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Abstract. Large distributed systems, including real-time embedded sys-
tems, are increasingly being built using sophisticated middleware frame-
works. Communication in such systems is often realized using in terms of
asynchronous events whose propagation is implemented by an underly-
ing publish/subscribe service that hooks components into a generic event
communication channel. Event correlation – a mechanism for monitoring
and filtering events – has been introduced in some of these systems as an
effective technique for reducing network traffic and computation time.
Unfortunately, even though event correlation is used heavily in frame-
works such as ACE/TAO’s real-time event-channel and in mission critical
contexts such as Boeing’s Bold Stroke avionics middleware, the industry
standard CORBA Component Model (CCM) does not include a specifi-
cation of event correlation. While previous proposals for event correlation
usually offer sophisticated facilities to detect combinations in the stream
of incoming events, they have not been constructed to fit within the
CCM type system, and they offer relatively little support for transform-
ing and rearranging filtered events into meaningful output events. In this
paper, we present the design rationale, syntax, and semantics for a new
and highly flexible model for event correlation that is designed for inte-
gration into the CCM type system. Our model has been integrated and
tested in the Cadena development and analysis framework, which has
been designed to support development of mission-control applications in
the Boeing Bold Stroke framework.

1 Introduction

As software systems become more distributed, developers are increasingly turn-
ing to component-based development frameworks such as Java Enterprise Beans
(EJB) and the CORBA Component Model (CCM) to manage the complexities
associated with building and deploying distributed systems. A major advan-
tage of such component based systems working on sophisticated middleware in
general is the clear separation of concerns, which distinctly isolates the stages
of the development process as well as it divides business logic from infrastruc-
ture, allowing to synthesize substantial parts of the implementation directly from
the specification. Further, CCM as an established industry standard based on
CORBA, introduces system independence and a high level of interoperablity
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into the development process. As a result, component-based development is be-
ing explored in real-time safety/mission-critical domains as a mechanism for
incorporating non-functional aspects such as real-time, quality-of-service, and
distribution, permitting the developer to focus on application-specific parts.

Communication between components in such systems is often phrased in
terms of asynchronous events whose propagation is implemented by an underly-
ing publish/subscribe service that hooks components into a generic event com-
munication channel. In these event services, event correlation – a mechanism for
monitoring and filtering events – often plays a crucial role in reducing network
traffic and computation time.

To illustrate, consider the common case where one component C receives
events a and b from components A and B, respectively, and generates a new
output event c which is synthesized in some way from a and b – specifically, C
requires both a and b before it can generate its own output event. If component
A issues events at a higher frequency than component B (as is often the case in
real-time periodic systems), many a events will be discarded by C as it awaits for
an accompanying b. Obviously a communication channel which is able to filter
out such additional events saves logic and computation time in the receiving
component and reduces network traffic in the system. Specifically, we would like
the event communication layer itself to monitor the event flow and forward an
a and b together to C only when both events have occurred. Depending on the
complexity of communication this improvement is often substantial.

Unfortunately, even though event correlation is used heavily in frameworks
such as ACE/TAO’s real-time event-channel and in mission critical contexts
such as Boeing’s Bold Stroke avionics middleware, the CCM specification does
not include a specification of event correlation. While previous proposals for
event correlation usually offer sophisticated facilities to detect combinations in
the stream of incoming events, they have not been constructed to fit within the
CCM type system, and they offer relatively little support for transforming and
rearranging filtered events into meaningful output events.

In this paper, we present a new and highly flexible model for event correla-
tion that is simple in syntax and rich enough in features to specify complicated
correlations. Increased flexibility is achieved by splitting an event correlator into
two phases: first, a filter phase monitors the event flow for the desired event
combination, then a second closely-interacting transformation phase disassem-
bles input events and reassembles payloads from the input events into output
events in a programmable manner. The splitting of correlation into these two
phases (specifically, the introduction of the programmable transformation facil-
ity) allows our correlation framework to be tightly integrated with the event
type system of CCM.

The contributions of the paper are as follows.

– We present a novel event correlation framework that decomposes event cor-
relators into event filter and event transformer stages.

– We define a formal semantics for this correlation framework in terms of a
language over event sequences.
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– We show how the notion of event transformer allows for the first time a
correlation framework to be incorporated into CCM and integrated with the
CCM event type system.

– We describe how our correlation framework is implemented in the Cadena
environment for development of high-assurance distributed systems, and how
correlation specifications given at the modeling level are translated to im-
plementations in the underlying middleware layers.

– We illustrate how our framework can be used to correlation problems that
are representative of those in avionics applications but are more difficult to
solve using previous frameworks.

These results remove barriers that previously prevented applications that relied
heavily on correlation (such as those built in Boeing’s Bold Stroke program)
from being transitioned to a CCM framework where standardization and a richer
deployment framework provide a variety of benefits.

The rest of this paper is organized as follows. Section 2 presents the syntax
and semantics of event filter expressions Section 3 describes the event transform-
ers. Section 4 illustrates how our correlation framework can be used to implement
dynamic changes to correlations. Section 6 discusses related work, and Section 7
concludes.

2 Syntax and Semantics of Filter Expressions

2.1 The Filter Syntax

Previous approaches build on atomic expressions which access the payload of
an event and associate truth values according to whether the event with its
attributes satisfies the atomic expression. While our model in general is inde-
pendent from the actual form of the underlying atomic expressions, we chose to
only consider the arrival of an event, since this strategy follows the concept of
the CCM architecture in the sense that we connect typed source ports to typed
sink ports from known entities, allowing the communication channel to have
knowledge about the connections but leaving any assessment of the payload val-
ues other than rearrangement to the components of the system. The time of the
issuing of the event (e. g. represented in the form of a timestamp attached to the
event) as well as its source and its type are considered intrinsic properties of the
event and hence visible to the correlator. Note that knowledge of the generation
time of an event is implicitly assumed by all above mentioned previous works
on event correlation [6, 7, 12, 10], otherwise the use of a sequential operator (see
below) is infeasible. Accordingly, we can assign a single identifier to every source
port connected to a correlator.

In the reminder of this section, we will assume that there are source com-
ponents A, B, C, . . . connected to the Event Channel (i. e. the communication
channel provided by the middleware), and that these components issue the events
a, b, c, . . . with the types τa, τb, τc, . . . respectively. As mentioned above, the
payload of an event is not accessible to the filter, thus we can identify a finite set
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filter ::= sequence ( || filter )∗

sequence ::= collection ( ; sequence )∗

collection ::= accumulation ( | collection )∗

accumulation ::= atom ( + accumulation )∗

atom ::= (label:)? event
| (label:)? ( sequence )

(a) Filter Expression Grammar

Filter

Transformer

b
a
c
c

d d d

a

correlated events

incoming events

(b) Filter/Transformer

Fig. 1. Filter Grammar and Role.

Σ = {a, b, c, . . .} of possible events occurring in an infinite sequence as input of
the correlator by considering two events equal iff they come from the same source
port. Similar to the other mentioned approaches, we use an expression which we
call the filter expression to denote the subsequences which are of interest for the
receiver of the correlated event.

The syntax of the filter expressions is closely related to that of previous
approaches such as e. g. the ECL expressions in [10], the Event Composition
Operators in [7] or the Policy language in [6]. It is further based on our assessment
of the Boeing’s Bold Stroke and SAE AADL (Avionics Architecture Description
Language1) frameworks. In this approach we present three basic combinators and
a parallel combinator. Informally the three combinators are (1) the accumulation
of events, i. e. both of two events a and b have to occur, regardless of the order
(written a+b), (2) the collection of events, i. e. at least one of two events a and b
has to occur (written a|b), and (3) the sequence of events, i. e. of two events a and
b both have to arrive in the given order (written a;b). An abbreviated grammar
of the filter expressions is given in Fig. 1(a). In this grammar, “(. . . )∗” stands
for zero or more and “(. . . )?” for zero or one instance of the item given inside the
parenthesis. Note that all combinators are defined with arity two. While this does
not impact the expressiveness of the combinators since they are associative [5], it
greatly simplifies the formal definition of dynamic semantics given in section 4.
Further, note that our approach enabled us to reduce the number of different
combinators as compared to previous models without loosing flexibility. In fact,
we believe that in our approach the expressions are more intuitive instead.

2.2 Semantics of the Three Basic Combinators

We now define the semantics of filter expressions in a way similar to regular
expressions. This approach provides a firm formal background while leaving the
computational model for implementing a filter open to the choice of the pro-
grammer. Essential is the concept of a match, which we first define for a basic
atomic expression composed of a single event:
1 See http://www.sae.org/technicalcommittees/aasd.htm.
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Definition 1. A sequence s = e1 . . . en of events e1, . . . , en ∈ Σ matches a
singleton filter expression a, iff an event a is in s, i. e. there is an i with ei = a.

Next, we define the basic combinators +, | and ;. The parallel operator || is
discussed later.

Definition 2. A sequence s of events matches a filter expression x1 ⊕ x2 iff

– ⊕ is + and s matches x1 and s matches x2.
– ⊕ is | and s matches x1 or s matches x2.
– ⊕ is ; and the sequence s can be split into two subsequences s1 and s2 such

that s = s1 · s2 and s1 matches x1 and s2 matches x2.

To illustrate, consider the expression a+b and a;b. While the former is matched
by the sequence bbca, the latter is not. Other matched expressions are e. g. b|d
or b;a. Note that “+” and “|” are commutative, while “;” is not [5]. We will
call the set M(x ) = {s ∈ Σ∗ | s matches x} the set of matches of the expression
x . Clearly, there are infinite sequences in the set of matches of an expression
x . Nevertheless for the filter we are only interested in a notification whenever a
match first is complete.

Definition 3. A shortest match of an expression x is a sequence s of events
such that s matches x but no proper prefix of s matches x .

In analogy to regular languages we call the set of shortest matches of an expres-
sion x the language L(x ) of x .

For example, aab, aaab and aaaaaab are shortest matches for the expression
b with a, b ∈ Σ, aaba is a match, but not a shortest match. Shortest matches for
the expression a+b|a+c are e. g. ba, ac, bbcbca, aac.

Sequences we can define with these three basic combinators are a subset of
regular languages ([5]), hence it is obvious that we can construct an acceptor.

2.3 The Trigger

Definition 2 implies that for the combinators + and | both subexpressions have
to be checked on the same sequence s, which means that their acceptors are
both executed in parallel. Consider the sequence abbabaa . . . and the expression
a;b;a. Then there are two successive shortest matches in the sequence

abba
︸︷︷︸

baa . . . and abb aba
︸︷︷︸

a . . .

which are overlapping. In the event communication service though, we are inter-
ested in separate, non-overlapping occurrences of the correlation. We therefore
define the notion of a trigger on the sequence s.

Definition 4. A shortest match of an expression x on a sequence s of events is
a trigger, iff it does not overlap with a previous trigger on s.

Note that at the beginning of a sequence there can be no previous trigger, hence
the definition is well founded. The second match in the above example therefore
it is not a trigger. Intuitively, a state based acceptor resets at the point abba ↓
baa . . .. We say a filter triggers whenever it completes a trigger.
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2.4 The Parallel Combinator

There can be situations, in which all overlapping triggers are of interest to the
receiver of a correlated event. Moreover though, as described in section 4, we
want to be able to influence the behavior of a correlator without affecting ongoing
computations of the filter. We hence introduce a parallel combinator ||, which
is exactly similar to the collection combinator | in its definition of a match and
shortest match, but it allows overlapping matches:

Definition 5. Let s be a sequence, T1 be the set of triggers of expression x1 on
s, and T2 be the set of triggers of expression x2 on s. Then the set of triggers T
for the expression x1||x2 is the union T1 ∪ T2 of the sets T1 and T2.

Intuitively, the expressions x1 and x2 run independently from each other. Clearly
it is not necessary to allow the use of the parallel combinator anywhere but in
top level of the filter expression (this motivates the structure of the grammar in
Fig. 1(a)).

2.5 The Result of the Filter Evaluation

Consider the expression a|b which triggers whenever a or b appear in the input
sequence. In case of triggering we want to know which one of the events, a or b
actually arrived, since the result of the correlation delivered by the transformer
(see section 3) might depend on it. Therefore we introduce the notion of an active
subexpression.

Definition 6. Let s be a sequence of events, and the subsequence s′ of s be
a trigger of expression x on s. A subexpression x ′ of x is called active iff s′

matches x ′.

E. g. b+c is an active subexpression of the expression a+c|b+c on the trigger ccb,
while the subexpression a+c is not. For the trigger ac though, a+c is active, while
b+c is not. Finally, for the trigger abc every subexpression of a+c|b+cis active.

To make the result of a subexpression accessible to the transformer, it has
to be marked with a label.

Definition 7. A label l ′ attached to a subexpression x ′ of an expression x is
active iff x ′ is active.

To illustrate we label two of the subexpressions of the previous example as
l1:(a+c)|b+l2:c. On the trigger ca the label l1 is active, on the trigger bc not.
Note that l2 is active on every trigger of the expression.

Upon completion of every trigger the filter propagates the set of active labels
as result to the transformer. Note that the filter does not terminate after the first
trigger, but it continues to trigger throughout the sequence of incoming events.

2.6 The Concrete Syntax of the Correlation

We define the correlators offered by the middleware communication channel in
a separate input file called correlation library2. For simplicity we designed the
2 See section 5.
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form of the correlation definition closely similar to usual method or procedure
definitions in imperative languages:

output-type correlation name (typed-identifier1, typed-identifier2, . . . )
filter-expression { transformer }

Here, the output-type is an event type defined in the CORBA IDL file2 designat-
ing the type of the event sent out by this correlator. It is followed by the keyword
correlation and an identifier name denominating the correlation. The events
handled by this correlator are then provided as a list of typed identifiers which,
in analogy to the parameters of a method, are later bound to event ports in
the system assembly. The filter-expression defines the event subsequences upon
which the correlation is supposed to trigger as an expression over the identifiers
from the typed identifier list using combinators and labels in the syntax and
semantics given previously in this section. Example:

Notification correlation AfterTimeout (TimeOut a, DataAvailable b)
a ; b {. . . }

Here, the identifier a will be bound to a port issuing TimeOut-events, while b
is bound to a DataAvailable port. The correlation triggers on every sequence
which contains a TimeOut and later a DataAvailable-event. The parenthesis
“{. . . }” stands for the transformer, which is discussed in the next section.

3 The Transformer

3.1 Outline of the Transformer

The transformer provides the second step of our two phase model. As indicated
in section 2.5, the input for the transformer is a set of active labels delivered by
the filter. The function of the transformer is to assemble a new event based on
various of the available incoming events and to push that event to the receiver(s)
whenever a trigger is complete. In section 4 we will assign further objectives
to the transformer, namely the possibility to perform dynamic changes to the
correlator’s behavior, to add more flexibility.

The transformer has two parts. The first part is an initialization, for which
the discussion will also be deferred to section 4. The second part consists of case
clauses branching on boolean expressions over the labels, assigning the values
true to active and false to inactive labels respectively.

3.2 The Basic Transformer Syntax

An abbreviated grammar for the transformer is shown in Fig. 2. The substantial
parts of the transformer are the case-clauses. Each case features a boolean
expression over the labels. Upon a trigger, the body of each case, for which the
associated label expression evaluates to true is executed.
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transformer ::= init ( case )∗ label-exp ::= disjunct ( | disjunct )∗

case ::= case label-exp : ( statement )∗ disjunct ::= conjunct ( & conjunct )∗

statement ::= push event; conjunct ::= !conjunct
event ::= identifier | ( label-exp )

| new event-initial | label
event-initial ::= type { attr-assignments } | true

attr-assignments ::= ( attribute := identifier.attribute )∗

Fig. 2. Basic Transformer Grammar.

For now there are three possible actions to take inside the body of a case
clause: First, one of the events can be just propagated through, by giving the
identifier of the event as argument to the push statement. A side condition
is that the type of the event is a subtype of the declared output type of the
correlation.Second, the correlator can assemble a new event of a given type,
which again must be a subtype of the declared output type. The third, and at
first sight trivial option is to do nothing at all. The section 3.4 though will show
how this adds considerably to the possibilities of our approach.

3.3 The Transformer Output

For the assembly of an event we provide the new statement. It receives an event
type defined in a separate file using the CORBA Interface Definition Language
(IDL)3 and a comma separated list of attribute assignments enclosed in curly
brackets. For example the following lines define two event-types in IDL-syntax,
where event DataNotify inherits from event Notify:

eventtype Notify {
attribute short SourceID;

};

eventtype DataNotify : Notify {
attribute float Value;

};

A transformer, given e. g. an input DataNotify event a, can assemble an output
Notify event with the statement

push new Notify { SourceID = a.SourceID }

We make use of the inheritance subtyping given by the IDL event declarations,
i. e. whenever e. g. Notify is defined to be the event type of an incoming event,
the correlator accepts events of type DataNotify or any other subtype, similarly
it can send out events of any type which is subtype of the declared output type.

3.4 Examples

Double Match. In [11], Boeing engineers discuss correlations in the context
of the Boeing Bold Stroke framework. In their example, a receiving component
is interested in notifications from three different event sources, referred to as A,
B and C. A correlation occurs whenever either both, component A and B, or
3 See section 5.
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case l1: push new NavData
{ air = a.air, nav = b.nav }

case l2: push new NavData
{ air = a.air, nav = c.nav }

(a) Send data from both events

case l1: push new NavData
{ air = a.air, nav = b.nav }

case l2 & !l1: push new NavData
{ air = a.air, nav = c.nav }

(b) Take only b if present

case true: push new DataAvailable {}

(c) Send general notification

Fig. 3. Handling a Double Match Trigger.

both, component A and C have issued an event4. The filter expression describing
this pattern is a+b|a+c, or equivalently a+(b|c). Consider the following stream
of incoming events: . . . cba. The sequence matches the expression, and hence is,
assuming no previous overlapping trigger, a trigger for the filter. Note though,
that the sequence is a match for both subexpressions a+b as well as a+c. Nat-
urally, there must be a clear definition on how to handle this case. To discuss
these, we label the subexpressions as follows: l1:(a+b)|l2:(a+c). Fig. 3 presents
three different possibilities for the transformer to react to a trigger.

In Fig. 3(a) the transformer sends an event containing data from the incoming
event a if l1 is active, or an event containing data from event b if l2 is active. If
both labels are active though, as is the case with the above mentioned trigger,
the transformer of Fig. 3(a) will generate two events. This complies with the
policy informally described in [11].

Fig. 3(b) presents an alternative strategy, where the combination of event a
with event b is favored over the combination of a and c. Again, this behavior
is easy to specify by accessing the active labels: if l1 is active the output is
assembled from b. Only if l1 is not active, the transformer uses c. A behavior
like this, although it suggests itself in many common situations, is extremely
complicated to describe in any of the previous approaches.

In many cases, a component may not be interested in particular payload
values arriving in correlated events, i.e., the component simply needs to know
that a correlation trigger has occurred. In this case, the transformer can be
constructed to simply output an event with empty payload as shown in Fig. 3(c).
Here, upon any trigger the same notification event is generated, regardless of the
incoming events.

Interleaving Event. A primitive offered by other frameworks is the non-
interleaving or do-unless correlation, expressed e. g. with {e1;e2}!e3 in [7],
or with do{φ1}unless{φ2} in [10]. Common to these primitives is that some
4 In one of the Bold Stroke examples, the modal scenario, this situation is given by

two different steering queues, which correlate with a single air-frame as input to the
combined display.
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expression is pursued on the stream of incoming events until it is interrupted
and reset by an interleaving event. For example, after the occurrence of e1 in
the above expression from the GEM framework, the correlator looks for e2 or
interrupts if e3 comes in between. Similarly in the Stanford approach the ex-
pression φ1 is evaluated in parallel with φ2, and if φ2 succeeds earlier, then the
whole expression results in a fail.

Our model provides the same functionality without an additional primitive.
Consider an expression x0 which should not be interrupted by the completion of a
second expression x1. The filter expression l1:x0|l2:x1 executes both expressions
in parallel, resetting whenever either one triggers. As shown in Fig. 4(a) this
is fully sufficient to prohibit interleaving of the two subexpressions, simply by
ignoring the label l2. Unlike previous approaches though, we can even safely
handle a case where, similar to the double match example, both expressions
complete with the arrival of the same event, e. g. by explicitly requiring the label
l2 not to be active when sending out the result. This is done by replacing the
label expression l1 by the expression l1 & !l2 in Fig. 4(a). Further, whenever
this expression is integrated as a subexpression into a larger context, it is easy
to refer to either x0 or x1 by using the labels, e. g. to catch and handle the
interleaving reset event, instead of ignoring it.

case l1: push new event
p

(a) Prohibit interleaving

case l1: push b
case l2: push a

(b) Most recent event

Fig. 4. Interleaving Semantics and Most Recent Event.

Most Recent. Consider a component interested in the accumulation of two
events a and b. One possible filter which recognizes this accumulation is a+b. It
is possible though to retrieve further information, e. g. about the order in which
the events arrive. To achieve this, we expand and label the expression into an
equivalent expression l1:(a;b)|l2:(b;a). Still, this filter triggers whenever both,
a and b are present in the incoming stream of events. The transformer body
shown in Fig. 4(b) transfers the most recent of both events through to the
subscriber.

4 Dynamic Changes

4.1 Changing Requirements

The communication structure in component based distributed systems is usu-
ally subject to dynamic modifications as it has to adapt to changes in the com-
ponent’s behavior as well as varying environmental properties. Especially the
different operandi of the components referred to as modes cause frequent alter-
ations to the communication. A correlator which is designed to work throughout
the system’s runtime has to offer possibilities to adjust both, filtering as well as
transformation and propagation of events, to changing requirements.
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In analogy to the modes of the components, some earlier approaches provide
modes also for the correlator represented by mode guards, each of which in turn
encapsulates a complete correlation definition. Nevertheless, according to our
assessment of the component scenarios provided to us by the Boeing company,
changes to the correlator rarely require an exchange of the whole definition by
an entirely different one, instead the most common change is simply temporary
absence of single events. Our approach aims to provide easy means to express
this common scheme while still supporting more complicated dynamic adaption.

4.2 Cancelling Subexpressions

In our model, dynamic changes are realized by dropping or restoring subexpres-
sions of the filter. We hence introduce two different states for each subexpression,
alive and aborted. Similarly to the filter semantics given in section 2, we identify
a label with the subexpression marked by the label, i. e. a label is aborted iff the
marked expression is aborted and alive iff the marked expression is alive.

Definition 8. Let xa be an aborted expression. Then for any filter expression
x0 and any combinator ⊕ ∈ {;, |, +, ||} we have that L(xa ⊕ x0) = L(x0 ⊕ xa) =
L(x0).

In short, an aborted subexpression will simply be ignored by the filter. Note
though, that for different combinators this definition has different implications,
e. g. in an accumulation an aborted subexpression will be treated as “always
present” while in a collection it will be treated as “never occurring”.

Similarly to an aborted expression, any literal containing the attached label
is also ignored in the label expressions guarding the cases in the transformer.

Definition 9. Let la be an aborted label. Then for any label expression x0 and
any boolean operator ⊕ ∈ {&, |} we have that λa ⊕ x0 ≡ x0 ⊕ λa ≡ x0, where λa

is either la or !la. An empty expression evaluates to false.

Analogous to the filter expressions, this definition interprets an aborted label’s
literal as true in a conjunction and as false in a disjunction.

init ::= ( commuter-stmt; )∗ commuter-stmt ::= abort (label (, label)∗ )
statement ::= push event; | revive (label (, label)∗ )

| commuter-stmt; | toggle (label (, label)∗ )

Fig. 5. Transformer Grammar Extensions.

4.3 Additions to the Filter Syntax

Fig. 5 shows the extensions to the transformer grammar which enable the dy-
namic features of the correlator5. With the statements abort (l) and revive (l)
label l and the subexpression marked by l can be dropped and restored, the
toggle (l) statement switches between abort and alive state. By default every
label is initially alive. Whenever a label is supposed to be in abort state initially,
it has to be switched off in the initialization part of the transformer.
5 Note the basic grammar in Fig. 2.
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4.4 Simulation of a Mode-Based Approach

Consider a mode expression from [10] with n mode guard expressions g1, . . . gn
and enclosed correlator expressions x1, . . . xn :

in (g1) do {x1} . . . in (gn) do {xn}
We can easily simulate this functionality with the following filter expression:

m1: x1 | . . . | mn: xn || l1: g1 | . . . | ln: gn

and the following transformer

{ abort (m1, . . .mn);

case l1: abort (m1, . . .mn); revive (m1);

. . .
case ln: abort (m1, . . .mn); revive (mn);

internal cases of the different expressions }.

Therefore the mode based approach offers no expressive power beyond our ap-
proach.

4.5 Example: Dropping an Unreliable Source

A common task for a correlator in Distributed Realtime Environment (DRE)
applications is to accumulate all incoming events from e. g. a redundant sensor
array and to send a combined event to the receiving component. We assume four
sources referred to as A, B, C and D, with the events a, b, c and d. We further
assume that a controlling component is able to determine the logical validity
[9] of the data issued by the sources, and reacts to invalid data by issuing a
shutdown event, telling the correlator to ignore the corresponding source. The
filter expression hence is

ma:a + mb:b + mc:c + md:d || la:ca || lb:cb || lc:cc || ld:cd

Accordingly, the transformer is

{ case la: abort (ma);

case lb: abort (mb);

case lc: abort (mc);

case ld: abort (md);

case ma & mb & mc & md: push new DataAvailable {} }

If we want to enable the controlling component to be able to revive the dropped
sources again, we can similarly use toggle instead of abort. Note though, that
to cover every possible case with n redundant sensors a mode based approach
as proposed by [10] would need up to 2n different modes to achieve the same
functionality. We are not aware of any support for dynamic modification of the
correlator’s behavior in previous works other than the above cited mode based
proposal from Stanford.
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CAD
Cadena Assembly

Description

IDL
Interface Definition

Language

CPS
Component Property

Specification

Components Implementation
System

Assembly

COR
Cadena CORrelation

Library

Fig. 6. The Elements of a Cadena Specification.

5 Use in Cadena

We implemented the correlation framework described here in Cadena, a de-
velopment environment we built for constructing distributed systems using the
CORBA Component Model [4]. Cadena provides a wide range of support for
modeling, analysis, and automatic code generation including facilities for specify-
ing CCM component interfaces using CCM IDL, editors for allocating component
instances and constructing connections between these instances, specifying com-
ponent attributes, various forms of architectural-level analysis such as model
slicing and model-checking against temporal specifications, and the ability to
generate component code from IDL specifications using existing CCM implemen-
tations such as OpenCCM [8] (generating Java code) and CIAO [1] (generating
C++ code). Cadena is implemented in IBM’s Eclipse[3] open-source integrated
development environment.

In Cadena, development begins by modeling components using CCM IDL
which defines the external interfaces of components. Cadena provides an ad-
ditional component property specification (.cps) file that is used to various
lightweight semantic properties of a component including dependences between
actions on a component’s ports and an abstract transition semantics for the
component (see Fig. 6).

Once components are modeled, a “system layout” is constructed in which
instances of components are allocated and component ports of these instances
are hooked together. Component instance connection information is held in com-
ponent assembly description file. As Fig. 6 illustrates, correlations specified in
.cor files can also be captured in the model. Various forms of static analysis
and behavioral checking of the model work on internal representations formed
from the component IDL, .cps, .cad, and .cor files.

Below the modeling level, component implementations are generated from
CCM IDL compilers. Not only do these compilers generate the standard CORBA
stubs and skeletons, they also generate a substantial amount of the code re-
quired to implement component infrastructure such as functionality for con-
necting ports, communicating events, and otherwise support interaction with a
component’s context.

In part of our larger project on development of Cadena infrastructure, other
researchers at Kansas State have developed a flexible Event Communication
Framework (ECF) [2] to augment the basic event propagation mechanisms of
CCM and the lower CORBA layers. ECF is targeted towards optimizing com-
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munication between peers in a distributed system based on middleware in the
presence of event correlation and data replication. Since ECF is independent
of implementation (e.g., the underlying ORB or implementation language) and
architecture (e.g., the topology of a particular application), it can be used seam-
lessly in any CCM-based application. Cadena processes correlator definitions in
the .cor files along with connection information in the .cad file and synthesizes
correlator implementation code to be linked into the CORBA communication
layers and component container and server implementations. In this phase, as an
optimization the framework may break a correlator into parts that realize subex-
pressions of the filter expression depending on the locality of components pro-
ducing events occurring in the subexpressions. We refer to such subexpressions
as node local subexpressions. This reduces network traffic by contributing inter-
node network traffic only when a node local subexpression is satisfied. Likewise,
as the mode of a component can affect the consumption/production of events by
that component, by propogating this information upstream/downstream along
the event flow path further optimization can be achieved. At present, ECF can
use this information to dynamically configure the correlator, as described in
Section 4, depending on the specified behavior and the usage context of the
correlation. This can contribute to reduction in network traffic in a direct or
cascading fashion.

Boeing’s Open Experimental Platform (OEP) provides a set of scenarios
which are representative of how DRE systems are built and used. With the
above mentioned features, we have successfully realized all event correlations
that occur in the scenarios in the above OEP. As the Boeing OEP is based on
Boeing Bold Stroke avionics middleware (built on top of ACE/TAO real-time
middleware), the handling of event correlations in a manner that is compatible
with CCM specifications has removed one of the major obstacles in migrating the
OEP into CCM from the non-standard component model which forms the basis
of the concurrent Bold Stroke implementation and which lacks a substantial
amount of infrastructure (e.g., deployment facilties and IDL code generation)
that is provided by CCM.

6 Related Work

Our work was inspired from the early stages by previous work on event correla-
tion from the GEM project [7] and a group from Stanford [10] also working on
Boeing Bold Stroke. The Stanford model provides a rigorous formal background
by defining the semantics of their definition language using automata similar to
finite automata, called correlation machines. While this approach gives a conve-
nient base for an implementation, we abstained from binding our semantics defi-
nition to a particular computational model, mainly because the implementation
itself (part of our KSU colleagues work on ECF) continues to evolve as we work
with middleware experts from the CIAO/ACE/TAO teams from Vanderbilt and
Washington Universities to adapt the standard CCM event infrastructure into
a form that is better suited for real-time applications. In particular, this effort
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is investigating, e.g., computation time and network traffic optimizations using
partial pre-evaluation of correlations close to the event source.

The Reflex framework [6] provides a fully implemented correlation engine,
together with a specification language called Policy Definition Language. Reflex
generates C++ correlators intended to monitor network events in an internet
like structure. Accessible semantic definitions are informal though. Note, that
CCM uses the notion of events primarily for communication, while Reflex and
other work concentrates on events as a means to monitor system behavior by
some kind of controller.

7 Conclusion

We have presented a flexible framework for event correlation based on the two-
phased approach of event filters and event transformers. Our directions within
the work have been heavily influenced by the special needs of complex high-
reliability real-time systems, and our desire to be able to develop such systems
using the CCM framework. While previous approaches define the complete cor-
relation in a single expression, we believe that employing our two phase model
eases the assembly of meaningful output significantly.

Not only does the separate transformer stage make it easier for the framework
to fit into the CCM type system, it also lends itself to a variety of interesting ca-
pabilities required for the real-time domain. For example, in collaboration with
other middleware researchers, we are investigating approaches for attaching var-
ious real-time and quality of service properties to events. Given these extensions,
transformers are also used to transform priorities, expiration times, and to imple-
ment drop strategies for events. For further development of our model, policies
about event overwriting are being investigated, e. g. for events carrying sensory
data the most recent event has priority over previous, while for an error message
the earliest occurrence is more important. In addition, we are investigating how
such policies may be captured in an extended event type system.
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