mol. Genet. 12(7), 771–776 (2003)

    Article  Google Scholar 

  6. Cardon, L.R., Abecasis, G.R.: Using haplotype blocks to map human complex trait loci. Trends Genet. 19(3), 135–140 (2003)

    Article  Google Scholar 

  7. Krugylak, L.: Prospects for whole-genome linkage disequilibrium mapping of common disease genes. Nat. Genet. 22(2), 139–144 (1999)

    Article  Google Scholar 

  8. Nordborg, M., Tavare, S.: Linkage disequilibrium: what history has to tell us. Trends Genet. 18(2), 83–90 (2002)

    Article  Google Scholar 

  9. Wakeley, J., Nielsen, R., Liu-Cordero, S.N., Ardlie, K.: The discovery of singlenucleotide polymorphisms–and inferences about human demographic history. Am. J. Hum. Genet. 69(6), 1332–1347 (2001)

    Article  Google Scholar 

  10. Akey, J.: The effect of single nucleotide polymorphism identification strategies on estimates of linkage disequilibrium. Mol. Biol. Evol. 20(2), 232–242 (2003)

    Article  Google Scholar 

  11. Ohashi, J., Tokunaga, K.: The expected power of genome-wide linkage disequilibrium testing using single nucleotide polymorphism markers for detecting a low-frequency disease variant. Ann. Hum. Genet. 66(pt. 4), 297–306 (2002)

    Article  Google Scholar 

  12. Zhang, K., Calabrese, P., Nordborg, M., Sun, F.: Haplotype block structure and its applications to association studies: power and study designs. Am. J. Hum. Genet. 71(6), 1386–1394 (2002)

    Article  Google Scholar 

  13. Long, A.D., Langley, C.H.: The power of association studies to detect the contribution of candidate genetic loci to variation in complex traits. Genome Res. 9(8), 720–731 (1999)

    Google Scholar 

  14. Zollner, S., von Haeseler, A.: A coalescent approach to study linkage disequilibrium between single-nucleotide polymorphisms. Am. J. Hum. Genet. 66(2), 615–628 (2000)

    Article  Google Scholar 

  15. Stumpf, M.P., Goldstein, D.B.: Demography, recombination hotspot intensity, and the block structure of linkage disequilibrium. Curr. Biol. 13(1), 1–8 (2003)

    Article  Google Scholar 

  16. Slatkin, M.: Gene genealogies within mutant allelic classes. Genetics 143(1), 579–587 (1996)

    Google Scholar 

  17. Hudson, R.R., Kaplan, N.L.: The coalescent process in models with selection and recombination. Genetics 120(3), 831–840 (1988)

    Google Scholar 

  18. Griffiths, R.C., Marjoram, P.: Ancestral inference from samples of DNA sequences with recombination. J. Comput. Biol. 3, 479–502 (1996)

    Article  Google Scholar 

  19. Valdes, A.M., Slatkin, M., Freimer, N.B.: Allele frequencies at microsatellite loci: The stepwise mutation model revisited. Genetics 133, 737–749 (1993)

    Google Scholar 

  20. Ohta, T., Kimura, M.: A model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a finite population. Genetical Research 22, 201–204 (1973)

    Article  MathSciNet  Google Scholar 

  21. Slatkin, M., Hudson, R.R.: Pairwise comparisons of mitochondrial-DNA sequences in stable and exponentially growing populations. Genetics 129, 555–562 (1991)

    Google Scholar 

  22. Griffiths, R.C., Tavaré, S.: Sampling theory for neutral alleles in a varying environment. Phil. Trans. Roy. Soc. London Ser. B 344, 403–410 (1994)

    Article  Google Scholar 

  23. Jukes, T.H., Cantor, C.R.: Evolution in protein molecules. In: Munro, H.N. (ed.) Mammalian Protein Metabolism III, pp. 21–132. Academic Press, New York (1969)

    Google Scholar 

  24. Ewens, W.J.: Mathematical Population Genetics. Springer, New York (1979)

    MATH  Google Scholar 

  25. Kimura, M., Takahata, N.: Selective constrain in protein polymorphism: study of the effectively neutral mutation model by using an improved pseudosampling method. Proc. Natl. Acad. Sci. USA 80, 1048–1052 (1983)

    Article  MATH  Google Scholar 

  26. Hill, W.G., Robertson, A.R.: Linkage disequilibrium in finite populations. Theor. Appl. Genet. 38, 226–231 (1968)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, Y., Rannala, B. (2004). Simulating a Coalescent Process with Recombination and Ascertainment. In: Istrail, S., Waterman, M., Clark, A. (eds) Computational Methods for SNPs and Haplotype Inference. RSNPsH 2002. Lecture Notes in Computer Science(), vol 2983. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24719-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24719-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21249-2

  • Online ISBN: 978-3-540-24719-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics